
968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

TCG-S: Orthogonal Coupling of -Admissible
Representations for General Floorplans

Jai-Ming Lin and Yao-Wen Chang

Abstract—In this paper, we extend the concept of the P-admissible
floorplan representation to that of theP -admissible one. AP -admissible
representation can model the most general floorplans. Each of the
currently existing P -admissible representations, sequence pair (SP),
bounded-slicing grid, and transitive closure graph (TCG), has its strengths
as well as weaknesses. We show the equivalence of the two most promising
P -admissible representations, TCG and SP, and integrate TCG with
a packing sequence (part of SP) into a representation, called TCG-S.
TCG-S combines the advantages of SP and TCG and at the same time
eliminates their disadvantages. With the property of SP, a fast packing
scheme is possible. Inherited nice properties from TCG, the geometric
relations among modules are transparent to TCG-S (implying faster
convergence to a desired solution), placement with position constraints
becomes much easier, and incremental update for cost evaluation can be
realized. These nice properties make TCG-S a superior representation
which exhibits an elegant solution structure to facilitate the search for
a desired floorplan/placement. Extensive experiments show that TCG-S
results in the best area utilization, wirelength optimization, convergence
speed, and stability among existing works and is very flexible in handling
placement with special constraints.

Index Terms—Floorplanning, layout, physical_design, transitive_clo-
sure_graph.

I. INTRODUCTION

As technology advances, the circuit size in modern very large scale
integration (VLSI) design increases dramatically. To handle the in-
creasing design complexity, hierarchical designs and IP modules are
widely used to optimize area and timing for design convergence. Fur-
ther, the need to integrate heterogeneous systems or special modules
imposes some placement constraints, e.g., the boundary-module con-
straint which requires somemodules to be placed along the chip bound-
aries for shorter connections to pads, the preplaced-module constraint
which preassigns modules to specific positions, etc. These trends make
floorplanning/placement much more important than ever, and it is of
particular significance to consider the floorplanning/placement with
various constraints. To cope with these challenges, it is desired to de-
velop an efficient and effective floorplan representation that can model
the geometric relations among regular as well as constrained modules.

Many floorplan representations have been proposed in the literature,
e.g., slicing tree [16], normalized Polish expression [19], sequence
pair (SP) [13], bounded-slicing grid (BSG) [15], O-tree [3], B�-tree
[1], corner block list (CBL) [4], and transitive closure graph (TCG)
[9]. Unlike the traditional classification of the slicing and nonslicing
structures, we can alternatively classify them into two categories, P �-
admissible and non-P �-admissible representations. A representation
is said to be P-admissible if it satisfies the following four conditions
[13]: 1) the solution space is finite; 2) every solution is feasible;
3) packing and cost evaluation can be performed in polynomial time;

Manuscript received October 21, 2002; revised February 2, 2003 and May
18, 2003. This work was supported in part by the National Science Council
of Taiwan R.O.C. under Grant No. NSC-89-2215-E-009-117. This paper was
recommended by Associate Editor M. D. F. Wong.

J.-M. Lin is with the Department of Computer and Information Sci-
ence, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
gis87808@cis.nctu.edu.tw).

Y.-W. Chang is with the Graduate Institute of Electronics Engineering & the
Department of Electrical Engineering, National Taiwan University, Taipei 106,
Taiwan (e-mail: ywchang@cc.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2004.828114

and 4) the best evaluated packing in the space corresponds to an optimal
placement. We extend in this paper the concept of the P-admissible
representation to that of the P�-admissible one by adding the fifth
condition: 5) both horizontal and vertical [and thus two dimensional
(2-D)] geometrical information between modules are defined in the
representation. With this condition, any placement can be modeled.
Therefore, a P�-admissible representation can represent the most
general floorplans and contains a complete structure for searching
for an optimal floorplan/placement solution. It is thus desirable to
develop an effective and flexible P�-admissible representation.
Among the existing popular representations, SP, BSG, and TCG

are P�-admissible while slicing tree, normalized Polish expression
(NPE), O-tree, B�-tree, and CBL are not. The slicing tree and
normalized Polish expression are intended for slicing floorplans only.
Since an optimal placement could be a nonslicing structure, the two
representations are not P�-admissible [i.e., violation of P�-admissible
Condition (4)]. An O-tree defines only one-dimensional geometrical
relation between compacted modules and thus can obtain the relation
in the other dimension only after packing [i.e., violation of Condition
(5)]. [Note that O-tree is undefined for some uncompacted placements
whichmay correspond to the best solutions forwirelength optimization.
Therefore, as far as wirelength optimization is concerned, O-tree is
not even P-admissible since Condition (4) is violated.] A B

�-tree
requires a placement to be left and/or bottom compacted. If the
placement after a tree packing is not compacted, a sequence of
compaction operations are applied to make all modules compacted
to the left and/or bottom. However, the space intended for placing
a module may be occupied by previously placed modules during
packing, resulting in a mismatch between the original representation
and its compacted placement. Therefore, it may not be feasible to find
a compacted placement corresponding to the original B�-tree, and
thus it is not P�-admissible [i.e., violation of Condition (2)]. CBL can
represent onlymosaic floorplans, in which each region in the floorplan
contains exactly one module. CBL is not P�-admissible because it
cannot guarantee a feasible solution after a perturbation [i.e., violation
of Condition (2)]. Non-P�-admissible representations intrinsically
have a smaller solution space and lower packing cost since their
corresponding floorplanning/placement structures are more restricted
[e.g., slicing structures (slicing tree, NPE), compacted placements
(O-tree, B�-tree), mosaic floorplans (CBL), etc.]. However, lack
of the guarantee in the feasibility and/or the optimality of their
representations would inevitably lead to longer running times and/or
lower solution quality.
The existing P�-admissible representations, SP, BSG, and TCG,

have their own distinct properties as well as common ones. Never-
theless, researchers tend to favor SP over BSG because BSG incurs
many redundancies and thus a much larger solution space, implying
a longer running time to search for a good solution. Therefore, we
shall focus on SP and TCG. Both SP and TCG are considered very
flexible representations and construct constraint graphs to evaluate
their packing cost. SP consists of two sequences of modules (�+, ��),
where �+ specifies the module ordering from top-left to bottom-right
and �� from bottom-left to top-right. Hence, �� corresponds to the
ordering for packing modules to the bottom-left direction and thus
can be used to guide module packing. However, like most existing
representations (e.g., NPE, BSG, O-tree, B�-tree, CBL) the geometric
relations between modules are not transparent to the operations of SP
(i.e., the effect of an operation on the change of module relation is not
clear before packing) and, thus, we need to construct constraint graphs
from scratch after each perturbation to evaluate the packing cost; this
deficiency makes SP harder to converge to a desired solution and to
handle placement with constraints (e.g., boundary modules, preplaced
modules, etc.).

0278-0070/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 969

TCG consists of a horizontal transitive closure graph Ch to define
the horizontal geometric relations between modules and a vertical
one Cv for vertical geometric relations. Contrast to SP, the geometric
relations between modules are transparent to TCG as well as its
operations, facilitating the convergence to a desired solution. Further,
TCG supports incremental update during operations and keeps the
information of boundary modules as well as the shapes and the
relative positions of modules in the representation. Nevertheless,
like SP, constraint graphs are also needed for TCG to evaluate its
packing cost, and unlike SP, we need to perform extra operations
to obtain the module packing sequence.

Therefore, an interesting question arises. Is it possible to develop a
representation that can combine the advantages of SP and TCG and at
the same time eliminate their disadvantages? We answer this question
in affirmation by showing the equivalence of TCG and SP, and inte-
grating them into TCG� S = (Ch; Cv;��). The orthogonal combi-
nation leads to a representation with at least the following advantages:

• With the property of SP, a fast O(m lgm)-time packing scheme
is possible for a P�-admissible representation, where m is the
number of modules. (Note that a linear-time packing scheme is
possible for the tree-based representations, but they can represent
only more restricted compacted floorplans.)

• It is clear later that the sequence �� is the topological order of
both Ch and Cv and is thus uniquely determined by Ch and Cv .
Therefore, the combination will not incur any redundancy over
the original TCG, and the solution space of TCG-S is still (m!)2

(same as TCG and SP), wherem is the number of modules.
• Inherited from TCG, the geometric relations among modules are
transparent to TCG-S, implying faster convergence to a desired
solution.

• Inherited from TCG, placement with position constraints be-
comes much easier.

• Inherited from TCG, TCG-S can support incremental update for
cost evaluation.

These nice properties make TCG-S an effective, efficient, and flexible
representation. Extensive experiments based on a set of commonly used
Microelectronics Center of North Carolina (MCNC) benchmarks show
that TCG-S results in the best area utilization, wirelength optimization,
convergence speed, and solution stability among existing works. (Note
that we also consider the convergence speed and stability to eliminate
the possible unfairness due to the nondeterministic behavior of simu-
lated annealing, which were neglected in most previous works.)

To show the flexibility of TCG-S, we also consider placement with
preplaced and boundary modules. For placement with preplaced mod-
ules, Murata et al. [14] proposed an adaptation algorithm to transform
an infeasible SP with preplaced modules into a feasible one. How-
ever, the process incurs expensive computations. For placement with
the boundary-module constraint, Tang and Wong in [18] handled the
constraint by adding dummy edges into the constraint graphs of SP.
Ma et al. in [12] assigned a penalty to a misplaced boundary module
and perturbed the CBL to reduce the penalty. However, both [18] and
[12] cannot guarantee a feasible solution in each perturbation and their
final placements. Lai et al. in [7] gave the feasibility conditions for SP
with boundary modules and transformed an infeasible solution into a
feasible one. However, the method is very complex, and many rules are
needed to cope with the constraints.

In this paper, we also present the methods for handling placement
with preplaced and boundary modules. Different from the previous
works on boundary modules that cannot guarantee a feasible solution
or need to transform an infeasible solution into a feasible one, TCG-S
can easily maintain the feasibility during each perturbation. We com-
pared our work with [7] on placement with boundary modules. (Note
that there are no common benchmark circuits for this constraint.)

Fig. 1. (a) A placement. (b) The corresponding SP of (a). (c) The
corresponding TCG of (b).

Experimental results show that TCG-S results in smaller areas than
[7].
The remainder of this paper is organized as follows. Section II for-

mulates the floorplan/placement design problem. Section III compares
SP and TCG. Section IV presents the procedures to build the TCG-S
from a placement and construct the placement from a TCG-S. Sec-
tion V gives the operations to perturb a TCG-S. Section VI presents
our methods to handle placement with boundary and preplaced mod-
ules. Experimental results are reported in Section VII. Finally, we give
concluding remarks in Section VIII.

II. PROBLEM DEFINITION

LetB = fb1; b2; . . . ; bmg be a set ofm rectangular modules whose
width, height, and area are denoted by Wi, Hi, and Ai, 1 � i � m.
Let (xi; yi) ((x0i; y

0

i)) denote coordinate of the bottom-left (top-right)
corner of module bi, 1 � i � m, on a chip. A placement P is an as-
signment of (xi; yi) for each bi, 1 � i � m, such that no two modules
overlap. The goal of floorplanning/placement is to optimize the area
(i.e., the minimum bounding rectangle ofP) and/or the wirelength (i.e.,
the summation of half bounding box of interconnections) induced by
the assignment of bi’s on the chip.

III. P�-ADMISSIBLE REPRESENTATIONS

In this section, we first review the two P�-admissible representa-
tions, TCG and SP, then show their equivalence, and compare their
properties.

A. Review of TCG and SP

TCG describes the geometric relations between modules based on
two graphs, namely a horizontal transitive closure graph Ch and a
vertical transitive closure graph Cv , in which a node ni represents a
module bi and an edge (ni; nj) in Ch (Cv) denotes that module bi is
left to (below) module bj . TCG has the following three feasibility prop-
erties [9]:

1) Ch and Cv are acyclic.
2) Each pair of nodes must be connected by exactly one edge either

in Ch or in Cv .
3) The transitive closure of Ch (Cv) is equal to Ch (Cv) itself.1

Fig. 1(a) shows a placement with seven modules a, b, c, d, e, f ,
and g whose widths and heights are (3.5, 1.5), (2, 2.5), (2, 3.5), (3,
2), (1.5, 1.5), (5, 1.5), and (1, 2), respectively. Fig. 1(c) shows the
TCG = (Ch; Cv) corresponding to the placement of Fig. 1(a). The

1The transitive closure of a directed acyclic graph
is defined as the graph = (), where
= () : there is a path from node to

node in .

970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

value associated with a node in Ch (Cv) gives the width (height) of
the corresponding module, and the edge (ni; nj) in Ch (Cv) denotes
the horizontal (vertical) relation of bi and bj . Since there exists an edge
(na; ng) in Ch, module ba is left to bg . Similarly, ba is below bb since
there exists an edge (na; nb) in Cv .

SP uses a pair of sequences (�+;��) to represent a floorplan/place-
ment, where �+ and �

�

give two permutations of module names. The
geometric relation of modules can be derived from an SP as follows.
Module ba is left (right) to module bb if a appears before (after) b in
both �+ and �

�

. Module ba is below (above) module bb if b appears
before (after) a in �+ and a appears before (after) b in �

�

. Fig. 1(b)
shows the corresponding SP. Since a is before g in both �+ and �

�

,
module ba is left to module bg . Similarly, ba is below bb since a is after
b in �+ and before b in �

�

.
It is an important observation that the sequence�

�

is the topological
order of both Ch and Cv and is thus uniquely determined by Ch and
Cv . For example, as shown in Fig. 1(b) and (c), �

�

= habcdegfi is
the topological order of both Ch and Cv . The observation is the key to
the nonredundant combination of TCG and SP, which is the theme of
this paper.

B. Equivalence of SP and TCG

Like the relations between a skewed slicing tree [16] and an NPE
[19] for slicing floorplans as well as O-tree and B�-tree for nonslicing
floorplans, TCG and SP are equivalent.

We can transform between TCG and SP as follows: Let the fanin
(fanout) of a node ni, denoted by Fin(ni) (Fout(ni)), be the nodes
nj ’s with edges (nj ; ni) ((ni; nj)). Given a TCG, we can obtain a se-
quence �+ by repeatedly extracting a node ni with Fin(ni) = ; in
Ch and Fout(ni) = ; in Cv , and then deleting the edges (ni; nj)’s
((nj ; ni)’s) from Ch (Cv) until no node is left in Ch (Cv). Similarly,
we can transform a TCG into another sequence �� by repeatedly ex-
tracting the node ni with Fin(ni) = ; both in Cv and Ch, and then
deleting the edges (ni; nj)’s from both Ch and Cv until no node is
left in Ch and Cv . Given an SP = (�+;��), we can obtain a unique
TCG = (Ch; Cv) from the two constraint graphs of the SP by re-
moving the source, sink, and associated edges. For example, the SP of
Fig. 1(b) is equivalent to the TCG of Fig. 1(c). It is proved in [9] that
there exists a one-to-one correspondence between TCG and SP.

C. Comparison Between TCG and SP

Although TCG and SP are equivalent, their properties and induced
operations are significantly different. Both SP and TCG are considered
very flexible representations and construct constraint graphs to evaluate
their packing cost.�� of an SP corresponds to the ordering for packing
modules to the bottom-left direction and thus can be used for guiding
module packing. However, like most existing representations, the geo-
metric relations among modules are not transparent to the operations
of SP (i.e., the effect of an operation on the change of module relation
is not clear before packing), and thus we need to construct constraint
graphs from scratch after each perturbation to evaluate the packing cost;
this deficiencymakes SP harder to converge to a desired solution and to
handle placement with constraints (e.g., boundary modules, preplaced
modules, etc).

Contrast to SP, the geometric relations among modules are trans-
parent to TCG as well as its operations, facilitating the convergence to
a desired solution. Further, TCG supports incremental update during
operations and keeps the information of boundary modules as well as
the shapes and the relative positions of modules in the representation.
Unlike SP, nevertheless, we need to perform extra operations to obtain
the module packing sequence and an additional O(m2) time to find a
special type of edges, called reduction edges, in Ch (Cv) for some op-
erations. (We will define the edges later.)

For both SP and TCG, the packing scheme by applying the
longest path algorithm is time-consuming since all edges in the
constraint graphs are processed, even though they are not on the
longest path. As shown in Ch of Fig. 1(c), if we add a source with
zero weight and connect it to those nodes with zero in-degree, the x
coordinate of each module can be obtained by applying the longest
path algorithm on the resulting directed acyclic graph. Therefore,
we have xg = maxfx0a; x

0

b; x
0

c; x
0

d; x
0

eg. To reduce the number of
modules considered for placing a module, we introduce the concept
of a horizontal (vertical) contour, denoted by Rh (Rv). Rh (Rv)
is a list of modules bi’s for which there exists no module bj with
yj � y0i (xj � x0i) and x

0

j � x0i (y
0

j � y0i); that is, Rh (Rv) is a list
of modules in the horizontal (vertical) contour. For the placement of
Fig. 1(a), for example, Rh = hbc; bf i and Rv = hbg; bd; be; bf ; bci.
To place a new module, we only need to consider the bends (and
thus the modules) in the contour, and thus the packing time can be
improved.
Suppose we have packed the modules ba, bb, bc, bd, and be based

on the sequence ��. Then, the resulting horizontal contour Rh =
hbc; be; bdi. KeepingRh, we only need to traverse the contour from be,
the successor of be (in terms of in-order search tree traversal), to the
last module bd, which have a horizontal relation with bg (since there is
an edge (nd; ng) in Ch). Thus, we have xg = x0d. Packing modules in
this way, we only need to consider xe and xd, and can get rid of the
computation for a maximum value, leading to a faster packing scheme.
We will show later how to apply a balanced binary tree to implement
the contour operation to get a loglinear-time packing scheme.

IV. TCG-S REPRESENTATION

Combining TCG = (Ch; Cv) and SP = (�+;��), we develop
a representation, called TCG� S = (Ch; Cv;��), which uses hori-
zontal and vertical transitive closure graphs as well as the packing se-
quence �� to represent a placement. With the characteristics of TCG
and SP, TCG-S has the following four feasibility properties.

1) Ch and Cv are acyclic.
2) Each pair of nodes must be connected by exactly one edge either

in Ch or in Cv .
3) The transitive closure of Ch (Cv) is equal to Ch (Cv) itself.
4) The packing sequence �� is the topological order of both Ch

and Cv .

In this section, we first introduce how to construct��,Ch, andCv from
a placement. Then, we propose anO(m lgm)-time packing scheme for
TCG-S, where m is the number of modules.

A. From a Placement to TCG-S

In this section, we first introduce the procedure to extract �� from
a placement, and then construct Ch and Cv according to ��.
For two nonoverlapped modules bi and bj , bi is said to be horizon-

tally (vertically) related to bj , denoted by bi ` bj (bi ? bj), if bi is left
to (below) bj and their projections on the y (x) axis overlap. For two
nonoverlapped modules bi and bj , bi is said to be diagonally related
to bj if bi is left to bj and their projections on the x and the y axes do
not overlap. To simplify the operations on geometric relations, a diag-
onal relation for modules bi and bj is treated as a horizontal one unless
there exists a chain of vertical relations from bi (bj), followed by the
modules overlapped with the rectangle defined by the two closest cor-
ners of bi and bj , and finally to bj (bi), for which it is considered as
bi ? bj (bj ? bi).
Given a placement, �� can be extracted as follows. We first extract

the module on the bottom-left corner. At each iteration, we extract the
left-most unvisited module b with all the modules below b having been

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 971

Fig. 2. (a)–(f) Process to extract a � from the placement of Fig. 1(a).
(g) Resulting TCG-S.

extracted. The process repeats until no module left. Fig. 2(a)–(f) illus-
trate the procedure to extract a �

�

from the placement of Fig. 1(a). We
first extract the module ba on the bottom-left corner [see Fig. 2(a)], and
then bb since it is the left-module with all the modules below bb having
been extract [see Fig. 2(b)]. This process continues until no module is
left, resulting in �

�

= habcdegfi.
After extracting �

�

, we can construct Ch and Cv based on �
�

. For
each module bi in �

�

, we introduce a node ni with the weight being
bi’s width (height) in Ch (Cv). Also, for each module bi before bj in
�
�

, we introduce an edge (ni; nj) in Ch (Cv) if bi ` bj (bi ? bj).
As shown in Fig. 2(b) and (g), for the first two modules ba, bb in �

�

,
we introduce the nodes na and nb in Ch (Cv) and assign the weights
as their widths (heights). Also, we construct a directed edge (na; nb)
in Cv since module ba is before bb and ba ? bb. The process repeats
for all modules in �

�

, resulting in the TCG-S shown in Fig. 2(g). Each
transitive closure graph has seven nodes and 21 edges in total (eleven
in Ch and ten in Cv). We have the following theorem.
Theorem 1: There exists a unique TCG-S corresponding to a

placement.
Proof: TCG-S is composed of three tuples Ch, Cv , and �

�

. To
get �

�

from a placement, we repeatedly extract the left-most unvisited
module b with all modules below b having been visited. The process
repeats until all modules have been visited. Since such a module is
unique in each iteration, the resulting �

�

is unique. For each pair of
modules bi and bj in �

�

, say h. . . bi . . . bj . . .i, there exists a unique
relation (bi ? bj or bi ` bj) between the twomodules in the placement
based on the definition of TCG. Therefore, there exist unique Ch and
Cv corresponding to the placement if we construct a node ni (or an

edge (ni; nj)) for each module bi (or for each pair of modules bi and
bj based on their geometric relation) in �

�

.
To show that the 3-tuple Ch, Cv , �� is a TCG-S, we prove that it

satisfies the four TCG-S feasibility properties. Properties 1–3 are in-
herited from TCG. See the proof of Property 1 in [11]. For �

�

, we
repeatedly extract the left- and bottom-most unvisited module b until
all modules have been processed. The left-most (bottom-most) module
corresponds to the node inCh (Cv)with in-degree equal to zero. There-
fore, the packing sequence �

�

is the topological order of both Ch and
Cv .2

B. From TCG-S to a Placement

In this section, we propose an O(m lgm)-time packing scheme
based on �

�

as well as a horizontal and a vertical contours Rh and
Rv , where m is the number of modules. The basic idea is to process
the modules based on the sequence defined in �

�

, and then pack the
current module to a corner formed by two previously placed modules
in Rh (Rv) according to the geometric relation defined in Ch (Cv).
We detail the packing scheme as follows. Recall that the horizontal

contourRh (the vertical contourRv) is a list of modules bi’s for which
there exists no module bj with yj � y0i (xj � x0i) and x

0

j � x0i (y
0

j �
y0i). We can keep the modules bi’s in Rh (Rv) in a balanced binary
search tree (e.g., the Red-Black tree [2]) Th (Tv); the search-tree (in-
order traversal) order in Th (Tv) corresponds to a nondecreasing order
of the right (top) boundaries of the modules in the contour Rh (Rv);
i.e., the coordinates of the right (top) boundaries are sorted and kept as
the search-tree order in the binary search tree Th (Tv). By ordering, in
the following discussions, we refer to the search-tree order. (It is clear
later that this important property leads to an efficient packing algorithm
to be introduced shortly.) For easier presentation, we add a dummy
module bs (bt) toRh (Rv) to denote the left (bottom) boundarymodule
of a placement. We have bs ` bi and bt ? bi, 8bi. Let (x0s; y

0

s) =
(0;1) and (x0t; y

0

t) = (1; 0).Rh (Rv) consists of bs (bt) initially, as
does the corresponding Th (Tv). To pack a module bj in ��, we search
for the last module bp with bp ` bj (bp ? bj) to compute the x coor-
dinate (y coordinate) of bj . We traverse the modules bk’s in Th (Tv)
from its root, and go to the right child of bk if bk ` bj (bk ? bj).
The reason to proceed to the right child is that if bk ` bj (bk ? bj),
then x0j � x0k (y0j � y0k) [the right (top) boundary of the module bj is
larger than that of the module bk] and thus bj must be located in bk’s
right subtree according to the definition of a binary search tree. In con-
trast, we proceed to the left child if bk ? bj (bk ` bj). The process
continues until a leaf position is encountered, and we make bj the leaf
node; therefore, xj = x0p (yj = y0p), where bp is the last module with
bp ` bj (bp ? bj) in the path. (Each module is placed at a bend in the
current contour, according to its geometric relationship to the placed
modules defined in the constraint graphs.) As an example shown in
Fig. 3(a) and (b), we make ba the right child of bs in Th since bs ` ba
and then bb the left child of ba in Th since ba ? bb, respectively.
After bj is inserted into Th (Tv), every node bl after bj (in terms

of in-order search tree order) with x0l � x0j (y0l � y0j) in Th (Tv) is
deleted, since bl is no longer in the contour. For the example shown
in Fig. 3(d), we delete ba from Th after inserting bd, since x0a � x0d
(module ba is no longer in the horizontal contour Th). For another ex-
ample shown in Fig. 3(g), we delete bd, be, bg (which are after bf) from
Th after inserting bf , since x0i � x0f , i = d, e, or g (module bd, be, bg
are no longer in the horizontal contour Th after bf is inserted). It is not
difficult to see that those modules [ba in Fig. 3(d) and bd, be, bg in

2Note that, by this definition, the � may not always be the same as the
second sequence defined in the corresponding SP. Nevertheless, both of our�
and the second sequence of an SP are good for the efficient packing scheme
introduced in this paper.

972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Fig. 3. Packing scheme for the TCG-S of Fig. 2(b). In each step, the red-black
trees and corresponding to the and right after the module
insertion, are shown. () gives the resulting red-black tree after removing
the modules no longer in () and performing rotation to balance the tree.
Note that, as a fundamental property of the binary search tree, the search-tree
(in-order traversal) order is still maintained after the tree rotation.

Fig. 3(g)] are all the modules that need to be removed—the nodes bp’s
before the newly inserted node bj in Th all have x0p � xj since bj must

be placed at a bend formed by two modules according to our scheme,
and the remaining nodes bq’s after bj in Th all have x0q > x0j , and thus
bp’s and bq’s are still in the horizontal contour Th. The situation for the
vertical contour Tv can be defined analogously. In Fig. 3(d) [Fig. 3(e)],
for example, bc (bd) remains in Th after bd (be) is inserted intoTh since
x0c � xd (x

0

d > x0e). This process repeats for all modules in ��. We
haveW = x0v (H = y0v) if bv is the module in the resulting Th (Tv)
with the largest value, whereH (W) denotes the width (height) of the
placement.
Fig. 3 shows the packing scheme for the TCG-S of Fig. 2(g). Th (Tv)

consists of bs (bt) initially. To pack the first module ba in ��, we
traverse Th (Tv) from the root bs (bt) and insert it to the right child
of bs (bt) since bs ` ba (bt ? ba). As shown in Fig. 3(a), the first
module ba in �� is placed at the bottom-left corner (i.e., (xa; ya) =
(0; 0)) since bs (bt) is the last module that is horizontally (vertically)
related to ba and x0s = 0 (y0t = 0). [Note that T 0

h (T 0

v) in Fig. 3(a)
denotes a balanced binary search tree after ba is inserted into Th (Tv).]
Similarly, to pack the second module bb in ��, we traverse Th from
the root bs and then its right child since bs ` bb. Then, bb is inserted
to the left child of ba since ba ? bb. Because bs is the last module
with bs ` bb in the path, xb = x0s = 0. Similarly, we traverse Tv
from the root bt and then its right child ba since bt ? ba. Then, bb
is inserted to the right child of ba in Tv since ba ? bb. Therefore,
yb = y0a = 1:5 because ba is the last module with ba ? bb in the
path. The resulting balanced binary search trees after performing tree
rotations T 0

h, T
0

v (see [2] for the rotation operations for keeping a tree
balanced), and the corresponding placement are shown in Fig. 3(b).
Note that, as a fundamental property of the search tree, the tree rotation
still maintain the ordering of the nodes in the search tree [2]. [See the
resulting T 0

h and T 0

v in Fig. 3(b).] As shown in Fig. 3(c), after bc is
inserted, bb in Th is deleted since bb is after bc (in terms of in-order
search tree traversal) and x0b � x0c (i.e., bb is no longer in the horizontal
contour). The resulting T 0

h, T
0

v , and placement are shown in Fig. 3(c).
The process is repeated for all modules in ��, and the final T 0

h, T
0

v ,
and placement are shown in Fig. 3(g). Then, we have W = x0f since
bf is the module with the largest x value in the final T 0

h, and H = y0c
since bc is the module with the largest y value in the final T 0

v .
According to this packing scheme, if the coordinate of a module

bi in �� is changed, we only need to recompute the coordinates of
modules after bi in ��, since the coordinates of modules before bi do
not change.
The above packing scheme leads to the following theorem and

lemmas.
Theorem 2: There exists a unique placement corresponding to a

TCG-S.
Proof: As shown in Section III-B, TCG-S is equivalent to TCG

and SP. Since there exists a unique placement corresponding to a TCG
[9] (or an SP [13]), there exists a unique placement corresponding to
a TCG-S. (The above packing scheme provides a faster approach to
determining the coordinate for each module.)
Theorem 3: The size of the solution space for TCG� S =

(Ch; Cv;��) is (m!)2, wherem is the number of modules.
Proof: The sequence �� is the topological order of both Ch and

Cv and is thus uniquely determined by Ch and Cv . Therefore, the so-
lution space of TCG-S is the same as that of TCG, which is (m!)2 [9],
wherem is the number of modules.
Lemma 1: For each module bj in ��, bj must be placed adjacent

to the right (top) boundary of some module bi in Rh (Rv) during the
packing.

Proof: For a placed module bk , if bk is not inRh, there must exist
a placed module bl above bk whose right boundary is larger than that
of bk (i.e., x0l > x0k and yl � y0k). Since bl is placed before bj , �� is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 973

Fig. 4. Four types of perturbation. (a) The initial TCG-S and placement. (b) The resulting TCG-S and placement after rotating the module shown in (a).
(c) The resulting TCG-S and placement after swapping the nodes and shown in (b). (d) The resulting TCG-S and placement after reversing the reduction
edge () shown in (c). (e) The resulting TCG-S and placement after moving the reduction edge () from the of (d) to .

of the sequence h. . . l . . . i . . .i. If bj is adjacent to the right boundary
of bk , bj should also be below bl. This implies that there exists an edge

(bj; bl) in Cv , and thus �
�

is of the sequence h. . . j . . . l . . .i, instead
of h. . . l . . . j . . .i (a contradiction). Therefore, bj must be adjacent to

974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

somemodule bi in currentRh. Similarly, bj must be placed above some
module in Rv during packing.
Lemma 2: Given a module bj in �� to be placed, if bi 2 Rh(Rv)

and bi ? bj (bi ` bj), any module bk 2 Rh(Rv) with x0k > x0i (y
0

k >

y0i) cannot bear the relation bk ` bj (bk ? bj).
Proof: Suppose there exists a module bk in Rh so that x0k > x0i

and bk ` bj , when we determine the x coordinate of a module bj . The
relation between bi and bk can be either bi ` bk (since x0i < x0k) or
bk ? bi (since bi would have been removed from Rh if bi ? bk). If
bi ` bk , then bi ` bj since bk ` bj (based on Property 3 of TCG-S),
contradicting Property 2 of TCG-S because there are two geometric
relations bi ` bj and bi ? bj between bi and bj . Similarly, if bk ? bi,
then bk ? bj since bi ? bj , contradicting Property 2 of TCG-S because
bk ` bj and bk ? bj . Similar claims hold for Rv .

By this lemma, during the packing for the module bj , if bi 2 Rh and
bi ? bj , then any module bk 2 Rh after bi (in the search-tree order)
cannot have the relation bk ` bj . It is clear later that this lemma is
useful for searching for the last module bp with bp ` bj for computing
the coordinate of bj—if bi 2 Rh and bi ? bj , every module bk 2 Rh

after bi can be discarded during the search.
For each module bj , its x coordinate xj equals the maximum x0k

(the largest right boundary) among those modules bk’s with bk ` bj in
TCG-S. Based on Lemma 1, bk must be inRh. Therefore, we only need
to traverse the modules in Rh to find such a module. Since modules in
Rh are stored in a balanced binary search tree Th, the traversal from
its root to a leaf takes only O(lgm) time, where m is the number of
nodes (modules). For each module bp encountered, we go to its right
child if bp ` bj since bp’s right child corresponds to some module bu
with x0u � x0p based on the definition of our search-tree order. Note
that our goal is to find the module bk with the largest right boundary
such that bk ` bj ; if such a module is found, then xj = x0k and we
have obtained the x coordinate of the module xj . However, if bp ? bj ,
we traverse the left child of bp. By Lemma 2, the modules bq’s after bp
(in the search-tree order) cannot bear the relation bq ` bj if bp ? bj ;
therefore, we do not need to consider the right subtree of bp for this
case. As the example shown in Fig. 3(e) for the computation of the x
coordinate of the module e, we traverse the right child of the root bc
since bc ` be, and then make be the left child of bd since bd ? be.
Therefore, we are done with the traversal, and xe = x0c since bc has
the maximum right boundary among the modules horizontally related
to be. For the example shown in Fig. 3(f) for the computation of the x
coordinate of the module g, we traverse the right child bd of the root bc
since bc ` bg , and then make bg the right child of bd since bd ` bg . We
therefore make xg = x0d since bd is the module with the largest right
boundary such that bd ` bg . Note that we do not need to consider be in
this case, since it is before bd in the search tree, implying that be’s right
boundary is not larger than that of bd. By repeating this procedure, xj
equals x0r if br is the last module in the search path with br ` bj . A
similar process can be applied to compute the y coordinate of module
bi. We have the following theorem.
Theorem 4: The proposed scheme correctly packs all modules in

O(m lgm) time, wherem is the number of modules.
Proof: For each module bj , its x coordinate xj equals the max-

imum x0k among those modules bk’s with bk ` bj in TCG-S. Based
on Lemma 1, bk must be in Rh. Therefore, we only need to traverse
the modules in Rh to find such a module. Since the modules in Rh

are stored in a balanced tree Th with the search-tree order defined on
the right boundaries of the modules, the traversal can be done from its
root to a leaf. For each module bp encountered, we go to its right child
if bp ` bj since bp’s right child corresponds to some module bu with
x0u � x0p based on the definition of our search-tree order. Note that
our goal is to find the module bk with the largest right boundary such

Fig. 5. Example of updating � by reversing an edge (). (a) �
before the operation. (b) A constraint graph before the operation. (c) The new
constraint graph after the operation. (d) The new � after the operation.

that bk ` bj ; if such a module is found, then xj = x0k and we have
obtained the x coordinate of the module xj . However, if bp ? bj , we
traverse the left child of bp. By Lemma 2, the modules bq’s after bp (in
the search-tree order) cannot bear the relation bq ` bj if bp ? bj ; there-
fore, we do not need to consider the right subtree of bp. By repeating
this procedure, xj equals x0r if br is the last module in the search path
with br ` bj . Similar claim holds for the process to get the y coordi-
nate of module bi in Rv .
For any module bp 2 Rh, either bp ` bj or bp ? bj , since we

place bj at the bend formed by two modules in the horizontal contour.
Therefore, we only need to search for a path from the root to a leaf to
pack a module. For a balanced binary tree with n nodes, the path length
is given by the height of the tree, which isO(lgn). The time complexity
of inserting and deleting a node in the tree is O(lgn). Therefore, the
time complexity of our packing scheme is given by

O

m

i=1

lg i+

m

i=1

lg i = O(m lgm)

where the first and the second terms correspond to the time complexity
of inserting and deleting nodes into the tree, respectively.

V. FLOORPLANNING ALGORITHM

We develop a simulated annealing-based algorithm [6] by using
TCG-S for nonslicing floorplan design. Given an initial TCG-S, the
algorithm perturbs the TCG-S into a new TCG-S to find a desired
solution. To ensure the correctness of the new Ch and Cv , they must
satisfy the three feasibility conditions given in Section III-A. To
identify feasible Ch and Cv for perturbation, we describe the concept
of reduction edges in the following subsection.

A. Reduction Edge

An edge (ni; nj) is said to be a reduction edge if there does not exist
another path from ni to nj , except the edge (ni; nj) itself; otherwise,
it is a closure edge. In Fig. 2(g), for example, edges (na; ng), (nd; ng),
and (ne; ng) are reduction edges while (nb; ng) and (nc; ng) are clo-
sure ones. With ��, we can find a set of reduction edges inO(m) time
(wherem is the number of modules), a significant improvement from
O(m2) time using TCG alone [9].
Given an arbitrary node ni in a transitive closure graphCh (Cv), we

can find all the nodes nj ’s that form reduction edges (ni; nj)’s using a
Linear Scan method as follows. First, we extract from �� those nodes
nj ’s inFout(ni) ofCh (Cv) and keep their original ordering in��. Let
the resulting sequence be S. The first node nk in S and ni must form a
reduction edge (ni; nk). Then, we continue to traverse S until a node
nl with (nk; nl) not in Ch (Cv) is encountered. (ni; nl) must also be

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 975

Fig. 6. Examples for preplaced modules. (a) The resulting placement of TCG-S shown in Fig. 2(g). Here, the heavily shaded rectangles and denote the
preplaced locations for and . (b)–(h) The process to transform an infeasible TCG-S into a feasible one.

a reduction edge. Starting from nl, we continue the same process until
no node is left in S.

As an example shown in Ch of Fig. 2(g), we are to extract all reduc-
tion edges emanating from nc. We first find S = hnd; ne; ng; nf i by
extracting nodes in Fout(nc) based on the sequence in ��. nc and the
first node nd in S form a reduction edge (nc; nd). Traversing S, we
have another reduction edge (nc; ne) since edge (nd; ne) is not inCh.
Starting from ne, we search the next node n with (ne; n) not in Ch.
We find node nf , implying (nc; nf) is also a reduction edge. There-
fore, we have found all reduction edges emanating from nc: (nc; nd),
(nc; ne), and (nc; nf). (Note that (nc; ng) is not a reduction edge, be-
cause we found (ne; ng) in Ch during the processing.)
Theorem 5: Given a node ni in Ch (Cv), the Linear Scan method

finds all reduction edges emanating from ni in O(m) time, where m
is the number of modules.

Proof: Given an arbitrary node ni in a transitive closure graph
Ch (Cv), we first extract those nodes nj ’s in Fout(ni) by scanning
modules in �

�

. Let the resulting sequence be S. ni and the first node
nk in S must form a reduction edge (ni; nk). If (ni; nk) is a closure
edge, there must exist a node np in the path hni; . . . ; np; . . . ; nki from
ni to nk in Ch (Cv), implying that np must be extracted before nk
in the scanning (contradicting the fact that nk is the first node en-
countered in �

�

). Therefore, (ni; nk) is a reduction edge. Then, we
continue traversing nodes in S until another node nl associated with
edge (nk; nl) not in Ch (Cv) is met. For those nodes, nq’s between
nk and nl, (ni; nq) must be a closure edge since there exists a path
hni; nk; . . . ; nqi from ni to nq inCh (Cv). However, nodes ni and nl
form a reduction edge. If there exists a path from ni to nl, the path must
pass through at least one node nq between nk and nl in S. However,
nq is connected by nk , implying the existence of the path hnk; nq; nli.
According to Property 3 of TCG, the edge (nk; nl) also exists (a con-
tradiction). Therefore, ni and nl form a reduction edge (ni; nl). The
same process continues for node nl.

For a successor node nr of nl, if edge (nl; nr) exists in Ch (Cv),
edge (ni; nr) must be the closure edge according to the above rea-
soning. If the edge (nl; nr) does not exist in Ch (Cv), we show that
nr cannot connect to a node nv , where nv is the node before nl in
S. Suppose that the edge (nl; nr) does not exist in Ch (Cv), but nr
is connected to node nv , where nv is the node before nl in S and the

TABLE I
FIVE MCNC BENCHMARK CIRCUITS

edge (ni; nv) is a reduction edge. [If (ni; nv) is a closure edge, we can
always find another node nu that is a fanin of nv and (ni; nu) is a re-
duction edge.] If (ni; nv) and (ni; nl) are reduction edges inCh (Cv),
there must exist an edge (nv; nl) inCv (Ch) since there exists a unique
edge between each pair of nodes in TCG. Similarly, because the edge
(nl; nr) does not exist in Ch (Cv), the edge (nl; nr) must exist in
Cv (Ch). The path hnv; nl; nri exists in Cv (Ch), implying that the
edge (nv; nr) also exists inCv (Ch). Therefore, the edge (nv; nr) ex-
ists in both Ch and Cv , contradicting Property 2 of TCG.
It takes O(m) time to scan modules in �

�

to find nodes nj ’s that
belong to Fout(ni). Therefore, the Linear Scan method finds all reduc-
tion edges emanating from ni in O(m) time, where m is the number
of modules.

B. Solution Perturbation

We extend the four operations rotation, swap, reverse, andmove pre-
sented in [9] to perturb Ch andCv . During each perturbation, we must
maintain the three feasibility properties forCh andCv . Unlike the rota-
tion operation, swap, reverse, and move may change the configurations
of Ch and Cv and thus their properties. Further, we also need to main-
tain �

�

to conform to the topological ordering for new Ch and Cv .
1) Rotation: To rotate a module bi, we exchange the weights of the

corresponding node ni in Ch and Cv . Since the configurations of Ch

andCv do not change, so does��. Fig. 4(b) shows the resulting TCG-S
and placement after rotating the module g shown in Fig. 4(a). Notice
that the new �

�

is the same as that in Fig. 4(a).
Theorem 6: TCG-S is closed under the rotation operation, and such

an operation does not change the topology of the TCG and �
�

.

976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

TABLE II
AREA AND RUNTIME COMPARISONS AMONG SP (ON SUN SPARC ULTRA60), O-TREE (ON SUN SPARC ULTRA 60),B -TREE (ON SUN SPARC ULTRA-I), ENHANCED
O-TREE (ON SUN SPARC ULTRA60), CBL (ON SUN SPARC 20), TCG (ON SUN SPARC ULTRA60) AND TCG-S (ON SUN SPARC ULTRA60) FOR AREA OPTIMIZATION

Proof: The configuration of TCG is not changed after a rotation
operation, neither is �

�

.
2) Swap: Swapping ni and nj does not change the topologies of

Ch and Cv . Therefore, we only need to exchange bi and bj in �
�

.
Fig. 4(c) shows the resulting TCG-S and placement after swapping the
nodes nc and ng shown in Fig. 4(b). Notice that the modules bc and bg
in �

�

in Fig. 4(c) are exchanged.
Theorem 7: TCG-S is closed under the Swap operation, and such

an operation takes O(1) time.
Proof: The Swap operation only exchanges two nodes ni and nj

in both Ch and Cv without changing their topologies. Therefore, we
only need to exchange two nodes in �

�

, which takes O(1) time.
3) Reverse: To reverse a reduction edge (ni; nj) in one transitive

closure graph, we first delete the edge (ni; nj) from the graph, and
then add the edge (nj ; ni) to the graph. To keep Ch and Cv feasible,
for each node nk 2 Fin(nj) [fnjg and nl 2 Fout(ni) [fnig in
the new graph, we have to keep the edge (nk; nl) in the new graph.
If the edge does not exist in the graph, we add the edge to the graph
and delete the corresponding edge (nk; nl) [or (nl; nk)] in the other
graph. To make �

�

conform to the topological ordering of newCh and
Cv , we delete bi from �

�

and insert bi after bj . For each module bk
between bi and bj in �

�

, we shall check whether the edge (ni; nk)
exists in the same graph. We do nothing if the edge (ni; nk) does not
exist in the same graph; otherwise, we delete bk from �

�

and insert it
after the most recently inserted module.

Fig. 4(d) shows the resulting TCG-S and placement after reversing
the reduction edge (nd; ne) of the Cv in Fig. 4(c). Since there exists
no module between bd and be in �

�

, we only need to delete bd from
�
�

and insert it after be, and the resulting �
�

is shown in Fig. 4(d).
Theorem 8: TCG-S is closed under the Reverse operation, and such

an operation takes O(m) time, wherem is the number of modules.
Proof: If an edge (ni; nj) in Ch (Cv) is reversed, the Reverse

operation will add some edges (nk; nl)’s to Ch (Cv) and delete the
corresponding edges in Cv (Ch), where nk 2 Fin(nj) [fnjg and
nl 2 Fout(ni) [fnig. �� is changed because the topological or-
dering of nodes is changed by those newly added edges. To show the
effects of the operation, without loss of generality, we consider �

�

of
the form shown in Fig. 5(a), where: 1) p is a module before module i
and np is a fanin of nj (since Reverse only adds edges that start from
nk’s, where nk 2 Fin(nj)[fnjg, we do not need to consider the case
where np is a fanin of ni); 2) q and r are modules between modules i
and j, and nq is a fanin of nj , while nr is a fanout of ni [note that if nq
or nr is a fanout of ni or a fanin of nj , edge (ni; nj)must be a closure
edge (a contradiction)]; and 3) s is a module after module j, and ns is
a fanout of ni (since Reverse only adds edges that end in nl’s, where
nl 2 Fout(ni)[fnig, we do not need to consider the case where ns is
a fanout of nj). See Fig. 5(b) for the corresponding Ch (Cv). The re-
sulting Ch (Cv) after the operation is shown in Fig. 5(c), in which the
dotted lines denote newly added edges. For edges (np; nr), (np; ni),
and (np; ns) [(nj ; nr), (nj ; ni), and (nj ; ns)] starting from np (nj),
the topological ordering of nodes in the edges is not changed [i.e.,

Fig. 7. Resulting placement of ami49 with area optimization (area =
36 398 mm).

np (nj) is in front of nr , ni, or ns] . However, for some edges (nq; nr)
and (nq; ni) starting from nq , the topological ordering of nodes in the
edges is reversed (i.e., nq is in front of ni (nr) instead of behind them).
Therefore, we only need to move module i and those modules between
modules i and j that belong to the fanout of ni after module j in �

�

.
Fig. 5(d) shows the new �

�

after the operation. The number of mod-
ules betweenmodules i and j is at mostm�2; therefore, it takesO(m)
time to move these modules after bj .
4) Move: To move a reduction edge (ni; nj) from a transitive clo-

sure graph G to the other G0, we delete the edge from G and then add
it to G0. Similar to Reverse, for each node nk 2 Fin(ni) [fnig and
nl 2 Fout(nj) [fnjg in G0, we must move the edge (nk; nl) to G0

if the corresponding edge (nk; nl) (or (nl; nk)) is in G. Since the op-
eration changes only the edges in Ch or Cv but not the topological
ordering among nodes, �� remains unchanged.
Fig. 4(e) shows the resulting TCG-S and placement after moving

the reduction edge (na; ne) fromCv toCh in Fig. 4(d). Notice that the
resulting �� is the same as that in Fig. 4(d). For the above operations,
we have the following theorem.
Theorem 9: TCG-S is closed under the move operation, and such

an operation takes O(m) time, wherem is the number of modules. In
particular, �� remains the same after the operation.
As shown in [5], in particular, the aforementioned operations form

a complete set of operations for perturbing a TCG, i.e., every fea-
sible TCG is reachable from any other feasible TCG. Since �� is in-
duced from TCG, the set of perturbation operations is also sufficient
for TCG-S.

VI. PLACEMENT WITH CONSTRAINTS

In this section, we demonstrate the flexibility of TCG-S by extending
it to handle placement with boundary and preplaced modules.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 977

TABLE III
WIRELENGTH AND RUNTIME COMPARISONS AMONG O-TREE, ENHANCED O-TREE, TCG, AND TCG-S FOR

WIRELENGTH OPTIMIZATION. ALL RAN ON SUN SPARC ULTRA60

A. TCG-S With Boundary Modules

The placement with boundary constraints is to place a set of prespec-
ified modules along the designated boundaries of a chip, which can be
formulated as follows:
Definition 1: Boundary Constraint: Given a boundary module b, it

must be placed in one of the four sides: on the left, on the right, at the
bottom or at the top in a chip in the final packing.

TCG-S keeps the following properties that make placement with
boundary constraints much easier than other representations.
Theorem 10: If a module bi is placed along the left (right) boundary,

the in-degree (out-degree) of the node ni inCh equals zero. If a module
bi is placed along the bottom (top) boundary, the in-degree (out-degree)
of node ni in Cv equals zero.

Proof: If the in-degree of a node ni in Ch is zero, there exists no
module on the left side of bi in the corresponding placement. Therefore,
bi is always placed along the left boundary after packing. If the out-
degree of a node ni in Ch is zero, there exists no module on the right
side of bi in the corresponding placement. Therefore, we can push the
module to the right boundary by assigning its x coordinate asW �Wi,
where W is the width of the placement. Similar claims hold for the
bottom and top boundary modules.

For each perturbation, we can guarantee a feasible placement by
checking whether the conditions of boundary modules are satisfied.
We discuss the modifications for the four perturbation operations as
follows.
1) Rotation: Since Rotation does not change module location, the

operation remains the same as before.
2) Swap: We can swap two nodes na and nb if

1) ba and bb are not boundary modules,
2) ba and bb are boundary modules of the same type, or
3) ba is a boundary module and bb is not, and nb satisfies the

boundary constraint of ba.
3) Reverse: If ba is a left boundary module or bb is a right boundary

module, then the reduction edge (na; nb) in Ch cannot be reversed.
Similarly, we cannot reverse the reduction edge (na; nb) in Cv if ba is
a bottom boundary module or bb is a top boundary module.
4) Move: If ba is a top boundary module or bb is a bottom boundary

module, we cannot move the reduction edge (na; nb) from Ch to Cv .
Similarly, we cannot move the reduction edge (na; nb) from Cv to Ch

if ba is a right boundary module or bb is a left boundary module.
We have the following theorem.
Theorem 11: TCG-S is closed under the rotation, swap, reverse, and

move operations with boundary constraints.
Proof: To show TCG-S is closed under the rotation, swap, re-

verse, and move operations with boundary constraints, we only need
to prove that the feasibility conditions of boundary modules defined in
Theorem 10 are not violated under these operations.

• Rotation: Since the rotation operation does not change the config-
uration of TCG-S, the feasibility conditions of boundary modules
are not violated.

Fig. 8. Resulting placement of ami49 with wirelength optimization (wire =
579 mm).

• Swap: If a boundary module bi and another module bj are
exchanged in the Swap operation, the feasible condition of the
boundary module bi is checked before the operation. Therefore,
Theorem 10 is not violated under the swap operation.

• Reverse: If an edge (ni; nj) in Ch (Cv) is reversed, the reverse
operation will add some edges (nk; nl)’s to Ch (Cv) and delete
the corresponding edges inCv (Ch),wherenk 2 Fin(nj)[fnjg
and nl 2 Fout(ni) [fnig. We first consider the feasibility con-
dition of the top (bottom, left, or right) module if a reduction edge
inCh is reversed as follows: Since the reverse operation does not
add any edge to Cv if an edge (ni; nj) in Ch is reversed, it will
not generate any new edge associated with the fanin (fanout) of
a bottom (top) module in Cv . Therefore, the feasibility condition
of the bottom (top) module is not violated. For a left boundary
module bq , suppose there exists an edge (np; nq) in Ch after the
operation. nq is either ni or a fanout of ni. However, we do not
reverse the edge (ni; nj) in Ch if ni is a left boundary module.
Besides, nq cannot be a fanout of others in the original graph Ch

if bq is a left boundary. Similarly, for a right boundary module bp,
suppose there exists an edge (np; nq) in Ch after the operation.
np is either nj or a fanin of nj . However, we do not reverse an
edge (ni; nj) inCh if nj is a right boundary module. Besides, np
cannot be fanin of others in the original graph Ch if bp is a right
boundary module. Similar claims hold when an edge (ni; nj) in
Cv is reversed.

• Move: If an edge (ni; nj) in Ch (Cv) is moved to Cv (Ch),
the Move operation will add some edges (nk; nl)’s to Cv (Ch)
and delete the corresponding edges in Ch (Cv), where nk 2
Fin(ni)[fnig and nl 2 Fout(nj)[fnjg. We first consider the
feasibility condition of the top (bottom, left, or right) module if a
reduction edge in Ch is moved to Cv as follows: Since the Move

978 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Fig. 9. Comparison for stability and convergence between SP, TCG, and TCG-S for ami49.

operation does not add any edge to Cv after an edge (ni; nj) in
Cv is moved toCh, it will not generate any new edge in the fanin
(fanout) of a bottom (top) module inCv . Therefore, the feasibility
condition of the top (bottom) module is not violated. For a left
boundary module bq , suppose there exists an edge (np; nq) in
Ch after the operation. nq is either nj or a fanout of nj . However,
we do not move the edge (ni; nj) from Cv to Ch if nj is a left
boundary module. Besides, nq cannot be a fanout of others in
the original graph Ch if bq is a left boundary module. Similarly,
for the right boundary module bp, suppose there exists an edge
(np; nq) inCh after the edge (ni; nj) is moved toCh.np is either
ni or a fanin of ni. However, we do not move an edge (ni; nj)
from Cv to Ch if ni is a right boundary module. Besides, np
cannot be a fanin of others in the original graphCh if bq is a right
boundary module. Similar claims hold when an edge (ni; nj) is
moved from Cv to Ch.

B. TCG-S With Preplaced Modules

The placement with preplaced modules is to place a set of pre-
specified modules at the designated locations of a chip, which can be
formulated as follows:
Definition 2: Preplaced Constraint: Given a module bi with a fixed

coordinate (xi; yi) and an orientation, bi must be placed at the desig-
nated location with the same orientation in the final packing.

Whether a preplaced module is packed at a correct location is not
known until packing. Also, changing the coordinate of a module bi

may affect the packing for other modules after bi in ��. Therefore, we
may need to modify a TCG-S to guarantee a feasible placement with
the preplaced constraint after each perturbation.
Given a TCG-S, modules are packed one by one based on the se-

quence of �
�

. A module bi interacts with another module bj if: 1) bi
overlaps bj ; 2) bj ` bi and their projections on the y axis overlap; or
3) bj ? bi and their projections on the x axis overlap. If bi interacts
with a preplaced module bj and bi was placed, ni and nj are swapped
in the TCG-S to make bj placed at the designated location. If a pre-
placed module bi was placed and the resulting placement of bi does
not interact with itself at the designated location, we swap bi with the
node bj right after bi in �

�

; otherwise, bi is placed at the designated
location if there exists no module behind bi in �

�

.
Fig. 6(a) shows the resulting placement of the TCG-S of Fig. 2(g)

without considering preplaced modules. Here, the heavily shaded rect-
angles, labeled D and E, give the correct locations for the preplaced
modules bd and be, respectively. As shown in the figure, the correct
location for be (bd) is occupied by bb (bg). Fig. 6(b)–(h) illustrate the
process to transform an infeasible TCG-S into a feasible one with pre-
placed constraints. Fig. 6(b) and (c) show the placements after ba and bb
are placed, respectively. Since bb overlaps the region for the preplaced
module be [see Fig. 6(c)], we swap bb and be in TCG-S, and then place
be at the designated location. (Note that bb and be are exchanged in
�
�

.) Fig. 6(d) and (e) show the respective placements after bc and the
preplaced module bd are placed. Since the preplaced module bd does
not intersect with itself at the designated coordinate [see Fig. 6(e)], we
swap bd and its successor bb in �

�

. (Note that bd and bb in �
�

are
exchanged.) Similarly, we swap bd and bg in TCG-S, resulting in the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 979

TABLE IV
AREA AND RUNTIME COMPARISONS BETWEEN [7] (ON PENTIUM-II

350) AND TCG-S (ON SUN SPARC ULTRA60) FOR

PLACEMENT WITH BOUNDARY MODULES

placement shown in Fig. 6(f). Then, bd is placed at the designated lo-
cation in Fig. 6(g). Finally, the resulting placement after packing bf is
shown in Fig. 6(h).

VII. EXPERIMENTAL RESULTS

Based on a simulated annealing method [6], we implemented
the TCG-S representation in the C++ programming language on a
433-MHz SUN Sparc Ultra-60 workstation with 1 GB of memory. The
code is available at http://cc.ee.ntu.edu.tw/~ywchang/research.html.
Based on the five commonly used MCNC benchmark circuits listed
in Table I, we conducted four experiments: 1) area optimization;
2) wirelength optimization; 3) solution convergence speed and
stability; and 4) placement with boundary constraints. In Table I,
Columns 2–5 list the respective numbers of modules, I/O pads, nets,
and pins of the five circuits.

For Experiment 1, the area and runtime comparisons among SP,
O-tree, B�-tree, enhanced O-tree, CBL, and TCG are listed in Table II.
As shown in Table II, TCG-S achieves best area utilization for the
benchmark circuits in very efficient running times. Fig. 7 shows the
resulting placement for ami49 with area optimization.

For Experiment 2, we estimated the wirelength of a net by half the
perimeter of the minimum bounding box enclosing the net. The wire-
length of a placement is given by the summation of the wirelengths of
all nets. As shown in the Table III, TCG-S achieves the best average
results in wirelength than O-tree, enhanced O-tree, and TCG using
smaller running times. (Note that we did not compare withB�-tree and
CBL here since they did not report the results on optimizing wirelength
alone.) Fig. 8 shows the resulting placement for ami49 with wirelength
optimization.

In addition to the area and timing optimization, in Experiment 3, we
also compared the solution convergence speed and stability among SP,
TCG, and TCG-S to eliminate the possible unfairness due to the non-
deterministic behavior of simulated annealing, which were neglected
in most previous works. (Note that other tools are not available to us
for the comparative study.) We randomly ran SP, TCG, and TCG-S
on ami49 ten times based on the same initial placement whose area
is 102 mm2. The resulting areas are plotted as functions of the running
times (sec). Figs. 9(a)-(c) show the resulting curves of SP, TCG, and
TCG-S, respectively. To see the detailed convergence rates, we show
in Figs. 9 only the potions whose areas are smaller than 47 mm2. As
illustrated in Fig. 9(c), TCG-S converges very fast to desired solutions,
and the results are very stable (� 37:5 mm2 for all runs). In contrast,
the convergence speed of SP is much slower than TCG-S and TCG,
and the resulting areas are often larger than 39 mm2. Further, there is
a large variance in its final solutions. Based on the experimental re-
sults, we rank the convergence speed from the fastest to the slowest
and the solution stability from the most stable to the least stable as fol-
lows:TCG� S � TCG � SP. We note that the stability and conver-
gence speed should be very important metrics to evaluate the quality

Fig. 10. Resulting placement of ami49 with boundary modules being
heavily shaded ((# # # #) = (3 3 2 3),
area = 36 765 mm). Note that the lightly shaded regions denote dead
spaces.

of a floorplan representation because they reveal the corresponding so-
lution structure for optimization. However, they were often ignored in
previous works. (Most previous works focus on the comparison of so-
lution space and packing complexity. Nevertheless, we find that the
solution structure induced by a representation plays an even more im-
portant role in floorplan optimization.)
For the experiments with boundary modules, we compared TCG-S

with the SP-based method in [7] using the same data generated by
[7]. The second column of Table IV shows the numbers of the top,
bottom, left, and right modules, denoted by #jT j, #jBj, #jLj, and
#jRj, respectively. As shown in Table IV, TCG-S obtains smaller sil-
icon areas than [7]. Fig. 10 shows the resulting placement for ami49
with boundary modules.

VIII. CONCLUDING REMARKS

We have presented the TCG-S representation for general floorplans
by combining the advantages of two most promising P�-admissible
representations TCG and SP and, at the same time, eliminating their
disadvantages.We also have proposed a loglinear-time packing scheme
for a P�-admissible representation. We note that this scheme can also
be applied to most existing representations, such as SP and BSG. Based
on our theoretical study and extensive experiments, we also have shown
the superior capability, efficiency, stability, and flexibility of TCG-S for
floorplan design.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
very constructive comments.

REFERENCES

[1] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B -trees: A new
representation for nonslicing floorplans,” in Proc. Design Automation
Conf., 2000, pp. 458–463.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed. New York: MIT Press/McGraw-Hill, 2001.

[3] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation of
nonslicing floorplan and its applications,” in Proc. Design Automation
Conf., 1999, pp. 268–273.

[4] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of nonslicing floorplan,” in Proc. Int. Conf. Computer-Aided Design,
2000, pp. 8–12.

[5] Y. Hu, J. Lai, and T.-C. Wang, “A complete set of operations for per-
turbing transitive closure graphs,” , 2003, submitted for publication.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

980 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

[7] J.-B. Lai, M.-S. Lin, T.-C. Wang, and L.-C. Wang, “Module placement
with boundary constraints using the sequence-pair,” in Proc. Asia South
Pacific-Design Automation Conf., 2001, pp. 515–520.

[8] E. Lawler,Combinatorial Optimization: Networks andMatroids. New
York: Holt, Rinehart, and Winston, 1976.

[9] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based
representation for nonslicing floorplans,” in Proc. Design Automation
Conf., 2001, pp. 764–769.

[10] , “TCG-S: Orthogonal coupling of P -admissible representations
for general floorplans,” in Proc. Design Automation Conf., 2002, pp.
842–847.

[11] , “TCG: A transitive closure graph-based representation for general
floorplans,” IEEE Trans. VLSI Syst., 2003.

[12] Y. Ma, S. Dong, X. Hong, Y. Cai, C. K. Cheng, and J. Gu, “VLSI floor-
planning with boundary constraints based on corner block list,” in Proc.
Asia South Pacific-Design Automation Conf., 2001, pp. 509–514.

[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rec-
tangle-packing based module placement,” in Proc. Int. Conf.
Computer-Aided Design, 1995, pp. 472–479.

[14] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB placement with
obstacles based on sequence pair,” in Proc. Int. Symp. Phys. Design,
1997, pp. 26–31.

[15] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” in Proc. Int. Conf.
Computer-Aided Design, 1996, pp. 484–491.

[16] R. H. J. M. Otten, “Automatic floorplan design,” in Proc. Design Au-
tomation Conf., 1982, pp. 261–267.

[17] Y. Pang, C. K. Cheng, and T. Yoshimura, “An enhanced perturbing al-
gorithm for floorplan design using the O-tree representation,” in Proc.
Int. Symp. Phys. Design, 2000, pp. 168–173.

[18] X. Tang and D. F. Wong, “FAST-SP: A fast algorithm for block place-
ment based on sequence pair,” in Proc. Asia South Pacific-Design Au-
tomation Conf., 2001, pp. 521–526.

[19] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. Design Automation Conf., 1986, pp. 101–107.

A Unified Framework for Generating All Propagation
Functions for Logic Errors and Events

Maria K. Michael, Themistoklis Haniotakis, and Spyros Tragoudas

Abstract—We present a generic framework that supports efficient gen-
eration of the traditional Boolean difference function of some output with
respect to any line in a combinational circuit, which is important when
testing for logic defects. The framework also allows for the generation of
generalized Boolean difference functions, which reflect sensitivity on event
propagation from a given line to some circuit output. This generalized func-
tion could apply in timing verification, analysis, and test. We implemented
the proposed framework using various function representation environ-
ments, including binary decision diagrams, Boolean expression diagrams,
and Boolean networks, and report experimental results on the ISCAS’85
and ISCAS’89 benchmarks.

Index Terms—Automatic test pattern generation (ATPG), delay testing,
testing, timing analysis, verification.

I. INTRODUCTION

The problem of generating the propagation functions of all lines in
a combinational (or fully scanned sequential) circuit is examined. The
propagation function of a circuit line is a Boolean function that repre-
sents all the possible primary input assignments that allow for a change
on the line to be observed (propagated) at some primary output.
Let a be any circuit line and z a primary output. For simplicity, we

use the above symbols to also denote the functionality of the respective
lines. The propagation function indicating whether line z is sensitive
to logic changes on line a is also known as the Boolean difference of
function z with respect to function a, and is defined as (@z=@a).
Function-based automatic test pattern generation (ATPG) methods

typically use the Boolean Difference function as their basis ([4],
[12]) because it indicates whether an activated logic error propagates
from line a to output z.1 For this reason, the Boolean difference
function is also called the logic-error propagation function of z with
respect to a. Although function-based ATPG methods are slower than
structural-based ATPG methods, they increasingly gain popularity
due to advances in data structures that store and manipulate functions.
These include binary decision diagrams (BDDs) [2], that are canonical
forms, and noncanonical forms, such as Boolean networks (BNETs)
[1], Boolean expression diagrams (BEDs) [7], conjunctive normal
forms, among others. In addition, function-based methods inherently
allow for such implicit representations of many test patterns per fault
(in the case where BDDs are used, all test patterns per fault are repre-
sented) that can be easily manipulated using basic Boolean concepts
to help in other test-related problems such as test set compaction
([6], [8]) and on-chip test-set embedding. Moreover, function-based
methods can speed up the detection of those faults that are hard to
detect by the structural methods. It is noted that function-based ATPG
approaches as in [3], [5], [9], [14], and [15], among others, do not
create distinct functions for fault activation and fault propagation in

Manuscript received October 9, 2002; revised June 18, 2003 and August 19,
2003. This paper was recommended by Associate Editor S. M. Reddy.

M. K. Michael is with the Electrical and Computer Engineering De-
partment, University of Cyprus, CY-1678 Nicosia, Cyprus (e-mail:
mmichael@ucy.ac.cy).

T. Haniotakis and S. Tragoudas are with the Electrical and Computer Engi-
neering Department, Southern Illinois University, Carbondale, IL 62901 USA
(e-mail: haniotak@siu.edu; spyros@engr.siu.edu).

Digital Object Identifier 10.1109/TCAD.2004.828112

1Logic error is understood as a fault (in the ATPG context) or a design error
(in the verification context).

0278-0070/04$20.00 © 2004 IEEE

