
NTUplace: A Ratio Partitioning Based Placement
Algorithm for Large-Scale Mixed-Size Designs ∗

Tung-Chieh Chen†, Tien-Chang Hsu†, Zhe-Wei Jiang†, and Yao-Wen Chang†‡

Graduate Institute of Electronics Engineering†

Department of Electrical Engineering‡

National Taiwan University
Taipei 106, Taiwan

{donnie, tchsu, crazying}@eda.ee.ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw

ABSTRACT
In this paper, we present a hierarchical ratio partitioning
based placement algorithm for large-scale mixed-size designs.
The placement algorithm consists of three steps: global place-
ment, legalization, and detailed placement; it works in a hi-
erarchical manner and integrates net-weighting partitioning,
whitespace management, look-ahead bipartitioning, and fast
legalization to handle the large-scale mixed-size placement
problems. Unlike the traditional partitioning-based tech-
nique that is based on balanced partitioning, we apply ratio
partitioning in each level. Further, applying the look-ahead
bipartitioning technique in each level, we can evaluate the
feasibility of the placement for sub-partitions more accu-
rately. Therefore, we can find better ratios for the parti-
tions, leading to easier legalization for the global placement
result and finally a better detailed placement solution. Ex-
perimental results show the efficiency and effectiveness of
our algorithm.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids [Placement and Routing]

General Terms: Algorithms, Performance

Keywords: Placement, Mincut, Ratio Cut

1. INTRODUCTION
As the process technology advances, the feature size is

getting smaller and smaller, which makes it possible to inte-
grate an entire system with one billion transistors on a sin-
gle chip. At the same time, the Intellectual Property (IP)
modules and pre-designed macro blocks (such as embedded
memories, analog blocks, pre-designed datapaths, etc.) are
often reused, and thus many IC designs contain hundreds of
thousands of modules with different sizes. Hence, we need

∗This work was partially supported by MediaTek, Inc. and
National Science Council of Taiwan under Grant No’s. NSC
93-2215-E-002-009, NSC-93-2220-E-002-001, and NSC 93-
2752-E-002-008-PAE.

Copyright is held by the author/owner.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
ACM 1-59593-021-3/05/0004.

an efficient algorithm to solve such a placement problem
with a large number and hybrid sizes of modules and cells.

Traditional standard-cell placement techniques assume that
cells have the similar sizes. Thus, they cannot handle prob-
lems with different sizes well. Many approaches have been
presented to handle such a mixed-size placement problem.
Those approaches can be classified into three categories: (1)
the analytical-based approach [8, 9, 10], (2) the simulated-
annealing-based approach [5], and (3) the partitioning-based
approach [3, 4, 11]. Among them, the analytical-based and
simulated-annealing-based approaches are often too slow to
handle very large problem sizes. Therefore, we shall develop
our placement algorithm based on the partitioning-based ap-
proach.

In this paper, we present a hierarchical ratio partition-
ing based placement algorithm for large-scale mixed-size de-
signs. The placement algorithm consists of three steps: global
placement, legalization, and detailed placement; it works
in a hierarchical manner and integrates net-weighting par-
titioning, whitespace management, look-ahead bipartition-
ing, and fast legalization to handle the large-scale mixed-size
placement problems. Unlike the traditional partitioning-
based technique that is based on balanced partitioning, we
apply ratio partitioning in each level. Further, traditional
partitioning-based methods often do not consider the fea-
sibility of the placement for sub-partitions. Applying the
look-ahead bipartitioning technique in every level, in con-
trast, we can evaluate the feasibility of the placement for
sub-partitions more accurately. Therefore, we can find bet-
ter ratios for the partitions, leading to easier legalization
for the global placement result and finally a better detailed
placement solution. Experimental results show the efficiency
and effectiveness of our algorithm.

2. PROPOSED ALGORITHM
Our placement algorithm adopts the top-down recursive

ratio bipartitioning technique. The algorithm consists of
three steps: global placement (GP), legalization (LG), and
detailed placement (DP) (see Figure 1). To improve the so-
lution quality, we apply the following techniques to perform
global placement and legalization: (1) net-weighting parti-
tioning (GP), (2) whitespace distribution (GP), (3) look-
ahead bipartitioning (GP), and (4) fast legalization (LG).
The result is then fed into an existing detailed placer to fur-
ther refine the placement solution. We shall explain these
techniques in the following subsections.

2.1 Net-Weighting Partitioning
At the initial top-level, the locations of all blocks are set

to the center of the chip region. To prevent from generating
sub-regions of large aspect ratios, we choose the longer side

Legalization

Global Placement

Detailed Placement

Figure 1: The flow of our algorithm.

to divide the region into two sub-regions. After the shapes
of two sub-regions are determined, we move the blocks to
the two centers of the two sub-regions to minimize the half-
perimeter wirelength (HPWL).

The block-location determination problem can be formu-
lated as a hypergraph partitioning problem. Then, the hy-
pergraph is partitioned using a weighted-net, min-cut bipar-
titioner to obtain the minimum HPWL. The new locations
of the blocks are determined by the partitioning. Each par-
tition corresponds to a sub-region.

The circuit is modeled as a hypergraph. Each node in the
hypergraph corresponds to a block inside the region, with
the node weight being set to the area of the correspond-
ing block. Each hyperedge corresponds to a multi-terminal
net in the circuit, with the hyperedge weight being set to the
value of the HPWL contribution if the hyperedge is cut. The
hyperedge weight is determined as follows. Take Figure 2 as
an example for easier explanation. Without loss of general-
ity, we assume that the region R is divided vertically into two
sub-regions, R1 and R2, with p1 and p2 being the respective
centers of the two sub-regions. t1 and t2 are two external
terminals outside the region R. In Figure 2(a), if a net con-
nects with only blocks inside the region R, the weight of
the corresponding hyperedge is set to the distance between
p1 and p2, denoted by dist(p1, p2), since the HPWL value
equals dist(p1, p2) if the net is cut. In Figure 2(b), if a net
connects with external terminals t1 and t2, and the terminals
are outside the horizontal range of p1 and p2 and closer to
p1, the hyperedge weight is set to dist(p1, p2), and we add a
fixed dummy node with weight equal to 0 at p1 and connect
the net to the dummy node. The rationale is that the HPWL
is smaller if all blocks connecting the net are located at p1,
and we will favor the blocks connecting with the net to be
moved to the left partition during the partitioning because
of the fixed dummy node. In Figure 2(c), a net connects with
external terminals t1 and t2, and the terminals are inside the
horizontal range of p1 and p2. If all blocks connecting the
net are located at p1, the HPWL equals dist(p1, t2). If all
blocks connecting the net are located at p2, the HPWL is
dist(p2, t1). Since dist(p2, t1) > dist(p1, t2), we add a fixed
dummy node with weight equal to 0 at p1 and connect the
net to the dummy node. The hyperedge weight is set to
the value of dist(p2, t1) − dist(p1, t2), which is the HPWL
increase if the net is cut during the partitioning. The ra-
tionale is that the HPWL is smaller if all blocks connecting
with the net are located at p1, and we will favor the blocks
connecting with the net to be moved to the left partition
during the partitioning because of the fixed dummy node.
In Figure 2(d), a net connects with the external terminals t1
and t2, and the terminals are on different sides of the range
of p1 and p2. The hyperedge weight is set to 0 because
the block locations will not affect the HPWL. By using the
above net-weighting scheme, the cut size is proportional to
the HPWL, and finding the min-cut bi-partitioning leads to
the assignments of block locations with the minimal HPWL.

2.2 Whitespace Distribution
If a large block exists in the region, we cannot always use

p1 p2

t1

R1 R2

p1 p2

t1

R1 R2

p1 p2

t2

R1 R2

t1

p1 p2

R1 R2

(a) (b)

(c) (d)

t2

t2

Figure 2: An example of determining a net weight.
Here, p1 and p2 are the respective centers of the two
sub-regions R1 and R2, and t1 and t2 are external
terminals outside the region.

a balanced region bipartition, or the block may not fit into
any sub-region. In this case, we have to perform ratio par-
titioning. We add a dummy node connecting to the node
corresponding to the large block, and set the net-weight
to a large negative value. As the example shown in Fig-
ure 3, if we want to obtain a ratio partition of w1/w2 (or
w2/w1), where w1 and w2 are the expected widths for the
two sub-regions, the weight of the dummy node shall be set
to A|w1 − w2|/(w1 + w2), where A is the total area of the
blocks inside the region. Since the net-weight of the edge
connecting the dummy node is a large negative value, the
min-cut bi-partition will cut the edge. Since the dummy
node does not occupy any area in the region, it results in a
ratio partition, and the cut-line moves from c1 to c2.

R1 R2

w1 w2

h

c2c1

dummy
node

Figure 3: An example of the ratio partitioning.

Traditional min-cut based placers uniformly distribute whites-
pace in the chip, producing excessive wirelength when large
amounts of whitespace are present. Adya et al. [2] use filler
cells to control the whitespace allocation. However, this
method significantly increases the number of cells and thus
leads to longer running time. In contrast, we directly con-
trol the imbalance factor for a partitioner to allocate whites-
pace. Let the total areas occupied by the blocks in the two
sub-regions be A1 and A2. The imbalance factor is defined
as max{A1/A2, A2/A1} − 1, measuring the imbalance be-
tween two partitions during recursive bisection. To identify
a feasible imbalance factor for partitioning, we first set one
sub-region’s utilization ratio (block area / sub-region area)
to 1.0 to compute the maximum imbalance ratio of the cell
area for the partitioning. We then compute the maximum
imbalance ratio of the other sub-region similarly. Then, the
imbalance factor for the partitioning is set to the smaller
imbalance ratio for the two sub-regions to avoid overfilling

the sub-region. Thus, the partitioner can find the minimum
cut under the balance constraint.

2.3 Look-Ahead Bipartitioning
The look-ahead bipartitioning concept is proposed in [7]

to solve floorplanning problems. It integrates the cutsize-
driven bipartitioning and the area-driven floorplanning. Be-
fore each application of cutsize-driven bipartitioning, area-
driven floorplanner is used to check whether the given sub-
problem can be legalized. If it can be legalized, then re-
cursive cutsize-driven area bipartitioning continues in both
subregions at the current level. If not, the cutsize-driven
solution at that level is discarded, and the previously com-
puted legal, “look-ahead” solution is used instead.

For our look-ahead bipartitioning, we resort to a first-fit
bin-packing heuristic to check if the subproblem can be legal-
ized. If such a legalization solution exists, the cutsize-driven
bipartitioning continues like [7]. If not, we move the cut-line
toward the partition with a smaller utilization ratio. Then,
we redo the ratio partitioning by modifying the imbalance
factor. Again, we check for the existence of a legalization
solution, and the ratio partitioning is repeated until we find
a legalization solution.

The partitioning stage continues until the numbers of blocks
in all partitions are fewer than a threshold. Then, the global
placement is obtained.

2.4 Fast Legalization
In this step, all cells are moved into rows and all overlaps

are removed. To legalize a large-scale global placement solu-
tion effectively and efficiently, we propose a fast three-stage
legalization algorithm: (1) place cells into their nearest rows
(legalize the y-coordinates of all cells), (2) sort all standard
cells according to their sizes, from the largest to the smallest,
and (3) assign the x-coordinates for all cells according to the
sorted order. If no overlap occurs, the resulting x-coordinate
of the cell is kept; otherwise, we will find a nearest empty
slot to place the cell.

After all cells are legalized, any existing detailed place-
ment algorithm can be applied to further refine the place-
ment solution.

3. EXPERIMENTAL RESULTS
Our placement algorithm is implemented in the C++ pro-

gramming language and was compiled with gcc 3.3.2 on a
Linux PC with an Intel Pentium 4 3.2GHz CPU. We tested
on the two sample benchmarks provided by the ISPD’05
placement contest committee, adaptec1 and adaptec3, which
have respective 211,447 and 451,650 objects. Table 1 gives
the statistics of the benchmark circuits. We adopted the
public detailed placer [1] to refine our placement solutions.

Table 2 shows the resulting wirelengths for each stage.
Our algorithm results in the wirelength of 9.305 × 107µm
(2.731 × 108µm) for adaptec1 (adaptec3). As shown in the
table, the legalizer increases the HPWL by 5% on average
while the detailed placer decreases the HPWL by 3% on av-
erage. Table 3 gives the runtime required for each stage. Our
algorithm requires 11 min (28 min) for adaptec1 (adaptec3).
The global placement stage consumes about 50% of the total
runtime on average. Figure 4 show the resulting placement
of adaptec3.

Table 1: The statistics of the ISPD’05 placement contest

sample benchmarks.
Name # Total # Movable # Fixed # #

Objects Objects Objects Nets Pins

adaptec1 211447 210904 543 221142 944053
adaptec3 451650 450927 723 466758 1875039

Table 2: Resulting wirelengths of the benchmarks.
Benchmark Pin-to-Pin HPWL (µm)

Global Legalization Detailed
Placement Placement

adaptec1 9.123 e7 9.594 e7 9.305 e7
adaptec3 2.669 e8 2.783 e8 2.731 e8

Table 3: Runtime requirements.
Benchmark Runtime

Global Legalization Detailed Total
Placement Placement

adaptec1 4 min < 1 min 7 min 11 min
adaptec3 15 min < 1 min 13 min 28 min

4. REFERENCES
[1] Placement Utilities,

http://vlsicad.eecs.umich.edu/BK/PlaceUtils/.
[2] S. N. Adya, I. L. Markov, and P. G. Villarrubia. On

whitespace and stability in mixed-size placement and
physical synthesis. Proc. of ICCAD, pages 311–318, 2003.

[3] A. Agnihotri, M. C. YILDIZ, A. Khatkhate, A. Mathur,
S. Ono, and P. H. Madden. Fractional cut: Improved
recursive bisection placement. Proc. of ICCAD, pages
307–310, 2003.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can
recursive bisection alone produce routable standard-cell
layout. Proc. of DAC, pages 477–482, 2000.

[5] C.-C. Chang, J. Cong, and X. Yuan. Multi-level placement
for large-scale mixed-size ic designs. Proc. of ASPDAC,
2003.

[6] J. Cong and J. R. Shinnerl. Multielevel Optimization in
VLSI/CAD. Kluwer Academic Publisher, 2003.

[7] J. Cong and J. Xu. Fast floorplanning by look-ahead enable
recursive bipartitioning. Proc. of ASPDAC, 2005.

[8] H. Eisenmann and F. M. Johannes. Multielevel
optimization in vlsi/cad. Proc. of DAC, pages 269–274,
1998.

[9] A. B. Kahng and Q. Wang. Implementation and
extensibility of an analytic placer. Proc. of ISPD, pages
18–25, 2003.

[10] A. B. Kahng and Q. Wang. An analytic placer for
mixed-size placement and timing-driven placement.
Proc. of ICCAD, pages 565–572, 2004.

[11] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono,
C.-K. Koh, and P. H. Madden. Recursive bisection based
mixed block placement. Proc. of ISPD, pages 84–89, 2004.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

 adaptec3 HPWL= 2.731e+08, #Cells= 451650, #Nets= 466295

Figure 4: The resulting placement of adaptec3.

