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The placement problem is to place objects into a fixed die such that no objects
overlap with each other and some cost metric (e.g., wirelength) is optimized.
Placement is a major step in physical design that has been studied for several
decades. Although it is a classical problem, many modern design challenges
have reshaped this problem. As a result, the placement problem has attracted
much attention recently, and many new algorithms have been developed to
handle the emerging design challenges. Modern placement algorithms can be
classified into three major categories: simulated annealing, min-cut, and an-
alytical algorithms. According to the recent literature, analytical algorithms
typically achieve the best placement quality for large-scale circuit designs. In
this paper, therefore, we shall give a systematic and comprehensive survey on
the essential issues in analytical placement. This survey starts by dissecting
the basic structure of analytical placement. Then, various techniques applied
as components of popular analytical placers are studied, and two leading plac-
ers are exemplified to show the composition of these techniques into a complete
placer. Finally, we point out some research directions for future analytical
placement.

1. Introduction

The placement problem is to place objects into a fixed die such that no objects
overlap with each other and some cost metric (e.g., wirelength) is optimized. (See
Fig. 1 for an illustration.) Placement is a major step in physical design that has
been studied for several decades. Although it is a classical problem, many modern
design challenges have reshaped this problem. The modern placement problem
becomes very tough because we need to handle large-scale designs with billions of
transistors (or millions of objects/standard cells). Meanwhile, intellectual prop-
erty (IP) modules and pre-designed macro blocks (such as embedded memories,
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Fig. 1 The placement process.

analog blocks, pre-designed datapaths, etc.) are often reused, making the place-
ment objects very different in theirs sizes. In addition to wirelength, we also need
to consider many other placement constraints such as chip density, routability,
timing, etc. As a result, the placement problem has attracted much attention
recently, and many new algorithms have been developed to handle the emerging
design challenges. To stimulate the placement research, the ACM International
Symposium on Physical Design (ISPD) even held two placement contests1),2) in
2005 and 2006; these contests have successfully driven the placement research
forward.

Modern placement algorithms can be classified into three major types: simu-
lated annealing, min-cut, and analytical algorithms. Table 1 summarizes their
strengths and weaknesses.
• Simulated Annealing Based Placement. This type of placers tries to

optimize a placement by perturbing module positions based on simulated
annealing. They can thus consider different optimization objectives with little
modification due to the generality of simulated annealing. Good placement
quality can often be achieved on small designs due to the search on a small
solution space. However, the module perturbation may not be trivial with
the existence of big macros, and the lack of scalability makes this type of
placers not applicable on large-scale circuits. Representative placers of this
type are Dragon54) and TimberWolf46).

• Min-Cut Placement. The min-cut placement recursively partitions the
circuit and chip region, and then assign sub-circuits into sub-regions in a
top-down fashion. Because of the maturity of the partitioning algorithms,
the min-cut placement is usually very efficient and scalable. Besides, since
the sub-region of each module is clearly defined during the placement process,
the legalization of big macros can be handled pretty well. Nevertheless, the
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146 Essential Issues in Analytical Placement Algorithms

Table 1 Strengths (+) and weaknesses (−) for the three types of placers.

Simulated Annealing Placement

(+) Easier to consider multiple objectives simultaneously
(+) Good quality for small designs
(−) Harder to handle modules of very different sizes
(−) Slower and less scalable for large circuits
Min-Cut Placement

(+) More efficient and scalable, even for large circuits
(+) Good at mixed-size circuit legalization
(−) Harder to handle multiple objectives simultaneously
(−) Harder for whitespace management, especially for

designs with low utilization rates
Analytical Placement

(+) More efficient and scalable, even for large circuits
(+) Better quality for large-scale designs
(+) Good at whitespace management, regardless of

utilization rates
(+) Easier to handle multiple objectives simultaneously
(−) Harder to legalize large macros
(−) Harder to optimize macro orientations

min-cut partitioning tries to minimize the expected wirelength between sub-
regions by minimizing the number of cuts between sub-circuits, and thus
the applicable optimization objectives are limited. It is also harder for plac-
ers of this type to handle whitespace in the earlier levels of the top-down
process, especially for designs with low utilization rates. Further, the hier-
archical approach of solving each subproblem independently might lack the
global information for the interaction among different subregions, thus lim-
iting the solution quality. Example min-cut placers are Capo3), FengShui5),
and NTUplace16).

• Analytical Placement. The analytical placement formulates the place-
ment problem as mathematical programming composed of an objective func-
tion and a set of placement constraints, and then optimizes the objective
through analytical approaches. It has been shown in the recent literature
and the ISPD placement contests that the analytical placement can achieve
better placement quality for large-scale circuit designs. In particular, it can
consistently achieve high solution quality regardless of different utilization
rates. It is also relatively easier to handle multiple objectives simultaneously

than min-cut placement. However, it is harder to optimize macro orienta-
tions and legalize big macros, due to the intrinsic limitation of mathematical
programming. There are a large number of academic analytical placers, such
as Refs. 4), 8), 12), 18), 23), 33), 35), 39), 40), 51), 58)–60), 65).

With the large number of newly developed analytical placers, the reader might
be dazzled by the wide variety of those approaches. In this paper, therefore,
we shall give a systematic and comprehensive survey on the essential issues in
analytical placement. This survey starts by dissecting the basic structure of
analytical placement. A modern analytical placement algorithm typically consists
of three major stages: global placement, legalization, and detailed placement.
We discuss the analytical global placement techniques based on the following
four key ingredients: (1) wirelength models, (2) overlap reduction techniques,
(3) integration of wirelength models and overlap reduction techniques, and (4)
optimization techniques. We then summarize commonly used legalization and
detailed placement techniques. Two leading academic placers, NTUplace318)

and Kraftwerk251), are exemplified to show the composition of these techniques
into a complete placer. Finally, we point out some research directions for future
analytical placement.

The rest of this paper is organized as follows. Section 2 introduces the basic
structure of the analytical placement. Sections 3, 4, and 5 survey the techniques
applied to global placement, legalization, and detailed placement, respectively.
In Section 6, NTUplace3 and Kraftwerk2 are exemplified to show how these
techniques can be assembled into a complete placer. Finally, future research
directions are discussed in Section 7, and conclusions are given in Section 8.

2. Analytical Placement Basics

As mentioned earlier, placement is the process of determining the locations of
circuit devices on a fixed die such that no devices overlap with each other and
some cost metric (e.g., wirelength) is optimized. Since placement has been proven
to be computationally difficult, one way to manage the complexity of placement
is to divide it into several easier steps. Most modern analytical placers consist of
the following three major steps:
( 1 ) Global placement. Ignoring some placement constraints (e.g., module

IPSJ Transactions on System LSI Design Methodology Vol. 2 145–166 (Aug. 2009) c© 2009 Information Processing Society of Japan



147 Essential Issues in Analytical Placement Algorithms

overlaps), global placement computes the best position for each module
to minimize the predefined cost (e.g., wirelength). Global placement is
generally considered the most important step, due to its crucial impact on
the overall placement quality.

( 2 ) Legalization. Legalization removes all overlaps among modules.
( 3 ) Detailed placement. Detailed placement further improves the legalized

placement solution, typically in an iterative manner by rearranging a small
group of modules in a local region while keeping all other modules fixed.

We detail the three steps in the subsequent sections.

3. Global Placement

For analytical global placement, a circuit can be modelled by a hypergraph
H = (V,E). Let vertices V = {v1, v2, ..., vn} represent cells, and hyperedges
E = {e1, e2, ..., em} represent nets. Let xi and yi be the x and y coordinates of
the center of cell vi, respectively. The typical objective of global placement is to
minimize its wirelength, and a fundamental constraint is to avoid any cell overlap.
The wirelength objective is highly related to the chip performance while the non-
overlapping constraint makes the resulting layout manufacturable. Consequently,
the global placement problem can be formulated as a constrained minimization
problem as follows:

min W (V,E)
s.t. no overlaps among cells, (1)

where W (V,E) is the wirelength function. It can be seen that the minimization
problem consists of two ingredients: one is the wirelength model for the wirelength
estimation, and the other is the overlap reduction technique required to keep cells
overlap-free. Therefore, we shall start our survey by introducing the wirelength
models in Section 3.1, and the overlap reduction techniques in Section 3.2. An
important feature distinguishing the analytical placers lies in the way they unify
the wirelength models and overlap reduction techniques, which will be discussed in
Section 3.3. Finally, the optimization techniques for the unified global placement
problem will be discussed in Section 3.4.

3.1 Wirelength Models
The wirelength of a net e ∈ E is usually defined by its total half-perimeter

wirelength (HPWL) as follows:

W (V,E) =
∑

e

( max
vi,vj∈e

|xi − xj | + max
vi,vj∈e

|yi − yj |) (2)

=
∑

e

(max
vi∈e

xi − min
vi∈e

xi + max
vi∈e

yi − min
vi∈e

yi) (3)

=
∑

e

(Le,x + Le,y). (4)

However, since HPWL is not differentiable (although convex), it is hard to find
its minimum value. Consequently, it is necessary to use a continuous differen-
tiable function (i.e., “wirelength model”) to approximate the HPWL. We describe
popular smooth wirelength approximations (wirelength models) in the following
subsections.

3.1.1 Quadratic Model
The sum of half of the quadratic Euclidean length of every two-pin connection

gives the quadratic wirelength model. As a result, the total wirelength of the
circuit can be represented as

∑
e∈E

1
2

⎛
⎝ ∑

vi,vj∈e,i<j

wx,ij(xi − xj)2 +
∑

vi,vj∈e,i<j

wy,ij(yi − yj)2

⎞
⎠ . (5)

Here, half of the total weighted quadratic wirelength is often used to have a
simpler derivative form. Since the quadratic model can only handle two-pin
connections, multi-pin nets are often modelled by the clique net model or the
star net model (see Fig. 2). The clique model considers all possible two-pin
connections of a net, while the star net model introduces an additional star pin
per net and connects each pin of the net to the star pin. With P representing
the number of pins in net n, the clique model is equivalent to the star net model
in the quadratic cost, if the clique cost is scaled with 1/P 57). The quadratic cost
of the clique net model is

Le,x =
1
2

P∑
i=1

P∑
j=i+1

wx,ij(xi − xj)2. (6)

The net weight wx,ij (wy,ij) is used to adjust the quadratic objective to approxi-
mate the linear objective (HPWL); for example, Gordian-L47) uses the following
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(a) (b)

Fig. 2 Two models for a five-pin net. (a) The clique model. (b) The star model.

formula to determine the x-component weight for the approximation:

wGordianL
x,ij =

1
P

2
P

4
|xi − xj | . (7)

The first term 1/P adjusts the clique model to the star net model. The second
term 2/P adjusts the number of connections of the clique to the number of
connections in the corresponding spanning tree. The third term 1/|xi − xj |
linearizes the quadratic distance between two pins. wy,ij is also defined similarly.

3.1.2 Bound2Bound Model
No matter what wx,ij we choose, the clique net model has a high approximation

error between the total length of the clique net and the HPWL. The problem
of the clique model is that its inner connections contribute to the clique length
but are ignored in the HPWL, since HPWL considers only the distance between
the boundary pins. Figure 3 (a) illustrates the problem with the clique model.
In this figure, the boundary pins are those with the smallest/largest coordinates,
and other pins are inner pins. There are three connections only connecting to
inner pins, but these connections are ignored in the HPWL metric. (The star net
model also has the similar situation.)

The Bound2Bound net model removes all inner two-pin connections, as shown
in Fig. 3 (b). The net weight wB2B

x,ij of the Bound2Bound net model is defined as
follows:

wB2B
x,ij =

{
0, vi, vj ∈ inner pins

2
P−1

1
|xi−xj | , else.

(8)

With this connection weight, the quadratic wirelength function in Eq. (5) exactly
matches the HPWL51):

(a) (b)

Fig. 3 The clique net model and the Bound2Bound net model51). (a) The clique net model.
There are two boundary pins and three inner pins. Three inner pin connections are
marked in the shaded region. (b) The Bound2Bound net model. There is no inner pin
connections. All nets are connected to boundary pins.

Le,x =
1
2

P∑
i=1

P∑
j=i+1

wB2B
x,ij (xi − xj)2 (9)

= max
vi∈e

xi − min
vi∈e

xi. (10)

3.1.3 LSE Model
To accurately approximate and to smooth the HPWL, logarithm-sum-

exponential (LSE) approximation of the max/min function is prevailing in recent
placers, such as APlace32), mPL612), and NTUplace318). The HPWL of a net
e ∈ E can be approximated by using LSE as follows:

LSE e =γ

(
log

∑
vk∈e

e
xk
γ +log

∑
vk∈e

e
−xk

γ +log
∑
vk∈e

e
yk
γ +log

∑
vk∈e

e
−yk

γ

)
. (11)

When γ approaches zero, the LSE wirelength is close to the HPWL41).

lim
γ→0

LSE e = HPWLe (12)

However, due to the computer precision, we can only choose a reasonably small γ

to avoid any arithmetic overflow during the implementation. In particular, LSE e

is differentiable, and thus it serves as a good approximation to HPWLe, in terms
of precision as well as computation.

3.1.4 Lp-norm Model
Another good smoothing method of the HPWL is the Lp-norm approximation:
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Lpnorme =

(∑
vk∈e

xp
k

)1
p

−
(∑

vk∈e

x−p
k

)− 1
p

+

(∑
vk∈e

yp
k

)1
p

−
(∑

vk∈e

y−p
k

)− 1
p

. (13)

The use of the parameter p here is similar to γ for the LSE model. When p is
large, the Lp-norm model gives a very good approximation to the HPWL.

lim
p→∞Lpnorme = HPWLe (14)

Due to the computer precision, similarly, we can only choose a reasonably large
p to prevent any arithmetic overflow during the implementation. The authors
in Ref. 11) compared the LSE and Lp-norm models and concluded that the LSE
model usually outperforms the Lp-norm one in terms of HPWL.

3.1.5 CHKS Model
Different from the log-sum-exp and Lp-norm wirelength models, an alternative

way is to smooth the two-variable max function first, and then the multi-variable
max/min function can be computed by the two-variable max function. As men-
tioned in Ref. 37), the max function has the following properties:
( 1 ) A multi-variable max function can be obtained by the recursive call of

two-variable max functions as follows:

max{x} = max{max{x(1)},max{x(2)}}, (15)

where x(1) and x(2) are two disjoint partitions of x.
( 2 ) min{x} can be obtained from the max approximation by

min{x} = −max{−x}. (16)
The CHKS function was proposed to smooth the two-variable max func-

tion13),34),48):

CHKS (x1, x2) =

√
(x1 − x2)2 + t2 + x1 + x2

2
, (17)

with the smoothing parameter t > 0. The following definition shows how to
construct the smoothed multi-variable max function from two-variable CHKS
functions. (Let f : �n → � correspond to the two-variable CHKS function.)

Definition 1 Define the function fi,i+1 : �n → �, ∀1 ≤ i ≤ n − 1, by
fi,i+1(x) = f(xi, xi+1) = CHKS(xi, xi+1), (18)

and the function fi,i : �n → �, ∀1 ≤ i ≤ n, by

fi,i(x) = xi. (19)
Moreover, for 1 ≤ i ≤ j ≤ n and j − i + 1 > 2, let function fi,j : �n → � be

fi,j(x) = f(fi,k(x), fk+1,j(x)), (20)
where k = � i+j

2 �.
Therefore, the multi-variable max function can be smoothed and approximated

by f1,n(x) as defined above, and then the multi-variable min function can be
determined through Eq. (16). Smoothing of the HPWL in Eq. (3) can therefore
be obtained accordingly. Further, the gradient of the function value fi,j(x) can
be obtained by using the chain rule:

∂fi,j(x)
∂xl

=
∂fi,j(x)
∂fi,k(x)

∂fi,k(x)
∂xl

+
∂fi,j(x)

∂fk+1,j(x)
∂fk+1,j(x)

∂xl
, (21)

where k = � i+j
2 �, and i ≤ l ≤ j. If i ≤ l ≤ k, and the CHKS smoothing function

is used, we have

∂fi,j(x)
∂xl

=

⎛
⎝1

2
+

fi,k(x) − fk+1,j(x)

2
√

(fi,k(x) − fk+1,j(x))2 + t2

⎞
⎠ ∂fi,k(x)

∂xl
. (22)

3.2 Overlap Reduction Techniques
The second key ingredient for analytical placement is how to reduce overlaps

among cells to obtain an evenly distributed placement. Many overlap reduction
techniques have been proposed in the literature for analytical placement. These
techniques can be classified into six categories: (1) partitioning, (2) cell shifting,
(3) assignment, (4) diffusion, (5) density control, and (6) frequency control. The
underlying ideas of these techniques are discussed in the following subsections.

3.2.1 Partitioning
Partitioning is perhaps the earliest method to reduce overlaps among cells;

it decomposes a complex circuit into smaller subcircuits and assigns those par-
titioned subcircuits to proper sub-regions. The movement of each cell is con-
strained accordingly within their assigned sub-regions in the later global opti-
mization steps, and thus the amount of overlaps can be reduced. In analytical
placement, partitioning-based overlap reduction often consists of two stages, the
partitioning stage and the refinement stage. In the partitioning stage, with a
given initial placement, the circuit is partitioned and assigned to sub-regions
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Fig. 4 Illustration of physical partitioning. Cells are partitioned into two sets according to
their physical positions with respect to the vertical cutline (the dotted line).

while minimizing some cost metric, such as cell displacement. In the refine-
ment stage, heuristics such as the Fiduccia and Mattheyses algorithm20) and the
window-based repartitioning24),62), can then be applied to further improve the
partition quality. In the following, we explain these two popular approaches for
partitioning.

For a given initial placement, one most intuitive way to divide the circuit is
to order cells according to their physical positions. Such a partitioning manner
is referred to as physical partitioning. The physical partitioning first decides the
cutline position considering the chip boundary and the cell distribution. For
a given set V of cells with known cell positions, considering a vertical cutline
x = xcutline , the cells are then partitioned into two subsets VL and VR such that

∀vi ∈ VL, xi ≤ xcutline , and
∀vi ∈ VR, xi > xcutline .

Figure 4 gives an example of physical partitioning.
Though the physical partitioning can provide a partitioning solution very

quickly, the resulting partitions might not be able to fit the physical sub-regions
since the physical partitioning does not consider the capacity of each sub-region,
and the partition refinement is thus required to adjust the size of each partition.
A transportation problem was formulated in Ref. 10) to overcome this difficulty.
The underlying idea of the transportation formulation is to assign cells to sub-
regions to minimize displacement such that the capacity constraint is satisfied.
However, since the cells usually have different sizes, such an assignment problem

is NP-complete. As a result, Brenner and Struzyna10) proposed to relax the as-
signment problem by allowing to assign cells fractionally to the sub-regions. For
a set of cells with given positions, let N denote the set of nodes that model the
cells, ni ∈ N stand for the node representing cell vi, and R denote the set of
nodes representing each sub-region. Let size(vi) be the size for cell vi, and for
r ∈ R, cap(r) be the capacity for sub-region r. Let cost(vi, r) be the cost to
move cell vi form its initial position to sub-region r. Then the flow network for
the fractional transportation problem can then be constructed as follows:
(1) Construct the node set Vflow = N∪R∪{s, t}, where s and t are the respective

source and sink of the network.
(2) Construct the edge set Eflow = (N×R)∪({s}×N)∪(R×{t}). For each edge

e ∈ Eflow , ue denotes the capacity of the edge and we denotes the weight of
the edge.

(3) For each edge e = (ni, r) ∈ (N×R), ue is set to ∞, and we is set to cost(vi, r).
(4) For each edge e = (s, ni) ∈ ({s}×N), ue is set to size(vi) and we is set to 0.
(5) For each edge e = (r, t) ∈ (R × {t}), ue is set to cap(r) and we is set to 0.
(6) The supply of s is set to

∑
ni∈N size(vi) and the demand of t is set to

−∑ni∈N size(vi).
Solving the formulated fractional transportation problem can thus obtain the cell
assignment to the sub-regions while satisfying the capacity constraints. Though
the fractions of some cell might be assigned to different sub-regions, it is men-
tioned in Refs. 63) and 10) that such a fractional assignment can easily be con-
verted to an integral one. Finally, the cell partitions and the assignment from
partitions to sub-regions can both be obtained from the converted integral as-
signment.

3.2.2 Cell Shifting
Another possible method to reduce cell overlaps is to spread cells through cell

shifting. Such a concept was first proposed by Viswanathan and Chu in Ref. 57).
The basic idea is to distribute cells over the placement region with their relative
order of an initial placement being retained. To achieve the target, the placement
region is divided into equal-sized bins, and each bin accommodates a various
number of cells. Then the cell shifting is applied along the x and y directions
individually. For the case of applying cell shifting along the x direction, each row
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Fig. 5 (a) Boundaries and utilizations of the initial bin structure before cell shifting. (b)
Boundaries and utilizations of the adjusted bin structure after cell shifting.

of the regular bin structure is processed. Cell shifting for each row is composed
of two steps. First, the adjusted bin structure is constructed according to the
current utilization of each bin in the processing row. Second, every cell is moved
along the x direction based on the linear mapping from the initial bin structure
to the adjusted one. Once cell shifting has been applied on each row of the bin
structure, each column is then processed and the cells are moved along the y

direction.
Figure 5 (a) illustrates the changes for the boundaries and utilizations of each

bin with cell shifting along the x direction, considering a particular row in the
regular bin structure. Let xp indicate the right boundary coordinate of the p-th
bin bp in the initial bin structure, and x̂p represent the adjusted right bound-
ary coordinates after cell shifting. To even out the utilization among adjacent
bins, the following equation was introduced in Ref. 57) to compute the adjusted
boundary coordinates:

x̂p =
xp−1(util(bp+1) + δ) + xp+1(util(bp) + δ)

util(bp) + util(bp+1) + 2δ
, (23)

where util(bp) indicates the utilization of bin bp, and δ is a small constant that

helps the escape from the invalid results at either util(bp) = 0 or util(bp+1) = 0,
where the bin boundaries may cross each other after the bin structure adjustment.
Figure 5 (b) gives the adjusted bin structure from the initial bin structure in
Fig. 5 (a). It can be seen that the utilization differences become smaller after the
bin structure adjustment.

After the construction of the adjusted bin structure for some particular row,
the cells within this row is then linearly mapped according to the initial and
adjusted bin boundaries. For some cell v in the bin bp, let x stand for the initial
x coordinate of v before cell shifting, and x̂ be that after cell shifting. x̂ can then
be computed as follows:

x̂ =
x̂p(x − xp−1) + x̂p−1(xp − x)

xp − xp−1
. (24)

3.2.3 Minimum Cost Flow Assignment
In Ref. 4), Angihotri and Madden proposed to spread cells using the minimum

cost flow assignment. To reduce the problem size, for a given initial placement,
a physical clustering is first performed to cluster nearby cells together. Then
the placement region is partitioned into uniform sub-regions, and a minimum
cost flow algorithm is used to assign clusters into the corresponding sub-regions.
Note that the sizes of clusters are kept as uniform as possible during the physical
clustering, and the sub-region area is determined accordingly to maintain a one-
to-one correspondence.

After the construction of clusters and sub-regions, a minimum cost flow problem
is then formulated to find the best assignment of the clusters to the sub-regions.
The network flow for the minimum cost flow algorithm is constructed as follows:
(1) Construct the node set Vflow = C ∪ R ∪ {s, t}, where C is the set of nodes

representing the clusters, and R is the set of nodes representing the sub-
regions, and s and t are the source and sink of the flow network.

(2) Construct the edge set Eflow = (C×R)∪({s}×C)∪(R×{t}). For each edge
e ∈ Eflow , ue denotes the capacity of the edge and we denotes the weight of
the edge.

(3) For each edge e = (c, r) ∈ (C×R), ue is set to ∞, and we is set to the HPWL
degradation to move all the cells in cluster c from their original positions to
the center of sub-region r.
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(4) For each edge e ∈ ({s} × C) ∪ (R × {t}), ue is set to 1 and we is set to 0.
(5) The supply of s is set to |C| and the demand of t is set to −|C|.
It is clear that such a problem is a special case of the minimum cost flow prob-
lem, and is known as weighted bipartite matching or the transportation prob-
lem4). After finding the minimum cost flow of the constructed flow network, the
cells can thus be spread according to the cluster-to-bin assignment. Besides, it
can also be seen that the minimum cost flow formulation is very similar to the
transportation formulation introduced in Section 3.2.1. The major difference is
that in the transportation formulation, the cells with different sizes are directly
assigned to sub-regions, and thus the fractional assignment is relaxed to reduce
the problem complexity, while in the minimum cost flow formulation, the cluster
size is controlled and thus the one-to-one relation from clusters to sub-regions is
maintained.

3.2.4 Diffusion
The overlap reduction can also be modelled as the physical diffusion process.

Such an idea was introduced by Ren, et al. in Ref. 44). The physical diffusion pro-
cess is driven by the gradient of concentration. Mathematically, the relationship
between material concentration, time, and space can be written as the following
equation44):

∂dx,y(t)
∂t

= D∇2
x,y(t), (25)

where dx,y(t) is material concentration at point (x, y) at time t, and D is the
diffusivity which determines the speed of diffusion. For easier presentation, D

is assumed to be 1 in the following discussions. For a fixed diffusion region, the
boundary conditions are defined as ∇dxb,yb

(t) = 0 for coordinates (xb, yb) on the
region boundary.

To determine the route of a cell from its initial position to the final equilibrium
position, a velocity function is required to obtain the velocity of the cell at every
location for a given time t. The velocity is determined by the amount of density
and the local density gradient. Let vector vx,y = (vH

x,y, vV
x,y) represent the velocity

at position (x, y). The velocity function can then be written as the following
functions44):

vH
x,y(t) = −∂dx,y(t)

∂x
/∂dx,y(t),

vV
x,y(t) = −∂dx,y(t)

∂y
/∂dx,y(t). (26)

After obtaining the velocity function, the cell position can be computed easily.
Given a starting position (x(0), y(0)) for a cell, its new position (x(t), y(t)) at
time t can be determined by integrating the velocity field:

x(t) = x(0) +
∫ t

0

vH
x(t′),y(t′)(t

′)dt′,

y(t) = y(0) +
∫ t

0

vH
x(t′),y(t′)(t

′)dt′. (27)

Equations (25), (26), and (27) are sufficient to simulate the diffusion process at
any position at time t. However, to apply diffusion on placement problems, the
challenge is to translate those equations from a continuous domain to a discrete
one. The same as the other overlap reduction techniques, the placement region
is again divided into equal-sized bins indexed by (i, j). Then in the discrete
domain, di,j now stands for the density of bin bi,j with respect to the material
concentration in the continuous domain. The density for each bin can easily be
computed by the accumulation of the overlapping area between each cell and the
bin divided by the bin area. Assuming that the density di,j(n) for all bins has
been computed for time step n, to compute the density for the next time step
n+1, Ren, et al.44) proposed to discretize Eq. (25) by the forward-time-centered-
space (FTCS)43) scheme. The new density can then be written as:

di,j(n + 1) = di,j(n) +
�t

2
(di+1,j(n) + di−1,j(n) − 2di,j(n))

+
�t

2
(di,j+1(n) + di,j−1(n) − 2di,j(n)). (28)

It can be seen that the density of a bin at time step n + 1 is determined by its
density and the densities of its four neighboring bins at time step n.

The velocity Eq. (26) can also be discretized by the FTCS scheme. Assuming
that the cells within bin bi,j are assigned to the same velocity, the velocity vector
vi,j is discretized as follows:
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Fig. 6 An example of the bin velocity computation. The velocity of bin b1,1 is determined
by the densities of bins b0,1, b1,0, b1,1, b1,2, and b2,1.

vH
i,j(n) = −di+1,j(n) − di−1,j(n)

2di,j(n)
,

vV
i,j(n) = −di,j+1(n) − di,j−1(n)

2di,j(n)
. (29)

Figure 6 shows an example of the bin velocity computation. However, assigning
cells within a bin with the same velocity loses the differences between the cells in
different positions. One easy way to solve this problem is to interpolate the cell
velocity from the closest bin velocities, and in Ref. 44) the bilinear interpolation
is applied. Assuming that for the cell locating at point (x, y), the four closest
bins are bins bp,q, bp+1,q, bp,q+1, and bp+1,q+1. Let (xp, xq) denote the center
position of bin bp,q. Define the horizontal distance ratio α for the cell to bin bp,q

as (x−xp)/(xp+1 −xp), and the vertical distance ratio β as (y− yq)/(yq+1 − yq).
Now the cell velocity vx,y at point (x, y) can be computed by

vH
x,y = vH

p,q + α(vH
p+1,q − vH

p,q) + β(vH
p,q+1 − vH

p,q)

+αβ(vH
p,q + vH

p+1,q+1 − vH
p+1,q − vH

p,q+1),

vV
x,y = vV

p,q + α(vV
p+1,q − vV

p,q) + β(vV
p,q+1 − vV

p,q)

+αβ(vV
p,q + vV

p+1,q+1 − vV
p+1,q − vV

p,q+1). (30)
Finally, the cell positions at each time step can be derived from their corre-

sponding velocity. The cell position function at time step n + 1 can be written
in the recursive form as

Fig. 7 An example of the diffusion process.

x(n + 1) = x(n) + vH
x(n),y(n) · �t,

y(n + 1) = y(n) + vV
x(n),y(n) · �t. (31)

Figure 7 gives an example of the diffusion process. It can be seen that the
cell moves from higher density locations to the lower ones, and the movement
becomes smaller toward the end of the path.

3.2.5 Density Control
One most popular method to spread cells evenly in analytical placement is

working through the density domain, which is adopted by various famous aca-
demic placers, such as APlace32), FDP60), Kraftwerk51), mFAR23), mPL612), and
NTUplace318). At first, to compute the density induced by the cells, the place-
ment region is divided into uniform non-overlapping bin grids. The density func-
tion for bin b can be expressed as

Db(x,y) =
∑
v∈V

Px(b, v)Py(b, v), (32)

where Px and Py are the overlap functions of bin b and block v along the x

and y directions. Then the cell spreading can be transformed into the following
constraint:

Db(x,y) ≤ Mb for each bin b, (33)
where Mb is the maximum allowable area of movable cells in bin b. However, since
density Db(x,y) is neither smooth nor differentiable, it is hard to optimize it
directly. Therefore, many smoothing techniques have been proposed to solve this
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(a) (b)

Fig. 8 (a) The overlap function Px(b, v). (b) The smoothed overlap function px(b, v).

problem. Three popular smoothing techniques, (1) bell-shaped smoothing, (2)
Helmholtz smoothing, and (3) Poisson smoothing, are explained in the following.

Bell-Shaped Smoothing: APlace32) and NTUplace318) adopt the bell-
shaped function px to smooth Px. px is defined by

px(b, v) =

⎧⎪⎨
⎪⎩

1 − ad2
x, 0 ≤ dx ≤ wv

2 + wb

b(dx − wv

2 − 2wb)2, wv

2 + wb ≤ dx ≤ wv

2 + 2wb

0, wv

2 + 2wb ≤ dx,

(34)

where

a = 4
(wv+2wb)(wv+4wb)

b = 2
wb(wv+4wb)

,
(35)

wb is the bin width, wv is the cell width, and dx is the center-to-center distance
of the cell v and the bin b in the x direction. Figure 8 (a) and Fig. 8 (b) show
the original and the smoothed overlap functions, respectively. The range of cell’s
potential is wv +4wb in the x direction. The smooth y-potential function py(b, v)
can be defined in a similar way, and the range of cell’s potential is hv + 4hb in
the y direction. By doing so, the non-smooth function Db(x,y) can be replaced
by a smooth one,

D̂b(x,y) =
∑
v∈V

cvpx(b, v)py(b, v), (36)

where cv is a normalization factor so that the total potential of a cell equals its
area.

Helmholtz Smoothing: mPL612) approximates the smoothed density

D̂b(x,y) by the solution to the Helmholtz equation with zero-derivative boundary
conditions:

�D̂b(x,y) − εD̂b(x,y) = −Db(x,y), (37)

where ε is a smoothing parameter, ε > 0, and � is the Laplacian operator
(� ≡ ∂2

∂x2 + ∂2

∂y2 ).
Poisson Smoothing: In FDP60), Kraftwerk51), and mFAR23), the density is

treated as the electrostatic potential. Therefore, the smoothed density D̂b(x,y)
is approximated by the solution of the Poisson equation:

�D̂b(x,y) = −Db(x,y). (38)

3.2.6 Frequency Control
Instead of working in the density (spatial) domain, Yao, et al.65) proposed to

quantitatively evaluate the cell distribution in the frequency domain, and then
the evaluation can be optimized to reduce the overlaps during global placement.
First of all, the densities on a pre-partitioned bin structure of a given placement
still need to be computed. Assuming that the placement region is partitioned
into N × N equal-sized bins, let D = {di,j} represent the density matrix. Then
the density matrix D can be interpreted to the frequency domain by the two
dimensional Discrete Cosine Transformation (DCT). Let F = {fi,j} denote an
N × N frequency distribution matrix. The DCT is defined as follows:

fi,j =
2
N

C(i)C(j) ·
N−1∑
x=0

N−1∑
y=0

(
dx,y cos

(
(2x + 1)iπ

2N

)
cos
(

(2y + 1)jπ
2N

))
,

(39)

where C(i) is the coefficient defined by C(0) = 1/
√

2, and C(i) = 1 for 1 ≤ i ≤
N − 1. Through such a transformation, in the frequency matrix F, each entry
actually represents the different frequency distribution of the density matrix.
Figure 9 gives the distribution patterns on a 4 × 4 bin structure. Besides,
the density energy remains the same before and after the transformation (in
other words,

∑
i,j d2

i,j =
∑

i,j f2
i,j). To make the cells spread evenly (and thus

the overlaps are reduced), the density distribution should concentrate on those
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Fig. 9 Distribution patterns of different frequencies in the F matrix on a 4 × 4 bin structure.

frequencies with better evenness. Therefore, Yao, et al. defined the distribution
cost DIST as follows:

DIST =
∑
i,j

(
wi,j · f2

i,j

)
, (40)

where wi,j is the weight of the distribution at frequency (i, j), wi,j is defined by
w0,0 = 0, and wi,j = 1/(i+j) otherwise. Consequently, the DIST is approximated
as a convex quadratic function of cell positions (x,y), and thus can be integrated
into the analytical objective function of the global placement.

3.3 Integration of the Wirelength Models and Overlap Reduction
Techniques

In Sections 3.1 and 3.2, the wirelength models and overlap reduction tech-
niques have been studied. Now the problem is to integrate the wirelength model
and the overlap reduction technique into one unified global placement algorithm.
Since the wirelength optimization tends to pull cells together, this objective is
contradictory to the overlap reduction, which pushes cells away from each other.
Therefore, the integration must consider both objectives carefully to avoid the
results from biasing to one of the two objectives. In this section, we classify
the integration of wirelenth models and overlap reduction techniques into three

Fig. 10 Illustration of the fixed point method. For cell vi, the fixed point is added on the
top-right corner to make cells distributed more evenly.

types: (1) the fixed point method, (2) the penalty method, and (3) the region
constraint method. The details are given in the following.

3.3.1 Fixed Point Method
One most popular method to integrate the wirelength model and the overlap

reduction technique is called the fixed point method. It can be briefly summarized
as feeding the placement obtained from overlap reduction techniques back to the
placement problem by adding fixed points and pseudo connections into the origi-
nal netlist. Then the placement problem is again solved on the modified netlist to
find an equilibrium between the wirelength minimization and overlap reduction
objectives. There is still slight difference between the fixed point methods applied
on different placers. For example, the most common way is to create one fixed
point at the target position obtained from overlap reduction techniques for each
cell, and make a pseudo connection between them. This is adopted by DPlace39),
FDP60), Kraftwerk251), mFAR23), and RQL58). Figure 10 shows an illustration
for this idea. However, for some specific overlap reduction techniques (such as
the minimum cost flow assignment4) introduced in Section 3.2.3), only a rough
position guide (the bin assignment) is obtained for a group of cells. Therefore,
those cells will share the same fixed point (located at the center of the assigned
bin in Ref. 4)) instead of creating one fixed point for each cell. In addition to
directly putting the fixed points at the target position obtained from the overlap
reduction techniques, some other placers (such as FastPlace59)) might only take
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the direction and distance from the original position of a cell to its target position
as reference. Then the fixed points are put on the chip boundary in the same
direction to the target positions with adjusted weights of pseudo connections.

3.3.2 Penalty Method
Adopting the density control method introduced in Section 3.2.5, the global

placement problem in Eq. (1) can be transformed as follows:

min W (x,y)
s.t. Db(x,y) ≤ Mb, for each bin b,

(41)

where W (x,y) is the wirelength function, Db(x,y) is the density function of
movable blocks of bin b on the pre-partitioned bin structure, and Mb is the
maximum allowable area of movable blocks in bin b. It should be noted that the
density constraints of the optimization problem increase the difficulty of solving
the problem. Therefore, the quadratic penalty method, adopted by APlace33) and
NTUplace318), is often used to solve Eq. (41), which implies to solve a sequence
of unconstrained minimization problems of the form:

min W (x,y) + λ
∑

b

(D̂b(x,y) − Mb)2, (42)

where λ is the normalizing factor to balance the wirelength and density values,
and can also be changed to vary the weighting between wirelength and density.
It should also be noted that the smoothing techniques introduced in Section 3.2.5
are still required for the unconstrained minimization problem, since a smoothed
density usually eases the search of the density optimization directions, which
helps minimize the density part of Eq. (42).

Similarly, for the frequency control method introduced in Section 3.2.6, the
density penalty is added into the objective function by computing the weighted
square sum of all entries in the frequency matrix F. Since such a method works on
the frequency domain directly, no smoothing technique is required. Instead, the
density penalty is approximated by a convex quadratic function of cell positions
(x,y), which also helps the search of the optimization directions65).

3.3.3 Region Constraint
For the partitioning-based overlap reduction techniques introduced in Sec-

tion 3.2.1, the cells are assigned to sub-regions instead of specific positions. Such

Fig. 11 An example of the net splitting. (a) The connection before net splitting. (b) An
abstract view of the connection after applying net splitting.

assignment is still required to be linked back to the original placement problem
for the later optimization. The most intuitive way is to add inequalities for each
cell to constrain the cell positions within the assigned sub-region, but this will
increase the difficulty of solving the placement problem too much. One alterna-
tive is to add equalities to make the gravity center of cells assigned to the same
sub-region fixed at the center of the sub-region. Besides, the net splitting pro-
posed by Vygen62) is also helpful to control the cell positions locating within the
assigned sub-regions. Consider the net splitting on a given two-pin connection
shown in Fig. 11 (a). The pins vp and vq are assigned to sub-regions rm and rn,
respectively. The xi’s and yi’s give the boundary coordinates of all bins, and
(xp, yp) and (xq, yq) stand for the respective coordinates of vp and vq. Then,
to constrain vp and vq locating within rp and rq respectively during the global
placement process, the net splitting will break the connection into two pieces by
modifying the wirelength objective of this connection to

|xp − x2| + |yp − y2| + |xq − x3| + |yq − y2|. (43)

As shown in Fig. 11 (b), this operation is equivalent to breaking the connection on
the corner of the assigned regions of the pins. Therefore, the global optimization
process will try to move vp and vq to the other end to minimize wirelength without
exceeding the boundary of rm and rn. Consequently, the partitioning assignment
is successfully linked back to the global placement problem.

3.4 Optimization Techniques
Table 2 lists the state-of-the-art placers and their wirelength models, overlap

reductions, integration approaches, and optimization techniques. Most analytical
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Table 2 Comparisons of wirelength models, overlap reductions, integrations approaches, and optimization techniques among popular analytical placers.

Placer Wirelength Model Overlap Reduction Integration Optimization

APlace33) LSE Density (Bell-Shaped) Penalty Method Nonlinear

BonnPlace8) Quadratic Partitioning Region Constraint Quadratic

DPlace39) Quadratic Diffusion Fixed Point Quadratic

FastPlace59) Quadratic Cell Shifting Fixed Point Quadratic

FDP60) Quadratic Density (Poisson) Fixed Point Quadratic

Gordian35) Quadratic Partitioning Region Constraint Quadratic

hATP40) Quadratic Partitioning Region Constraint Quadratic

Kraftwerk251) Bound2Bound Density (Poisson) Fixed Point Quadratic

mFAR23) Quadratic Density (Poisson) Fixed Point Quadratic

mPL612) LSE Density (Helmholtz) Penalty Method Nonlinear

NTUplace318) LSE Density (Bell-Shaped) Penalty Method Nonlinear

RQL58) Quadratic Cell Shifting Fixed Point Quadratic

UPlace65) Quadratic Frequency Penalty Method Quadratic

Vaastu4) LSE Assignment Fixed Point Nonlinear

placers can be classified into two categories based on the type of the mathematical
optimization technique: (1) quadratic programming and (2) non-linear (non-
quadratic) programming.

3.4.1 Quadratic Programming
The quadratic programming is one of the most common approaches to the

placement problem. With the quadratic wirelength model, it can be solved in
the quadratic optimization problem (for the x direction) given by

min
x

∑
i,j

wx,ij(xi − xj)2 = min
x

1
2
xT Qxx + cT

xx + dx, (44)

where wx,ij represents the weight of the edge connecting cells i and j. The ma-
trix Qx is the Hessian which represents the hyperedge connectivity. Assuming
that some cells are fixed, the Hessian is a symmetric, positive-definite matrix.
The vector cx represents fixed-cell-to-movable-cell connections, and the vector
dx represents fixed-cell-to-fixed-cell connections. The optimization problem is
strictly convex and has a unique minimizer given by the solution of a single,
positive-definite system of linear equations, Qxx + cx = 0. The wirelength
along the y direction can also be solved by the same approach. Since the for-
mulation optimizes quadratic wirelength, some other wirelength models, such as

the Bound2Bound wirelength model in Kraftwerk51), is proposed to modify the
netlist graph and weighting to fix the quadratic wirelength to linear wirelength.
Further, overlap reduction techniques are usually adopted by either fixed point or
partitioning. In the fixed point approach, the cell overlaps are gradually reduced
by adding a fixed point that modified the matrix Qx or the vector cx. The
partitioning approach either physically partitions the placement region (such as
BonnPlace8) and hATP40)) or adds linear constraints to change the center-of-
gravity of the cells35). For both approaches, the optimization problem is always
in the quadratic form, which can be solved efficiently.

3.4.2 Nonlinear Programming
The general nonlinear optimization problem for placement is usually solved

by the penalty method. Solving the nonlinear problem is usually very time-
consuming, and therefore the multilevel approach is often used. APlace33),
mPL612), NTUplace318), and Vaastu4) belong to this type. These four placers
all use the LSE wirelength model. Among these placers, APlace and NTUplace3
both use the bell-shaped density model, and mPL6 uses the Helmholtz smoothed
density model to reduce overlaps. Since both the wirelength model and overlap
reduction technique are modelled in an analytical way, it is easy to apply the
penalty method to optimize the nonlinear programming. Vaastu uses the linear
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assignment method to find the target fixed-point for each cell, and add a pseudo
net to connect the fixed point and the corresponding cell. The modified netlist
is solved again, and the resulting placement spreads cells more. The fixed points
and net weights are changed iteratively until all cells are spread enough.

4. Legalization

The legalization stage tries to remove all overlaps with minimum wirelength
or total displacement while the relative cell order of the global placement is
kept. The Tetris-like greedy legalization method22) is perhaps the most popular
approach. Cells are first sorted according to their x coordinates, and then cells are
placed at the closet available positions with minimal costs in left-to-right/right-
to-left order. This greedy algorithm is very fast with negligible running time
compared to that of the global placement. Other modifications has been applied
to increase the success rate and the quality of the legalized placement, such as
squeezing the cell position to the left/right side31), or using higher priority for
large cells/blocks18).

Another popular legalization method is called single-row placement. This
method concerns about the optimal positions for the cells to be placed within the
same row at one time, while their relative ordering is kept. The single-row place-
ment with respect to HPWL or total linear displacement minimization is solved
by linear programming by Vygen61). Then, Kahng, et al.30) proposed the clump-
ing algorithm to solve such a problem more efficiently. Following this work, the
clumping algorithm is further sped up with a specific data structure proposed
by Brenner and Vygen9). The single-row placement with respect to quadratic
displacement minimization is formulated as a quadratic problem by Spindler, et
al.50), and is solved by dynamic programming. They also proposed to integrate
the single-row placement with the Tetris-like method to obtain a better balance
between the solution quality and running time.

5. Detailed Placement

In the detailed placement stage, the standard cell positions are further opti-
mized to improve the placement quality. The objective of the detailed placement
algorithm is to find a better position for each standard cell in the available free

Fig. 12 An illustration of all possible orders for three cells. The branch-and-bound method
can be used to find the cell order with smallest wirelength.

spaces. We introduce three popular approaches, cell order polishing, cell match-
ing, and global swapping/moving in the following.

Cell order polishing permutes a small window of cells each time to find the
best ordering by enumerating all possible orderings using the branch-and-bound
method. The number of cells contained by the window is an important factor to
control the tradeoff between the running time and solution quality. Figure 12
gives a cell order polishing example for a window containing three cells. This
technique is widely used in the state-of-the-art placers6),16)–18),29),42),45),51).

Cell matching was first proposed by Chen, et al. in Ref. 18); it is an efficient
technique that can optimize more cells at the same time. The cell matching
algorithm finds a group of exchangeable cells inside a given window, and formu-
lates a bipartite matching problem by assigning the cells to available slots in the
window. To keep the legality of the placement solution, for each slot, only the
assigning relations for cells with widths less than or equal to the slot width are
constructed. The assignment cost is given by the HPWL difference of placing a
cell in different slots. Then, the shortest augmenting path algorithm27) is applied
to solve the bipartite matching problem. Though the bipartite matching problem
can be solved optimally in polynomial time, the optimal assignment cannot guar-
antee the optimal HPWL result, because the HPWL of a cell connected to each
empty slot depends on the positions of other connected cells. The cell matching
algorithm18) remedies this drawback by selecting independent cells at one time
to perform bipartite matching. Here by independent cells, it means that there is
no common net between any pair of the selected cells. The bipartite matching
problem can be solved very quickly when the number of cells is smaller than 100.
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(a) (b) (c)

Fig. 13 An illustration of cell matching. (a) Select exchangeable cells. (b) Create the
bipartite matching problem. (c) Update the placement using the matching result.

Compared with other detailed placement algorithms, cell matching can optimize
the placement result more globally. Figure 13 illustrates the cell matching.

Global moving/swapping29),42) moves each cell to the optimal location
among available whitespaces without changing the positions of other cells. This
technique is especially useful when the design utilization is low. When design
utilization is high, it may not be easy to find a whitespace to place the cell. In
this case, this technique tries to swap the cell with a cell within the optimal
region to see if a better result can be obtained.

6. Example Placers

In this section, we take the two leading academic placers, NTUplace318) and
Kraftwerk251), as example placers to explain how to unify the aforementioned
ingredients into complete analytical placers.

6.1 NTUplace3
NTUplace318) is an analytical placer based on the LSE wirelength model and

the bell-shaped potential smoothing for overlap reduction. Figure 14 summa-
rizes the NTUplace3 algorithm. The multilevel framework is adopted to increase
the scalability of the placer. During the coarsening stage, NTUplace3 clusters
blocks to reduce the number of movable blocks. The hierarchy of clusters is built
by the first-choice (FC) clustering algorithm11). The area of a clustered block is
controlled so that it does not exceed 1.5 times of the average area of clustered
blocks. The clustering process continues until the number of blocks is reduced by
5 times, and then a level of clustered circuit is obtained. The FC clustering algo-
rithm is applied several times until the block number in the resulting clustered
circuit is less than a user-specified number (6000 by default).

After clustering, the initial placement for the coarsest level is generated by min-

01. Iteratively cluster the given netlist;
02. Initialize block positions by minimizing quad. wire-
length;
03. do

04. initialize λ =

∑
|∂WLSE (x,y)|∑
|∂D̂b(x,y)| ;

05. do
06. solve min WLSE (x,y) + λ

∑
(D̂b − Mb)

2;
07. Increase λ by 2X to further spread blocks;
08. until (block spreaded enough);
09. Decluster one level of the netlist;
10. until (the flat level placement is optimized);
11. Legalize the placement;
12. Run cell swapping/matching;

Fig. 14 The NTUplace3 algorithm.

imizing the quadratic wirelength using the conjugate gradient method. Then, the
placement problem is solved from the coarsest level to the finest level. The hori-
zontal/verical placement grid numbers are set to the square root of the number
of clusters in the current level, and the maximum area of movable blocks Mb for
each bin is calculated. Also, the value of λ for Eq. (42) is initialized according to
the strength of wirelength and density gradients,

λ =
∑ |∂WLSE (x,y)|∑ |∂D̂b(x,y)| , (45)

where WLSE is the LSE wirelength function, and D̂b is the bell-shaped potential
function, and the value of λ is increased by 2X for each iteration. A conjugate
gradient solver with dynamic step-size control is used to solve the nonlinear
optimization problem in Eq. (42) (nonlinear programming with the quadratic
penalty method).

During uncoarsening, all blocks inside a cluster inherit the center position of
the original cluster. Then, blocks are declustered, providing the initial placement
for the next level.

To measure the evenness of the block distribution, NTUplace3 adopts the over-
flow ratio. The overflow ratio is defined as the total overflow area in all bins over
the area of total movable blocks. The global placement stage stops when the
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overflow ratio is less than or equal to a user-specified target value, which is 0 by
default.

The Tetris standard-cell legalization method is extended to solve the mixed-size
legalization problem. The legalization order of blocks are determined by their x

coordinates, widths, and heights. The legalization priority of a block vi is given
by

priority(vi) = k1xi + k2wi + k3hi, (46)

where k1, k2, and k3 are user-specified weights for each term. (By default, k1 =
1000 and k2 = k3 = 1.) As a result, large blocks are legalized earlier than small
blocks when they have the same x coordinate to achieve higher succuss rates.

In the detailed placement stage, cell swapping (cell-order polishing) and cell
matching are used to further reduce the wirelength.

6.2 Kraftwerk2
Figure 15 summarizes the Kraftwerk2 algorithm51). At first, an initial place-

ment is computed by minimizing the quadratic cost function over a few iterations.
In each iteration, the Bound2Bound wirelength model is applied to adjust the
two-pin connection weights. The initial placement has a minimal netlength. How-
ever, the cells are concentrated somewhere on the chip (mostly at the center),
and there may be significant overlaps.

In global placement, the cells are spread iteratively over the chip. Each place-
ment iteration starts by determining the supply (free space) and demand (cell
density) system and by computing the smoothed potential using the Poisson
equation in Eq. (38). Then, the Bound2Bound net model is applied to determine
the weights of the two-pin connections. Once the two-pin connection weights in
the Bound2Bound wirelength model are determined, they remain constant for
the rest of the placement iteration. Kraftwerk2 is based on quadratic program-
ming. Since the objective function is convex, the minimum value is obtained by
setting its derivative to zero. Therefore, solving Qxx + cx = 0. In quadratic
placement, each two-pin connection can be viewed as an elastic spring, the cost
function represents the total energy of the spring system, and the derivative of
an energy is a force. Therefore, the wire force Fnet between the pins is given by

Fnet = Qxx + cx. (47)

01. Initialize placement by min. Bound2Bound wire-
length;
02. while (cell overlap > 20%)
03. Create the demand-and-supply system;
04. Calculate the potential by solving Equation (38);
05. Apply the Bound2Bound wirelength model;
06. for x-direction and y-direction
07. Create Qx, Q̇x, Dx;
08. Solve Equation (52) w.r.t. Δx;
09. Update cell position x by Δx;
10. Control the quality;
11. Legalize the placement;
12. Run cell flipping/swapping;

Fig. 15 The Kraftwerk2 algorithm.

There are two additional forces in Kraftwerk2, the hold force and the move force.
The hold force provides forces to keep cells at current position. Hence, the hold
force Fhold equals the negative wire force

Fhold = −(Qxx′ + cx), (48)

where x′ is the current x coordinates of all cells. The move force moves the cells
to reduce the cell overlaps. The target fixed point ẋi of each cell vi is given by

ẋi = x′
i −

∂

∂x
D̂(x, y)

∣∣∣∣
(xi,yi)

, (49)

or

ẋ = x′ − D̂x, (50)

where D̂(x, y) is the Poisson smoothed density function. Then, the move force is
defined as

Fmove = Q̇x(x − ẋ). (51)

Setting the sum of the wire force, the hold force, and the move force to zero, the
following linear system can be obtained:
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(Qx + Q̇x)Δx = −Q̇xD̂x, (52)

where Δx = x − x′.
The next step in each placement iteration is to solve the above system of linear

equations for the x-direction and a similar one for the y-direction. Then, the cell
positions are updated. Solving the systems of linear equations and updating the
cell positions are performed once per placement iteration. At the end of each
placement iteration, a quality-control procedure is called to adjust the weights of
the move force. The global placement is stopped if the cell overlap Ω is below a
certain limit, e.g., below 20%. The definition of Ω is given by

Ω = 1 − union of cell areas
sum of cell areas

. (53)

When there is no overlap, the union of all cell areas is the same as the summation
of cell areas, and Ω = 0.

After global placement, the cells are legalized first, i.e., the remaining overlap
is removed, and the cells are aligned to rows if necessary. Kraftwerk2 utilizes an
approach similar to Tetris to legalize standard cells. After legalization, a simple
greedy detailed placement method is applied to improve the legal placement:
Single cells are flipped, or pairs of neighboring cells are exchanged.

7. Future Research Directions

Although recent analytical placement techniques have made significant progress
for the wirelength-driven placement problem, there are still many emerging chal-
lenges arising from advanced VLSI process technologies and thus increasing de-
sign complexity. In this section, we present some potential research directions
for modern VLSI placement with these challenges.

7.1 Large Macro Placement
Modern VLSI designs tend to have thousands of macros due to the use of IP

modules, and these macros significantly differ in both sizes and shapes. However,
traditional analytical placers cannot handle the macro orientation problem well,
so the resulting placement quality may substantially degrade. When the macros
are very large, the resulting placement may even contain significant overlaps and
dead spaces. Thus, it is desirable for a modern placer to handle macro orien-

tations and legalize large macros. Recently, the two-stage approach of placing
large macros first and then small standard cells has shown better results than
the traditional one-stage approach of placing large macros and standard cells si-
multaneously14),15). However, the two-stage approach has the intrinsic limitation
to optimize the macro placement globally. Further, pre-designed macros, such as
embedded memories and analog blocks, may preserve three or four metal layers
for interior routing, and those regions will become routing blockages during the
routing stage. Consequently, macros have a significant impact on chip routability.
The most popular method to enhance the chip routability of mixed-size designs is
to preserve free space around macros. However, the way to determine the amount
of preserved free space is yet an unsolved issue. To facilitate chip placement and
routing, it is desired to investigate a routing resource allocation method within
macro placement.

7.2 Routability-Driven Placement
Traditional placement focuses on total wirelength minimization to obtain bet-

ter circuit performance and a smaller layout area. Despite the pervasive use
of the HPWL objective, there is a mismatch between the wirelength and con-
gestion objectives in placement. Although congestion is widely addressed in
routing algorithms, in most cases, some routing violations cannot be removed
with cell locations being fixed. Hence, it is of particular importance to consider
routability in the placement stage. Traditional congestion-aware placement algo-
rithms32),38),49),64) allocate whitespaces to congestive regions for better routability.
However, preserving whitespaces might not solve the congestion problem effec-
tively. Therefore, new ideas for routability optimization, such as net overlapping
removal26) and the routed wirelength modelling55) into the analytical objective,
are proposed recently, which shows the research potential in routability-driven
placement. Another issue is that, due to the lack of interaction between the
placement and the routing stages, a routers may not honor the resource alloca-
tion obtained from a placer. Thus, a possible research direction is to develop a
fast and accurate routing demand estimation method and integrate it into the
placement stage.

7.3 Timing-Driven Placement
In high-speed circuits, a large portion of timing optimization is performed in
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the placement stage. Conventional placement algorithms usually achieve the
timing goal via wirelength minimization. Nevertheless, there is a gap between
wirelength and actual delay, so many methods have been proposed recently to
overcome this challenge. Those proposed timing-driven placement methods can
be classified into two major categories: (1) path-based and (2) net-based meth-
ods. The path-based methods21),25),52),53) try to control critical path delays di-
rectly, but they are not suitable for modern circuits due to their exponentially
growing number of timing paths. The net-based method31) transfers the timing
constraint of each path into net weights. However, since the net-based method
ignores paths individuality, the placement result will be barely controllable. Due
to these drawbacks in existing timing-driven placement algorithms, it is wor-
thy to further study the timing optimization techniques with lower complexity
and higher controllability. Further, the existence of large macros imposes more
difficulties for the timing-driven placement.

7.4 Power-Aware Placement
With the pervasive use of hand-held devices and the reliability/thermal issues

in modern chips, power consumption has become the first-order cost metric in
modern VLSI designs. Previous works, like19) by Cheon, et al., have been pro-
posed to reduce the power consumption during the placement stage. To further
reduce the power consumption, the multiple supply voltage56) has been widely
applied in advanced low-power designs, and brought new issues to physical de-
sign. Recent research36) has investigated a voltage assignment method integrated
with the floorplanning stage. If we can honor such voltage assignment during the
placement stage, we can have higher chances to further reduce the power con-
sumption.

7.5 Thermal Placement
As the process technology advances, the feature size keeps shrinking and thus

the integration density keeps increasing while the clock frequency keeps rising. As
a result, the increased power density significantly increases the chip temperature.
However, reducing the power consumption alone is not sufficient to reduce the
chip temperature, since the power density is also a dominant factor7). Therefore,
it is desirable to develop placement techniques that can spread blocks/cells over
the whole placement region to lower the chip temperature variation. Kahng,

et al. proposed an analytical placement algorithm to minimize the maximum
temperature and improve the chip reliability28). In addition to the maximum
temperature, the distribution of hot blocks/cells and thermal gradient are also
important and should be considered to reduce the on-chip performance variations.

8. Conclusions

In this paper, we have surveyed essential techniques and algorithms for modern
analytical placement. Unlike the previous articles that survey existing placement
algorithms one by one, we start by dissecting the basic structure of analytical
placement, then discuss the techniques applied to recent analytical placers, and
exemplify the two leading placers, NTUplace3 and Kraftwerk2, for the compo-
sition of these techniques into a complete placer. Although significant progress
has been made in recent analytical placement research, modern circuit designs
have induced many more challenges and thus opportunities for future research on
large macro placement and routability-, timing-, power-, and/or thermal-driven
optimization of the placement problem.
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