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ABSTRACT 
As the operation frequency reaches gigahertz in deep-submicron 

designs, the effects of inductance on noise and delay can no longer be 
neglected. Most of the previous works on inductance extraction are field-
solvers, which are intrinsically more accurate but computationally 
expensive. Others focus on modeling the inductances of special routing 
topologies such as the bus structure. Therefore, it is not suitable to 
incorporate them on-line into a layout (placement and routing) tool for 
inductance (delay and noise) optimization. In this paper, we consider the 
overlapping of unequal wire lengths and dimensions to efficiently extract 
the loop inductance from the coplanar interconnect structure. The 
difference between our simulation results and the estimation values 
obtained by FastHenry [12] is within 10% for practical cases. In 
particular, our method is very fast. Based on our study, we also suggest 
several routing topologies for inductance minimization. 

1. INTRODUCTION 
As technology advances into the very deep-submicron era, 

interconnection delay dominates overall circuit performance and noise 
becomes more serious than before. Therefore, accurately predicting the 
interconnection delay and noise becomes a major challenge in high 
performance designs. For deep-submicron, high-performance circuits, 
ignoring inductance effects may incur a large amount of error, since an 
RC model as compared to an RLC model may create errors of up 
to 30% in the total propagation delay of a repeater system [11], and 
in some worst cases the noise coupling due to C and L may reach around 
55% of the supply voltage [9]. As technology improves and die size 
increases, short rise/fall times of signals and long wires make inductance 
effects much more significant than before [14]. Therefore, it is very 
importance to consider the self and coupling inductance. 

Inductance extraction has been studied extensively in the literature. 
Grover [8] collected many formulas for extracting inductance. However, 
as mentioned in [10], there are limitations of applying the equations. For 
example, they do not consider internal inductance, and wire widths are 
not considered for mutual inductance. Greengard developed a multipole 
method to extract inductances [7]. Phillips, Kamon, and White [13] 
proposed an FFT-based approach for 3-D inductance extraction. Beattie 
and Pileggi proposed a hierarchical refinement method [3] that improves 
the running time for capturing the near field effects. Also, Beattie et al. 
proposed equipotential shells methodology [2] to efficiently extract the 
inductance of the bus structure. He et al. presented a table-based approach 
to identify the structure of a circuit for inductance extraction [10]. 

Most of the previous works are field-solvers that are intrinsically more 
accurate but are computationally expensive. Others focus on modeling the 
inductances of special routing topologies such as the bus structure. 
Therefore, it is not suitable to incorporate them on-line into a layout tool 
for inductance optimization. As [5] pointed out, no good approximation 
formula exists for coupling inductances of two parallel lines of unequal 
lengths and dimensions. We consider the overlapping of unequal wire 
lengths and dimensions (widths and heights) to extract the self and 
coupling inductance. We derive formulae and models to approximate both 
self and coupling inductance efficiently yet accurately for the coplanar 
routing structure. Simulation results show that the difference of the 
inductance values extracted from our models for practical cases is within 
10% for the wires of unequal lengths and dimensions, compared with 

FastHenry [12]. In particular, our method is extremely fast. For example, 
the running time for extracting the coupling inductance of two wires of 
2000 um by using our analytical formulas is typically within 0.11 seconds 
using Mathematica on a 566 MHz Cerelon PC with 128 MB RAM while 
FastHenry requires 141 seconds on SUN Sparc Ultra 60 with dual CPUs 
and 2GB memory. Therefore, it is feasible to incorporate our model into a 
layout tool on-line.  

Recently, researchers presented layout structures to reduce inductance 
such as staggered inverter [4] and twisted-bundle layout structure [15]. 
Based on our inductance modeling, we also suggest good routing 
topologies for inductance reduction. Simulation results justify our 
findings. 

The rest of this paper is organized as follows. Section 2 describes the 
coplanar interconnect structure and some basic electromagnetic concepts. 
Section 3 derives formulae for self and coupling inductance. Section 4 
proposes some routing topologies for inductance minimization. Section 5 
gives the simulation results on the comparisons between our methods and 
FastHenry. Finally, Section 6 concludes our work. 

2. PRELIMINARIES 
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Figure 1: Coplanar interconnect structure. 

Figure 1 depicts the coplanar interconnect structure. Here, s stands for 
a signal wire while P and G stands for a power and a ground grid of 
identical width, wg. Throughout this paper, both P and G are considered 
as ground wires. Assume that all wires are of the same height h, the width 
and length of each signal wire are ws and lw respectively, and the 
overlapping length of two signal wires is l. Throughout this paper, we 
assume quasi-static conditions [1]. 

Before deriving the inductance for a wire, we shall first determine the 
magnetic flux density of the wire carrying current I by using Ampère’s 
circuital law [6]:  
   ∫ =⋅

C
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where B is magnetic flux density, the path C for the line integral is the 
contour bounding the surface S, I is the total current through S, and µ0 is 
permeability whose value is 4π×10-7 (H/m). 

Then we derive the self-inductance (Li) and coupling inductance (Lij) 
as in Equations (2) and (3), respectively, by using Faraday’s law [6]: 
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In Equation (2), Λi is flux linkage, Φi is flux, Si represents the surface 
bounded by the loop C of wire i, Ni is the number of turns of loop C, and 
Bi is the magnetic flux density due to current Ii in wire i. In Equation (3), 
Sj is the surface bounded by the loop Cj of wire j, Nj is the number of 



turns of loop Cj, and Bi is the magnetic flux density due to current Ii in 
wire i. 

Same as [15], we assume that all signals use the nearest P/G wires as 
their return paths, and other wires that are not involved in the computation 
for the inductance between wires i and j are floating. 

3. INDUCTANCE MODELING 
3.1. Self-inductance 
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Figure 2: (a) Degeneration of metal wire from Figure 1. (b) Cross-section view of 

circular conductor. 
Because the rectangular shape of wires, as illustrated in Figure 1, 

complicates the computation of magnetic flux density, we apply circular 
conductors to approximate the results, as illustrated in Figure 2(a). If the 
current Ii in wire si flows as the direction shown in Figure 2(a), the current 
loop C can be determined as the dashed line. The area of Si, which is the 
gray region in Figure 2, is determined by the enclosed region of the loop 
C. To derive self-inductance from Equation (1), we must know Ni, Si, and 
Bi. Although Ni = 1 and Si are already known, Bi is still unknown. Hence, 
we shall derive the formula of Bi first. Here, the unit of L' is henry per 
meter (H/m) and the unit of L is henry (H). 

Figure 2(b) depicts the cross-sectional view of a circular conductor 
whose radius is b. If we align the conductor’s center along the z-axis in 
the cylindrical coordination system, current Ii flows in the z direction. 
Assume that current Ii is uniformly distributed in the conductor, and the 
conductor is sufficiently long (lw>>r), we can derive Equations (4) and (5) 
by Equation (1) as follows: 
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where Bin is the magnetic flux density inside the conductor and Bout is the 
magnetic flux density outside the conductor. 

We derive the formula of the internal inductance per unit length for a 
circular wire. Consider an annular ring in the inner conductor between 
radius r and r+dr (r≤ b). The current in a unit length of this annular ring 
is linked by the flux that can be obtained from Equation (4), we have 
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The current in the annular ring, however, is only a fraction 
( 22 / 2/ 2 bdrrbdrr =ππ ) of the total current Ii. Hence, we can obtain the 
unit-length internal inductance of the circular wire by using Equations (2) 
and (6): 
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Then we derive the external self-inductance. In the xz-plane where the 
two wires lie, as in Figure 2, the contributing B vectors due to the equal 
and opposite currents in the two wires have only a y-component. Hence, 
from Equation (5), we have 
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Therefore, the unit-length external inductance of Figure 2 is  
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Finally, we can derive the total self-inductance (Li) of Figure 2 from 
Equations (7), (10), and the signal wire length lw as follows: 
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If another ground wire exists on the other side of the signal wire 
separated by the distance dg2 ( dg2 ≥ dg ), the current flowing in the nearest 
G wire will decrease. We modify Equation (11) to Equation (12) with the 
branch current of 0.5Ii in the G wire, which is given by the Kirchhoff’s 
Current law. 
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If there are n ground wires, we can simplify these cases to the two 
ground wires system. We named the above formula AMAS (Analytical 
Model Approximation of Self-inductance). 
3.2. Coupling Inductance 
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Figure 3: Top view of the coplanar structure. 

As in the previous subsection, we consider single ground wire system 
first. The top view of the coplanar structure is shown in Figure 3. Now, 
we consider the xz-plane where the three wires lie. The B vectors due to 
the currents in G and si wires have only a y-component. From Equation 
(5), we have 
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The coupling inductance Lij is proportional to the overlapping area of Si 
and Sj. The overlapping area Slap is shown as the gray region in Figure 3. 
We can derive the external inductance per unit length from Equation (3) 
as follows: 
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The internal inductance due to the G wire is the same as that of Equation 
(7). Hence, the total coupling inductance shown in Figure 3 is 
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If another ground wire exists on the other side of the signal wire at 
distance dg2 ( dg2 ≥ dg+ds+ws ), the current flowing in the nearest G wire 
will decrease. Again, we can modify Equation (16) to (17) with the 
branch current of 0.5Ii in the G wire as follows: 
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If there are n ground wires, we can simplify these cases to the two 
ground wires system. We name the above formula AMAC (Analytical 
Model Approximation of Coupling Inductance). 
3.3. Modeling Short Wires and Small Coupling 

Previous subsections are all based on the assumption that wires are 
sufficiently long, namely, lw>>dg. When wire lengths are comparable to 
wire spaces, however, Equation (5) may no longer be accurate. Further, 
coupling inductance still exists even if two signal wires are not 
overlapped. Therefore, the equations derived in Sections 3.1 and 3.2 may 
cause significant errors in some corner cases. To cope with these 
problems, we should use more sophisticated formulas to approximate the 
inductance for the cases when (a) the wire length is comparable to its 
distance to the nearest ground wire, and (b) the overlapping length is 
much smaller than the signal wire length. 
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Figure 4: (a) Top view of a carrying current wire. (b) Top view of the two-ground 
wires system. 

Equation (18), the Biot-Savart law, gives the magnetic flux density for 
condition (a) or (b): 
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where C′ is the closed path of current I, and R  is the vector directed from 
the source to the field point. If we have a line segment carrying current I 
along the z-axis in the cylinder coordinate shown in Figure 4(a). The 
resulting B vector is  
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Next, we consider the coplanar structure of Figure 4(b). From 
Equation (19), we know the contributing B vectors due to si and G wires 
of Figure 4(b). The flux linkages due to si and G wires are  
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Therefore, the total external inductance is 
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Hence, the total coupling inductance is 
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We name the above formula IAMAC (Improved Analytical Model 
Approximation of Coupling Inductance). 

Next, we derive the formula of the self-inductance for the situation 
when a signal wire length is comparable to its distance to the nearest 
ground wire. Considering the two ground wires system of Figure 4(b), the 
internal inductance is 
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By Equation (2), we have 
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BG and Bsi are known from Equation (19), and the total self-inductance is 
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We name the above formula IAMAS (Improved Analytical Model 
Approximation of Self-inductance). 

4. LAYOUT IMPLICATIONS 
In this section, we suggest some better routing topologies to reduce 

coupling inductance. As an example, if there are three terminals—one 
source and two sinks as shown in Figure 5—to be routed from the source 
A to two sinks B and C, which one in Figure 6 is the best routing topology 
to reduce the coupling inductance? We used FastHenry to extract the 
coupling inductance of each routing topology and obtained the results 
listed in Table 1. 
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Figure 5: s1 stands for signal wire 1; s2 stands for signal wire 2; A stands for the 

source of s2; B and C stand for the two sink of s2; E, F, G, H, I, J, and K 
are Steiner points which may be used for routing. 
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Figure 6:Potential routing topologies of Figure 5 (source: A). 
From Equation (3), Sj and Bi are the two major factors in determining 

the value of coupling inductance. As shown in Table 1, Topology 6 results 
in the smallest coupling inductance because it has the smallest S2 among 
the six routing topologies. Therefore, Topology 6 has the smallest L12 
because the B1 from s1 is identical to all topologies. Considering the 
optimization of coupling inductance in this example, Topology 6 is the 
best choice even though it has the largest wire length. 

Topology Coupling inductance 
extracted by FastHenry

Coupling inductance ranking
(from low to high) 

1 2.82042×10-10 H 2 

2 2.82579×10-10 H 3 

3 3.64932×10-10 H 4 

4 5.21743×10-10 H 5 

5 5.64098×10-10 H 6 

6 0.48866×10-10 H 1 

Table 1: Coupling inductance of the routing topologies in Figure 6. 
We also consider the effect of the assignment for the source pin on 

inductance: Will the coupling inductance be different if we change the 
source? For Topology 6, the results are shown in Table 2 for assigning A, 
B, or C as the source of the net. 

Source in 
Topology 6

Coupling inductance 
extracted by FastHenry 

Coupling inductance ranking
(from low to high) 



A 0.488662×10-10 H 2 

B 0.480616×10-10 H 3 

C 0.008044×10-10 H 1 

Table 2: Results of coupling inductances for different source assignments in 
Topology 6. 

From Table 2, making C the source pin results in the smallest coupling 
inductance. This phenomenon is due to the fact when current flows from 
C to A and B, the currents in line segments GJ and GD of Topology 6 
result in the magnetic fluxes of opposite directions. Therefore, source-pin 
assignment is also an important issue for coupling-inductance 
optimization, for which we suggest that the source pin be assigned to the 
pin in the middle. 

5. EXPERIMEENTAL RESULT 
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Figure 7: Cross-section view of the coplanar structure. 

We conducted the following experiments: (1) the accuracy of AMAS 
and IAMAS for self-inductance extraction, and (2) the accuracy of 
AMAC and IAMAC for coupling-inductance extraction. 

In the first experiment, we tested the accuracy of AMAS and IAMAS 
for self-inductance extraction based on the structure of Figure 7 with 
various lw’s (signal wire lengths), dg, ws, wg. Also, we set dg2 = dg = 18.4 
µm and h = 2 µm. The length of the G wire was 4500µm. The 
experimental results are given in Table 3, for which FastHenry was run on 
a SUN Ultra 60 model 1450 with dual CPUs and 2GB RAM and AMAS 
and IAMAS on a 566 MHz Cerelon PC with 128 MB RAM by using 
Mathematica Version 3.0. Identical values of parameters and conditions 
were applied to the second experiments on the coupling inductance whose 
results are shown in Table 4. Compared with FastHenry, the average 
errors of our modeling are within 10%, except for the two corner cases: (1) 
the wire length is comparable to its distance to the nearest ground wire, 
and (2) the overlapping length is much smaller than the signal wire length. 
This phenomenon justifies our observation in Section 3.3. For these 
corner cases, our improved formulae can achieve significantly more 
accurate estimations than the original ones, as shown in Tables 3 and 4. 
The results show the accuracy of our work. In particular, our method is 
extremely fast. For example, the running time for extracting the coupling 
inductance of two wires of 2000 um by using our analytical formulas is 
typically within 0.11 seconds using Mathematica on a 566 MHz Cerelon 
PC with 128 MB RAM while FastHenry requires 141 seconds on SUN 

Sparc Ultra 60 with dual CPUs and 2GB memory. Therefore, it is feasible 
to incorporate our model into a layout tool on-line.  

6. CONCULSION 
We have derived analytical formulae to efficiently approximate the 

self and coupling inductance for wires of unequal lengths and dimensions. 
Experimental results have shown the accuracy of our formulae. In 
particular, our modeling is extremely efficient, and thus can be 
incorporated into a layout tool for inductance optimization. Based on our 
studies, we also have suggested some good routing topologies of signal 
wires to reduce the coupling inductance. Our findings should be very 
useful for layout designs with inductance considerations. 
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( 1000, 12, 0.8, 2 ) 9.99291×10-10 H 103.41 10.1829×10-10 H 0.11 1.901 10.1470×10-10 H 5.82 1.542
( 500, 12, 0.8, 2 ) 5.14302×10-10 H 106.79 5.0915×10-10 H 0.11 -1.003 5.0557×10-10 H 5.72 -1.698 
( 10, 12, 0.8, 2 ) 0.07443×10-10 H 98.60 0.1018×10-10 H 0.11 36.806 0.0761×10-10 H 6.15 2.222 

( 1000, 12, 0.8, 4 ) 9.26282×10-10 H 111.57 9.3216×10-10 H 0.11 0.635 9.5280×10-10 H 5.66 2.863 
( 1000, 12, 1.6, 2 ) 9.60097×10-10 H 110.11 8.8601×10-10 H 0.11 -7.716 8.8243×10-10 H 5.71 -8.090 
( 1000, 6, 0.8, 2 ) 7.73106×10-10 H 100.60 8.2411×10-10 H 0.05 6.597 8.2231×10-10 H 5.66 6.365 

Average (absolute value) 106.88  0.10 9.079  6.11 4.497
Table 3: Experimental results of our modelings, AMAS and IAMAS, and FastHenry for self-inductances. The lengths of ground wires are 4,500µm.  

Signal wire 
length (µm) 

Overlapping 
length (µm) FastHenry Time (sec) AMAC Time (sec) Error (%) IAMAC Time (sec) Error (%)

2000 2000 17.1868×10-10 H 141.67 17.3525×10-10 H 0.11 0.964 17.2998×10-10 H 6.10 0.657 
2000 1500 12.2176×10-10 H 141.98 13.0143×10-10 H 0.11 6.521 13.0140×10-10 H 15.82 6.518 
1000 1000 9.2767×10-10 H 114.34 8.6762×10-10 H 0.06 -6.473 8.6237×10-10 H 5.66 -7.039 
1000 500 4.3076×10-10 H 116.70 4.3381×10-10 H 0.05 0.709 4.3379×10-10 H 5.22 0.705 
500 400 3.7163×10-10 H 110.28 3.4705×10-10 H 0.05 -6.614 3.4684×10-10 H 17.09 -6.669 
500 200 1.7031×10-10 H 110.00 1.7353×10-10 H 0.11 1.887 1.7352×10-10 H 9.12 1.884 
100 50 0.4887×10-10 H 105.41 0.4338×10-10 H 0.11 -11.237 0.4321×10-10 H 4.94 -11.586 
100 25 0.2422×10-10 H 106.55 0.2169×10-10 H 0.06 -10.435 0.2191×10-10 H 11.70 -9.523 
100 5 0.0547×10-10 H 109.70 0.0434×10-10 H 0.05 -20.706 0.0561×10-10 H 12.03 2.553

Average (absolute value) 117.40  0.08 7.283  9.74 5.683
Table 4: Experimental results of our modelings, AMAC and IAMAC, and FastHenry for coupling inductances. Here, ws = ds = 0.8µm for both signal wires, both ground wire 

length = 4,500µm, wg = 2µm, dg = 12µm.  


