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ABSTRACT
Unlike classical floorplanning that usually handles only block
packing to minimize silicon area, modern VLSI floorplanning
typically needs to pack blocks within a fixed die (outline)
and additionally considers the packing with block positions
and interconnect constraints. Floorplanning with bus plan-
ning is one of the most challenging modern floorplanning
problems because it needs to consider the constraints with
interconnect and block positions simultaneously. We study
in this paper two types of modern floorplanning problems:
(1) fixed-outline floorplanning and (2) bus-driven floorplan-
ning. Our floorplanner uses the B*-tree floorplan represen-
tation and is based on a fast three-stage simulated annealing
scheme, called Fast-SA. For fixed-outline floorplanning, we
present an adaptive Fast-SA that can dynamically change
the weights in the cost function to optimize wirelength un-
der the outline constraint. Experimental results show that
our floorplanner can achieve almost 100% success rates ef-
ficiently for fixed-outline floorplanning with various aspect
ratios, compared to 10%–90% success rates obtained by the
most recent works. For the bus-driven floorplanning, we
explore the feasibility conditions of the B*-tree with the
bus constraints and develop a bus-driven floorplanning algo-
rithm based on the conditions and Fast-SA. Experimental
results show that our floorplanner on the average reduces
20% (55%) dead space for the floorplanning with hard (soft)
macro blocks, compared with the most recent work. In par-
ticular, our floorplanner is more efficient than the previous
works.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids

General Terms: Algorithms, Experimentation, Performance

Keywords: Floorplanning, Simulated Annealing

1. INTRODUCTION
As the design complexity increases dramatically, modern
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VLSI floorplanning incurs more sophisticated constraints
with the die outline, interconnect planning, and block posi-
tions. As pointed out by Kahng in [10], modern VLSI design
is based on a fixed-die (fixed-outline) floorplan, rather than
a variable-die one. A floorplan with pure area minimiza-
tion without any fixed-outline constraints may be useless
because it cannot fit into the given outline. Unlike classi-
cal floorplanning that usually handles only block packing
to minimize silicon area, therefore, modern floorplanning
should be formulated as a fixed-outline floorplanning.

The fixed-outline floorplanning has been shown to be much
more difficult than the outline-free floorplanning [2]. Based
on the sequence pair representation [14], Adya and Markov
[2, 4] first presents new objective functions to drive simu-
lated annealing and new types of moves that better guide
local search for fixed-outline floorplanning. Lin et al. [13]
applies evolutionary search to handle fixed-outline floorplan-
ning based on the normalized polish expression [20].

Floorplanning with position constraints is also prevailing
in modern floorplan designs. There are many types of po-
sition constraints in modern floorplanning, such as range,
symmetry, alignment, bus constraints. Among these po-
sition constraints, bus-driven floorplanning (BDF) is one
of the most challenging modern floorplanning problems be-
cause it needs to consider the constraints with interconnect
and block positions simultaneously. In particular, the inter-
connect on the chip becomes more congested as technology
advances, and thus bus routing becomes a challenging task.
Since buses have different widths and go through multiple
blocks, the positions of the blocks greatly affect bus rout-
ing. To make bus routing easier, we shall consider the bus
planning earlier in the floorplanning stage [22].

Floorplanning with the alignment constraint is closely re-
lated to bus-driven floorplanning. The alignment constraint
is considered in [19] and [21]. For the constraint, the align-
ment blocks are required to be aligned in a row and abut one
by one. However, blocks involved in a bus do not need to be
placed adjacent to each other. Rafiq et al. [16] [17] proposed
a bus-driven floorplanning. The bus defined in their works is
composed of wires connecting only two blocks, which is not
general for real bus designs. The general BDF that allows
a bus to connect multiple blocks is first studied in [22]. In
the work, the buses are placed in the top two layers and go
either horizontally or vertically in one layer. For this prob-
lem, Xiang et al. [22] proposed an algorithm based on the
sequences pair (SP) representation. Nevertheless, the SP
representation incurs a larger solution space, and thus it is
less efficient to find a high-quality solution.

We study in this paper two types of modern floorplanning
problems: (1) fixed-outline floorplanning and (2) bus-driven
floorplanning. Our floorplanner uses the B*-tree floorplan
representation [5] and is based on a fast three-stage simu-
lated annealing scheme, called Fast-SA. The Fast-SA is sig-



nificantly different from existing simulated annealing schemes
that try to speed up the annealing process, e.g., the well-
known TimberWolf [8] that uses a two-stage technique to
control the temperature updating function to reduce the it-
erations. Our Fast-SA consists of three stages of tempera-
ture modification. Experimental results show that Fast-SA
is suitable for block floorplanning; it achieves an average
12X speedup over both of the classical and TimberWolf SA
to obtain high-quality floorplans.

For fixed-outline floorplanning, we present an adaptive
Fast-SA that can dynamically change the weights in the cost
function under the outline constraint. The adaptive Fast-
SA controls the parameters of the cost function dynamically
according to a set of the most recent floorplan solutions. Ex-
perimental results show that our method achieves an average
success rate of 100% (99.7%) for the fixed-outline floorplan-
ning with a dead space of 15% (10%) and various aspect
ratios, compared to the average success rates of 78% and
85% obtained by Parquet-2.1 [15] and [13], respectively.

For the bus-driven floorplanning, we explore the feasibility
conditions of the B*-tree with the bus constraints and de-
velop a BDF algorithm based on the conditions and Fast-SA.
Compared with the most recent work by Xiang et al. [22],
our method on the average reduces 20% (50%) dead space
for the floorplanning with hard (soft) blocks. In particular,
our floorplanner is more efficient than the previous works.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the B*-tree floorplan representation. Sec-
tion 3 presents the Fast-SA scheme. Section 4 copes with
the fixed-outline floorplanning based on the adaptive Fast-
SA. Section 5 deals with BDF based on Fast-SA. The exper-
imental results are reported in Section 6. Finally, we give
conclusions in Section 7.

2. REVIEW OF THE B*-TREE REPRESEN-
TATION

A B*-tree [5] is an ordered binary tree for modelling non-
slicing or slicing floorplans. Given an admissible placement [9]
(in which no blocks can move left or down), we can construct
a unique B*-tree in linear time to model the placement. Fur-
ther, given a B*-tree, we can also obtain a legal placement
by packing the blocks in amortized linear time with a con-
tour structure [5].

Figure 1 shows an admissible placement and its corre-
sponding B*-tree. A B*-tree is an ordered binary tree whose
root corresponds to the block on the bottom-left corner.
Similar to the DFS procedure, we construct a B*-tree T
for an admissible placement in a recursive fashion: Starting
from the root, we first recursively construct the left subtree
and then the right subtree. Let Ri denotes the set of blocks
located on the right-hand side and adjacent to bi. The left
child of the node ni corresponds to the lowest block in Ri

that is unvisited. The right child of ni represents the lowest
block located above and with its x-coordinate equal to that
of bi.

Given a B*-tree T , its root represents the block on the
bottom-left corner, and thus the coordinate of the block is
(xroot, yroot) = (0, 0). If node nj is the left child of node
ni, block bj is placed on the right-hand side and adjacent
to block bi; i.e., xj = xi + wi. Otherwise, if node nj is
the right child of ni, block bj is placed above block bi, with
the x-coordinate of bj equal to that of bi; i.e., xj = xi.
Therefore, given a B*-tree, the x-coordinates of all blocks
can be determined by traversing the tree once in linear time.
Further, each y-coordinate can be computed by a contour
data structure in amortized constant time [5], making the
overall evaluation an amortized linear-time process.
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Figure 1: (a) An admissible placement. (b) The B*-tree

representing the placement.

3. FAST SIMULATED ANNEALING SCHEME
Simulated annealing (SA) [11] is widely used for floor-

planning. It is an optimization scheme with non-zero prob-
ability for accepting inferior (uphill) solutions. The proba-
bility depends on the difference of the solution quality and
the temperature. The probability is typically defined by
min{1, e−∆C/T }, where ∆C is the difference of the cost of
the neighboring state and that of the current state, and T
is the current temperature. In the classical annealing sched-
ule, the temperature is reduced by a fixed ratio λ (say, 0.85
as recommended by most previous works) for each iteration
of annealing.

The excessive running time, however, is a significant draw-
back of the classical SA process. To reduce the running time
of SA for searching for desired solutions more efficiently,
several annealing schemes of controlling the temperature
changes during the annealing process have been proposed.
The annealing schedule used in TimberWolf [8] is probably
the most successful scheme reported in the literature. It in-
creases λ gradually from its lowest value (0.8) to its highest
value (approximately 0.95) and then gradually decreases λ
back to its lowest value. (See Figure 2 (a) and (b) for the
respective temperature changes for classical SA and Tim-
berWolf SA as the search time goes by.)

We propose a Fast Simulated Annealing (Fast-SA) pro-
cess to integrate the random search with hill climbing more
efficiently. Unlike the classical SA [11] and the TimberWolf
SA [8], the annealing process consists of three stages: (1)
The high-temperature random search stage, (2) the pseudo-
greedy local search stage, and (3) the hill-climbing search
stage. At the first stage, we let temperature T → ∞ so that
the probability of accepting an inferior solution approaches
1. The process is like a random search to find the best
solution. At the second stage, we let T → 0. Since the tem-
perature is very low, we only accept a very small number
of inferior solutions, which is like a greedy local search. We
call this process the pseudo-greedy local search stage. The
third stage is the hill-climbing search stage. The tempera-
ture raises again to facilitate the hill climbing. Thus, it can
escape from the local minimum and search for better solu-
tions. The temperature reduces gradually, and very likely it
finally converges to a globally optimal solution.

Since the new simulated annealing scheme saves many it-
erations to explore the solution space, it could devote more
time to finding better solutions in the hill-climbing stage.
This makes the annealing much more efficient and effective.
To implement the annealing scheme, we define the temper-
ature T of the Fast-SA by the following equations:

Tn =

⎧⎪⎨
⎪⎩

∆avg

ln P
n = 1

T1〈∆cost〉
nc

2 ≤ n ≤ k
T1〈∆cost〉

n
n > k.

(1)

Here, n is the number of iterations, ∆avg is the average
up-hill cost, P is the initial probability to accept up-hill so-
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Figure 2: Temperature vs. search time for (a) classical sim-

ulated annealing, (b) TimberWolf SA, and (c) Fast-SA. The

temperature of TimberWolf SA drops faster than that of

classical SA at the beginning and the ending iterations, but

slower in the middle iterations. The Fast-SA consists of three

stages.

lutions, 〈∆cost〉 is the average cost change (new cost − old
cost) for the current temperature, and c and k are user-
specified parameters. At the first iteration, the temperature
is set according to the given initial accepting probability
P . Since P is usually set close to 1, so it performs random
search to find a good solution. Then, it enters the pseudo-
greedy local search stage until the kth iteration. Here, c is a
user-defined parameter to control how low the temperature
is in the second stage. We usually choose a large c to make
T → 0 so that it only accepts good solutions to perform
pseudo-greedy searches. After k iterations, the tempera-
ture jumps up to further improve the solution quality. The
value of 〈∆cost〉 affects the reduction rate of the tempera-
ture. If the cost of a neighboring solution changes signifi-
cantly, 〈∆cost〉 is larger and thus the temperature reduces
slower. In contrast, if 〈∆cost〉 is smaller, it implies that the
cost of the neighboring solution only changes a little; for this
case, we reduce the temperature more to reduce the num-
ber of iterations. Since the cost function is normalized to 1,
so 〈∆cost〉 < 1, and it ensures the decreasing temperature.
The behavior of the temperature changes is illustrated in
Figure 2 (c). The number of iterations in the second stage
can be determined by the problem size. The smaller the
problem size, the smaller the k value. In our cases, we set
c = 100 and k = 7 for floorplanning problems. Note that
the initial temperature for the Fast-SA is the same as that
for the classical SA, i.e., T1 = ∆avg/ln P . The initial tem-
perature T1 needs to be kept high to avoid getting bogged
in a local minimum in the very beginning.

In this paper, we use the B*-tree representation to model
a floorplan. Each B*-tree corresponds to a floorplan. There-
fore, the solution space consists of all B*-trees with the given
nodes (blocks). To find a neighboring solution, we perturb a
B*-tree to get another B*-tree by the following operations:

• Op1: Rotate a block.
• Op2: Move a node/block to another place.
• Op3: Swap two nodes/blocks.
• Op4: Resize a soft block.
For Op1, we rotate a block for a B*-tree node, which does

not affect the B*-tree structure. For Op2, we delete a node
and move it to another place in the B*-tree. For Op3, we
swap two nodes in the B*-tree. For Op4, we adjust the
aspect ratio of a soft block. The soft block adjustment algo-
rithm is described in the experimental results. After packing
for a B*-tree, we obtain a new floorplan. Whether or not we
take the new solution depends on the current temperature
and the cost function. The cost function is defined based
on problem requirements. For example, we may adopt the
following cost function to optimize the wirelength and the
area of a floorplan:

Cost = α
A

Anorm
+ (1 − α)

W

Wnorm
, (2)
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Figure 3: Two feasible floorplans. The dotted line is the

fixed outline, and the fixed-outline aspect ratio, R∗, is 0.5.

The floorplan aspect ratio R is (a) 0.5, and (b) 1.

where A is the current area, Anorm is the average area, W
is the current wirelength, Wnorm is the average wirelength,
and α controls the weights for area and wirelength.

4. FIXED-OUTLINE FLOORPLANNING
In this section, we present an adaptive Fast-SA scheme

that can dynamically change the weights for simultaneous
chip area and wirelength optimization under the fixed-outline
constraint.

4.1 Fixed-Outline Constraints
For a collection of blocks with the total area A and the

given maximum percent of dead space Γ, we construct a
fixed outline with the aspect ratio R∗, i.e., height/width.
Since a floorplanner can change the orientations of individ-
ual blocks, we choose R∗ ≥ 1. The height H∗ and width
W ∗ of the outline is defined by the following equations [2]:

H∗ =
√

(1 + Γ)AR∗, W ∗ =
√

(1 + Γ)A/R∗. (3)

4.2 Algorithm Overview
We use our Fast-SA to search for a desired solution. We

initialize a B*-tree as a complete binary tree, and perturb a
B*-tree to another by the operations described in Section 3.
For some blocks, they only have one feasible orientation to
fit into the fixed outline. We mark all such blocks as non-
rotatable blocks and set their orientations before perform-
ing perturbations. For Op1, we can only choose a rotatable
block. Since we intend to minimize the wirelength/area of
the floorplan, we always record the floorplan of the mini-
mum wirelength/area during simulated annealing. After the
temperature cools down enough, we terminate the simulated
annealing process and report the best floorplan.

In addition to the wirelength/area objective, we add an
aspect ratio penalty to the cost function. The idea is that
if the aspect ratio of the floorplan is similar to that of the
outline, and the dead space of the floorplan is smaller than
the maximum percentage of dead space Γ, then the floorplan
can fit into the outline. Assume that the current aspect ratio
of the floorplan is R. We define the cost function Φ for a
floorplan solution F by the following equation:

Φ(F ) = αA + βW + (1 − α − β)(R − R∗)2 (4)

where A is the current floorplan area, W is the current wire-
length, R is the current floorplan aspect ratio, R∗ is desired
floorplan aspect ratio, and α, β are user-defined parameters.
As the example shown in Figure 3, the best aspect ratio of
the floorplan in the fixed outline is not the same as that of
the outline. In this case, we shall decrease the weight of
aspect ratio penalty to concentrate more on the floorplan
wirelength/area optimization. (We will discuss the relation-
ship of weight values in reporting the experimental results.)
Since it is not easy to determine the weight of the wire-
length/area and the weight of the aspect ratio penalty, we
show in the following how to adaptively control the weight
for different floorplans.



Algorithm: Fix-Outline Floorplan(F )
Input: A set of blocks and a fixed outline.
Output: A floorplan within the outline.
1 Mark all non-rotatable blocks and set their orientations;
2 Initialize a B*-tree with input blocks;
3 Start the Adaptive Fast-SA process;
4 T ← Initial temperature;
5 do
6 Perturb the B*-tree;
7 Pack modules;
8 Evaluate the B*-tree cost;
9 Modify the weights in the objective function;
10 Update T ;
11 until converged or cooling down;
12 return the best solution.

Figure 4: The adaptive simulated annealing for fixed-outline

floorplanning.

4.3 Adaptive Simulated Annealing
We focus on area optimization with the fixed-outline con-

straint for easier presentation; the technique readily applies
to wirelength optimization as well. Since R∗ and Γ are user-
specified parameters, the weights for the area and the aspect
ratio should be determined by the given values. It is not easy
to determine the best α, and it is not efficient to try every α
value in the cost function. So we use an adaptive method to
control α according to n most recent floorplans found. The
area weight α is defined by the following equation:

α = αbase +
(
1 − nfeasible

n

)
(5)

where nfeasible is the number of feasible solutions in n most
recent floorplan solutions, and αbase is determined by the
user, say αbase = 0.5. Once α is determined, the weight of
the aspect-ratio penalty is also determined. The experimen-
tal results are reported in Section 6.2.

4.4 Algorithm
Figure 4 summarizes our algorithm. First, we mark all

non-rotatable blocks, set their orientations, and initialize a
B*-tree with input blocks as a complete binary tree. Then,
we start with the Adaptive Fast-SA process. After each per-
turbation, we perform packing and evaluate the B*-tree cost.
If the floorplan is better than the current best one, we record
it as the best floorplan. Then, we decrease the temperature
T and update the weights in the objective function. This
process continues to the end of simulated annealing, and the
best solution is reported.

5. BUS-DRIVEN FLOORPLANNING
In this section, we explore the feasibility conditions of

the B*-tree with the bus constraints and develop a BDF
algorithm based on the conditions and Fast-SA.

5.1 Bus-Driven Floorplanning Formulation
We consider a chip with multiple metal layers, and buses

are assigned on the top two layers. The orientation of buses
is either horizontal or vertical. The problem of bus-driven
floorplanning (BDF) is defined as follows [22]:

Given n rectangular macro blocks B = {bi|i = 1, ..., n}
and m buses U = {ui|i = 1, ..., m}, each bus ui has a width ti

and goes through a set of blocks Bi, where Bi ⊆ B and |Bi|
= ki. Decide the positions of macro blocks and buses such
that there is no overlap between any two blocks or between
any two horizontal (vertical) buses, and bus ui goes through
all of its ki blocks. At the same time, the chip area and the
bus area are minimized.

u

b1

b2

b3

y
y2+h2

y1+h1
y3+h3

y2

y1
y3 x

ymax

ymin
ymax – ymin >= t

Figure 5: A feasible horizontal bus u =< H, t, {b1, b2, b3} >.

For convenience, let < g, t, {b1, ..., bk} > represent a bus u
where g ∈ {H, V } is the orientation, t is the bus width, and
bi, i = 1, ..., k, are the blocks that the bus goes through. For
short, a bus is represented by {b1, ..., bk}. Figure 5 shows a
feasible horizontal bus.

5.2 B*-tree Properties for Bus Constraints
The blocks that a bus goes through must locate in an

alignment range, i.e., the vertical or horizontal overlap of the
blocks has to be larger than the bus width. For a B*-tree,
the left child nj of the node ni represents the lowest adjacent
block bj which is right to the block bi (i.e. xj = xi + wi).
So, the blocks has horizontal relationships in a left-skewed
sub-tree.

Property 1. In a B*-tree, the nodes in a left-skewed
sub-tree may satisfy a horizontal bus constraint.

Blocks are compacted to the bottom and left after pack-
ing. So the blocks associated with a left-skewed sub-tree of
a B*-tree may be aligned together if no block falls down dur-
ing packing. We introduce dummy blocks to solve the falling
down problem. In Figure 6 (a), the blocks b2 and b4 are
displaced because they fall down during packing. We add
dummy blocks right below the displaced blocks. The dummy
blocks have the same x-coordinates as the displaced blocks,
and the widths are also the same. In Figure 6 (b), we adjust
the heights of dummy blocks to shift the displaced blocks
to satisfy the bus constraint. After adjusting the heights of
dummy blocks, we can guarantee that the blocks are feasi-
ble with the horizontal bus constraint. The height ∆i of the
dummy block Di can be computed by the following equa-
tion:

∆i =

{
(ymin + t) − (yi + hi) if (ymin + t) > (yi + hi)
0 otherwise

(6)

where xi (yi) is the x(y)-coordinate of block bi, and ymin =
max{yi|i = 1, 2, ..., k} for a bus {b1, ..., bk}. Figure 7 shows
an example of a feasible horizontal bus by inserting dummy
blocks D5 and D6.

Property 2. By inserting dummy blocks of appropriate
heights, we can guarantee the feasibility of a horizontal bus
with blocks whose corresponding B*-tree nodes are in a left-
skewed sub-tree.

For a B*-tree, the right child nj of the node ni represents
the closest upper block bj which has the same x-coordinate
as the block bi (i.e xj = xi). Therefore, the blocks in the
right-skewed sub-tree are aligned with the x-coordinate. As-
sume the minimum width of the modules that the bus goes
through is larger than the bus width. The structure forms
a vertical bus. In the example shown in Figure 8, the nodes
n3 and n5 is in the right-skewed sub-tree of n0, so the blocks
b0, b3, and b5 satisfy the vertical bus constraint.

Property 3. In a B*-tree, the nodes in a right-skewed
sub-tree can guarantee the feasibility of a vertical bus.
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Figure 7: (a) The B*-tree with a left-skewed sub-tree af-

ter inserting dummy nodes. (b) The corresponding feasible

horizontal bus < H, t, {b3, b5, b6} >.

5.3 The Twisted-Bus Structure
Consider two buses simultaneously, we cannot always fix

the horizontal bus constraints by inserting dummy blocks.
As the example shown in Figure 9, two buses are considered:
u = {b0, b3} and v = {b2, b6}. We can add the dummy block
D0 (D2) below b0 (b2) to satisfy the horizontal bus u (v).
However, we cannot satisfy two horizontal bus constraints
at the same time since two buses are twisted. In a B*-tree, if
the nodes of two buses are both in the two right-skewed sub-
trees, it incurs a twisted-bus structure and cannot be solved
by inserting dummy blocks. Therefore, we shall discard a
B*-tree with such an infeasible tree topology during solution
perturbation. Figure 9 shows a twisted-bus structure where
n3 is in the right-skewed sub-tree of n2, and n6 is in the
right-skewed sub-tree of n0.

5.4 Bus-Overlapping
When multiple buses are considered, we need to avoid

overlaps between buses. For example, in Figure 10, two
horizontal buses are to be assigned. The buses u = {b0, b4}
(v = {b2, b3}) is feasible when we consider only one bus.
However, the vertical space is not large enough for fitting
two buses. In this case, we compute the minimum shifting
distance for the b2, and insert a dummy block D2 right below
b2. Thus, the two buses can be assigned at the same time

u

       b0 b1

       b3
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b4

n2

n0

n4

n1 n3

        b5

n5

(a)                                       (b)
x

y

Figure 8: (a) The B*-tree with a right-skewed sub-

tree. (b) The corresponding feasible vertical bus u =<

V, t, {b0, b4, b5} >.
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Figure 9: An infeasible floorplan for two buses, u = {b0, b3}
and v = {b2, b6}. (a) A twisted-bus structure where n3 is in

the right sub-tree of n2, and n6 is in the right sub-tree of n0.

(b) The corresponding floorplan. The two twisted-bus cannot

be satisfied simultaneously by inserting dummy blocks.

b0 b1

b3    b4
b2

b0 b1

b3 b4
b2

D2

(a)                                  (b)

n2

n0

n4

n1

n3

(c)                                  (d)

D2

n0

n4

n1

n3

n2

x

x

y

y

Figure 10: Two horizontal buses, u = {b0, b4} and v = {b2, b3}.
(a) Two buses overlap. (b) By inserting a dummy block, we

can get a feasible floorplan without bus-overlapping.

by inserting the dummy block.

5.5 Algorithm
Our bus-driven floorplanning algorithm applies Fast-SA

based on the B*-tree representation. Since the objective
function of bus-driven floorplanning is to satisfy all bus con-
straints so that the chip area and the total bus area are min-
imized, we define the cost function Ψ for a floorplan solution
F with the set of buses U as follows:

Ψ(F, U) = αA + βB + γM (7)

where A is the chip area, B is the bus area, M is the num-
ber of unassigned buses, and α, β, and γ are user-specified
parameters.

Figure 11 summarizes our algorithm. First, we initialize
the B*-tree as a complete binary tree and start with the
Fast-SA process. After each perturbation and non-dummy
block packing, we check if there exists a “twisted-bus struc-
ture” in the B*-tree. If any, we simply discard the current
solution and perturb the B*-tree again. This checking can
save time to find feasible solutions. If there is no twisted-
bus structure in the B*-tree, we insert the dummy blocks to
the appropriate nodes to fix the horizontal bus constraints.
After adjusting the heights of dummy blocks, we pack the
B*-tree again. Then, we perform bus-planning to determine
the locations of buses. We also check bus overlapping so
that no two buses overlap. During the floorplan evaluation,
the cost can be determined by the chip area A, bus area B
of feasible buses, and the number of unassigned buses M .
In the simulated annealing process, we record the floorplan
solution with the most number of feasible buses and the
lowest cost. After the simulated annealing process stops, we
report the lowest cost with the least number of unassigned
buses. Thus, we can find the desired floorplan with the most
feasible buses.



Algorithm: Bus-Driven Floorplanning Using B*-trees
Input: A set of blocks and a set of bus constraints.
Output: A floorplan satisfying bus constraints with

chip area and the total bus area being minimized.
1 Initialize a B*-tree for the input blocks;
2 Perform the Fast-SA process;
3 do
4 Perturb the B*-tree;
5 Pack modules without dummy blocks;
6 if there exists a “twisted-bus structure” in the B*-tree
7 then restart the do-loop;
8 Adjust the heights of dummy blocks to fix horizontal

bus constraints;
9 Pack modules with dummy blocks;
10 Decide bus locations;
11 Evaluate the floorplan cost;
12 until converged or cooling down;
13 return the best solution.

Figure 11: The bus-driven floorplanning algorithm.

6. EXPERIMENTAL RESULTS
We conducted extensive experiments to justify the effec-

tiveness and efficiency of the Fast-SA scheme, our fixed-
outline floorplanning algorithm, and our BDF algorithm.

6.1 Convergence and Stability for Fast-SA
To test the efficiency of Fast-SA, we experimented on

the three largest circuits in the GSRC floorplan benchmark
suite [7], n100, n200, and n300 (which contain 100, 200,
and 300 blocks, respectively). We implemented the classical
SA, TimberWolf SA, and Fast-SA in the C++ program-
ming language on an Intel Pentium 4 1.6GHz PC with 256
MB memory. All of the simulated annealing algorithms are
based on the B*-tree floorplan representation and the same
initial temperature. The initial probability of accepting an
uphill move are all set to 0.9. The only difference is the
annealing schedule. For classical SA, the updating function
for temperature T is given below:

Tnew = λTold, 0 < λ < 1. (8)

The value of λ for classical SA is set to a fixed value 0.85 [18].
For TimberWolf SA [8], the value of λ is gradually increased
from its lowest value to its highest one, and is then gradually
decreased back to its lowest value. We set the lowest λ to
0.8, and set the highest λ to 0.95. The annealing schedule
of Fast-SA was described in the Section 3.

Table 1 compares the running times of the three different
SA schemes based on comparable solution quality. We list
the times to achieve the similar solution quality (say, around
5% deadspace in this experiments) for the three annealing
schemes. For the first Fast-SA, we set k = 1 to remove the
greedy local search stage. We reduced the running time in
the high-temperature stage (stage 1), and spent more time
in the hill-climbing stage (stage 3). This scheme achieved
5.3X speedup to generate comparable solutions, compared
to the classical SA. For the second Fast-SA, we set k =
7 to perform six iterations of greedy local search; so the
convergence speed is even higher. The 3rd stage of Fast-SA
can avoid getting bogged in a local minimum in the 2nd
stage of Fast-SA. On the average, Fast-SA achieved a 12X
speedup in finding floorplan solutions of comparable areas.

Figure 12 compares the convergence speed and stability
of the three SA schemes. For each SA scheme, the area
is plotted as a function of running time. We ran the n100
circuit for 10 times for each SA scheme. As shown in the
figure, the convergence speed of Fast-SA with the greedy
local search stage is much faster than Fast-SA without the
greedy local search stage, and Fast-SA without the greedy
local search stage is much faster than the classical SA. The

Table 1: Dead space and CPU time for different simu-

lated annealing schemes using the GSRC floorplan bench-

mark suite. WS is the deadspace (%).
Classical TimberWolf Fast-SA Fast-SA

SA SA (k=1) (k=7)
WS Time WS Time WS Time WS Time
(%) (sec) (%) (sec) (%) (sec) (%) (sec)

n100 5.1 127 5.0 85 5.0 16 4.9 5.5
n200 5.0 537 4.9 406 5.1 59 5.1 37
n300 5.3 1293 5.1 1102 5.2 292 5.3 95

Comp. 1.0X 1.3X 5.3X 17.1X
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Figure 12: Comparison for stability and convergence among

classical SA, TimberWolf SA, Fast-SA with k=1, and Fast-

SA with k=7. (Note that the initial area is 69.76 mm2, same

for the four SA schemes. We focus on the results with area

smaller than 27 mm2 to examine the effect more closely.)

TimberWolf SA is better than the classical SA but worse
than Fast-SA. Note that the initial area is 69.76 mm2, same
for the three SA schemes. To view the convergence more
clearly, we only plotted the results with the area smaller
than 27 mm2.

To compare greedy search, classical SA, TimberWolf SA
and Fast-SA in more detail, we performed an experiment for
these annealing schemes on the MCNC benchmark ami49.
In Figure 13, the dead space is plotted as a function of the
running time. As shown in Figure 13 and Table 2, the con-
vergence speed of the greedy search is the fastest; it took
only 0.234 seconds to find a floorplan solution of less than
10% dead space. However, the final solution for greedy
search has dead space of 5.76%. The classical (Timber-
Wolf) simulated annealing method can further improve the
solution quality until the dead space equals 2.62% (2.13%).
Since Fast-SA combines the pseudo-greedy local search stage
and the hill-climbing stage, its convergence speed is much
faster than that of classical SA. The Fast-SA only spent
0.625 seconds to obtain a floorplan solution of 5% dead
space while classical SA needed 8.687 seconds. The Fast-
SA spent more iterations to find better floorplan solutions
with dead spaces under 5%. The Fast-SA achieved 2.00%
dead space at last while classical SA only achieved 2.62%.
Based on the results, the greedy search is not suitable for
handling the floorplanning problems if the solution quality is



Table 2: Dead spaces and runtimes for different simulated

annealing schemes. (NA: Not Available)
Greedy Classical TimberWolf Fast-SA

Dead Runtime SA Runtime SA Runtime Runtime
space (sec) (sec) (sec) (sec)

10% 0.234 4.375 3.28 0.359
8% 0.562 4.859 3.58 0.375
6% 1.266 5.729 3.66 0.531
5% NA 8.692 3.70 0.625
4% NA 9.656 7.65 1.406
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Figure 13: Dead space vs. runtime among greedy search,

classical SA, TimberWolf SA, and Fast-SA. The respective

final dead spaces are 5.76%, 2.62%, 2.13%, and 2.00% for

greedy search, classical SA, TimberWolf SA, and Fast-SA.

a major concern, and Fast-SA is the best choice for the floor-
planning problem addressed here (it achieved 13.9X speedup
over classical SA for finding a floorplan solution of less than
5% dead space for this case).

6.2 Fixed-Outline Floorplanning
Table 3 compares the non-adaptive scheme and the adap-

tive scheme for the fixed-outline floorplanning with area op-
timization alone (i.e., β = 0 in the objective function). We
set the fixed-outline aspect ratio R∗ = 1 and 2, and the
maximum percentage of dead space Γ = 10% for this table.

For the non-adaptive scheme, we chose 10 α’s between 0
and 1. When α is below 0.3, the success probability de-
creases because the weight for area optimization is so small
that the dead spaces of the resulting floorplans often exceed
10%. When α increases, the success probability becomes
higher (100%) because the weight for area optimization is
larger and thus the dead space decreases. However, the suc-
cess probability decreases again if α is too large. The reason
is that the aspect ratio of the final floorplan is far from the
given outline, and thus we cannot obtain a feasible solution
efficiently. It also shows that for different R∗’s, the optimal
α is also different. Note that when α = 1, it becomes a
classical outline-free floorplanning problem. We found that
it is harder to find a feasible solution by using the classical
floorplanning scheme.

For adaptive simulated annealing, we set αbase to 0.5 and
used 500 most recent floorplans found to determine α dy-
namically, i.e., n = 500. From Table 3, the average dead
space by using adaptive α is less than that by using a con-
stant α. As the results show that adaptive simulated an-
nealing can achieve higher success probability and superior
solution quality simultaneously.

To test the effectiveness of our fixed-outline floorplanning
algorithm, we set the maximum percentages of dead space Γ
to 15% and 10%. The expected aspect ratios R∗ of the floor-
plans are chosen from the range [1, 4]. Experiments were
performed on a 1.6GHz Intel Pentium 4 PC using the GSRC
benchmark circuit n100. The results were averaged for 50

Table 3: Success probability and average dead space using

constant α and adaptive α on n100, Γ = 10%.
R∗ = 1 R∗ = 2

Success Average Success Average
α prob. dead space prob. dead space

1.0 0% NA 0% NA
0.9 26% 6.85% 22% 7.47%
0.8 67% 6.89% 100% 6.54%
0.7 71% 6.87% 100% 6.67%

Constant 0.6 81% 6.46% 100% 6.81%
α 0.5 100% 6.66% 100% 6.87%

0.4 100% 7.04% 100% 7.17%
0.3 100% 7.28% 100% 7.35%
0.2 89% 7.96% 78% 8.45%
0.1 0% NA 0% NA

Adaptive α 96% 6.19% 100% 5.89%
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Figure 14: Success probability v.s. aspect ratio on n100, (a)

Γ = 15, and (b) Γ = 10%.

runs for each aspect ratio. We compared with Parquet-2 [15]
and GFA [13] based on the same platform. The Parquet-2
and the GFA programs are provided by the authors of [15]
and [13], respectively.

Figure 14 plots the success probability of satisfying the
fixed-outline constraints vs. the desired aspect ratio of the
fixed outline with Γ = 15% and Γ = 10%, respectively. Note
that we set the maximum running time to 100 seconds and
used the default SA parameters given in Parquet-2. When Γ
= 15%, our method always achieved 100% success rates of
fitting into the given fixed outlines while the success rates for
Parquet-2 and GFA were about 60%–90%. When Γ = 10%,
our algorithm still achieved 100% success rates, except for
the case with aspect ratio equal to one (for which the success
rate is 96%). In contrast, the success rates for Parquet-2 and
GFA were consistently under 50%. The dramatic differences
reveal the effectiveness of our approach.

Table 4 lists the average success rates, average dead spaces,
and average runtimes for Parquet-2, GFA, and Fast-SA for
n100, Γ = 10% under different aspect ratios in [1, 4]. The av-
erage success rate for Fast-SA is much higher than Parquet-2
and GFA (99.7% vs. 16.6% and 30.3%, respectively). The
average dead space for Fast-SA is the smallest (5.79% vs. 7.32%
and 6.26%), and Fast-SA used the least time on average
(27.6 sec vs. 40.2 sec and 44.5 sec).

The fixed-outline floorplanning problem should empha-
size more on wirelength. Since GFA does not have wire-
length minimization mode, so we compared our program
with Parquet-2.1. We modified the stopping criterion of
Parquet-2.1 to search for more solutions after finding the

Table 4: The average success rates, dead space, and runtime

for Parquet-2, GFA, and Fast-SA under different aspect ratios

(n100, Γ = 10%).

n100, Γ = 10% Parquet-2 GFA Fast-SA

Avg. success rate 16.6% 30.3% 99.7%
Avg. dead space 7.32% 6.26% 5.79%

Avg. dead space ratio 1.26 1.08 1.00
Avg. runtime (sec) 40.2 44.5 27.6
Avg. runtime ratio 1.46 1.61 1.00



Table 5: The comparison of the wirelength under the fixed-

outline constraint for ami33 and ami49 with R∗ = 1, 2, 3,

4.
Aspect Parquet-2.1 Ours

Circuit Ratio Wire Time Wire Time
R∗ (mm) (sec) (mm) (sec)

1 64.6 23 46.3 16
2 65.9 24 48.9 11

ami33 3 80.9 23 67.7 15
4 72.7 24 61.4 14

Average 71.0 24 56.1 14
Comparison 1.27 1.71 1.00 1.00

1 753 25 752 17
2 792 25 739 18

ami49 3 964 25 858 18
4 989 25 787 20

Average 875 25 784 18
Comparison 1.12 1.39 1.00 1.00

    
          (a)                           (b)                     (c)                  (d) 

 Figure 15: The GSRC n100 floorplan results with Γ = 10%

and the desired aspect ratios R∗’s are (a) 1, (b) 2, (c) 3, (d)

4. The dead spaces are (a) 5.57%, (b) 5.06%, (c) 5.03%, and

(d) 4.70%. The dotted line is the fixed outline.

first solution within the bounding box. The maximum run-
time was set to 30 seconds, and we used the default wire-
length optimization parameters for Parquet-2.1. Table 5
shows the best wirelength for Parquet-2.1 and our program.
We used the MCNC benchmark ami33 and ami49 which
contain 123 and 408 nets respectively, and reported the best
results among 10 runs. All the results listed in Table 5 can fit
into the given outline (i.e. feasible solutions). Our program
can obtain better floorplan solutions than Parquet-2.1 for
all test cases in shorter running times; our program, on the
average, can reduce wirelength by about 20% and runtime
by about 55%, compared to Parquet-2.1.

The above results all show the efficiency and effectiveness
of Fast-SA. Our method results in very stable and high-
quality floorplan solutions. Figure 15 shows the resulting
floorplans for n100 with various aspect ratios.

6.3 Bus-Driven Floorplanning
We also performed experiments on bus-driven floorplan-

ning. The benchmarks are provided by the authors of [22];
they are modified from the MCNC benchmark suite. The
number of bus constraints ranges from 5 to 18. Each bus
needs to go through 2–7 blocks according to the constraints.
Our platform is a 2.8GHz Intel Pentium 4 PC while the work
[22] is on a 2.4GHz Xeon PC; the speed difference between
the two machines is marginal. The work [22] only reported
dead spaces for the set of benchmarks. For fair comparisons,
we optimized the same cost metric with area optimization
alone.

We also implemented the soft block resizing algorithm.
The soft macro block adjustment is based on a simple, yet
effective approach presented in [6]. Given M blocks, we
assume that block b’s bottom-left coordinate is (b.x1, b.y1)
and its top-right coordinate is (b.x2, b.y2). Each soft block
has four candidates for the block dimensions (i.e., shapes).
The candidates are defined as follows:

• Rb = e.x2−b.x1, where e.x2 = min{g.x2|g.x2 > b.x2, g ∈
M};

• Lb = d.x2−b.x1, where d.x2 = max{g.x2|g.x2 < b.x2, g ∈
M};

• Tb = a.y2 − b.y1, where a.y2 = min{g.y2|g.y2 > b.y2, g ∈
M};

• Bb = c.y2−b.y1, where c.y2 = max{g.y2|g.y2 < b.y2, g ∈
M}.

After the candidates of the block shapes are determined,
we may change the shape of a soft block bi by choosing one
of the following five choices during simulated annealing:

• Change the width of block bi to Ri;
• Change the width of block bi to Li;
• Change the height of block bi to Ti;
• Change the height of block bi to Bi;
• Change the aspect ratio of block bi to a random value

in the range of the given soft aspect ratio constraint.
Figure 16 shows an example of resizing a soft block. Block

b3 has four shape candidates, R3, L3, T3, and b3. If we
stretch the right boundary of b3 to R3, it can generate a
more compact floorplan.

b2b1b2
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b5

L3 R3

T3

B3

b0
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b4

b3
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(a)              (b)
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Figure 16: A soft block resizing example. (a) There are four

shape candidates for b3 for the resizing. (b) Stretch the right

boundary of b3 to R3, and the resulting floorplan becomes

more compact.

The block shapes could be changed to obtain a more com-
pact floorplan during simulated annealing. For hard blocks,
our average dead space is 4.38% while the work [22] is 5.51%.
We only needed 26 seconds on average while [22] required
104 seconds. For soft blocks, since the previous work [22]
resizes blocks from existing solutions, 2 seconds are added
to the average runtime (106 seconds in total). Our method
performs resizing and floorplanning at the same time; so
the runtimes are longer than hard block floorplanning alone
(but is still much faster than the work [22]). The average
runtime is 47 seconds, and the average dead space is 0.41%,
compared to 0.91% required by the previous work. In short,
our algorithm can obtain better bus-driven floorplan solu-
tions for all test cases in shorter running times. Figure 17
shows the resulting floorplan for ami49-3.

7. CONCLUSION
We have proposed algorithms for the modern floorplan-

ning problems with fixed-outline and bus constraints, based
on our new Fast-SA scheme and the B*-tree representation.
Experimental results have shown that our Fast-SA leads to
faster and stabler convergence to desired floorplan solutions.
The experimental results on the fixed-outline floorplanning



Table 6: Bus-driven floorplanning results. The results of SP

is on a 2.4GHz Intel Xeon PC while ours is on a 2.8GHz Intel

Pentium 4 PC.
Block Circuit Block Bus SP [22] Ours
type Time Dead Time Dead

(sec) space (sec) space

apte 9 5 11 4.11% 2 1.59%
xerox 10 6 12 3.88% 5 3.85%
hp 11 14 28 5.02% 20 4.47%

ami33-1 33 8 61 6.02% 19 5.69%
ami33-2 33 18 81 6.10% 22 3.87%

Hard ami49-1 49 9 98 5.42% 28 5.34%
ami49-2 49 12 278 6.09% 43 5.45%
ami49-3 49 15 265 7.40% 66 4.74%

Average 104 5.51% 26 4.38%

apte 9 5 12 0.72% 3 0.02%
xerox 10 6 13 0.95% 6 0.10%
hp 11 14 28 0.62% 11 0.03%

ami33-1 33 8 62 0.94% 30 0.33%
ami33-2 33 18 86 1.27% 73 0.73%

Soft ami49-1 49 9 101 0.85% 58 0.51%
ami49-2 49 12 281 0.84% 112 0.67%
ami49-3 49 15 268 1.09% 81 0.92%

Average 106 0.91% 47 0.41%

and the bus-driven floorplanning both have shown the effi-
ciency and effectiveness of our floorplanning algorithms; for
those applications, our results outperform the related recent
works by large margins.
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