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Abstract—The flip-chip package gives the highest chip density
of any packaging method to support the pad-limited application-
specific integrated circuit designs. In this paper, we propose the
first router for the flip-chip package in the literature. The router
can redistribute nets from wire-bonding pads to bump pads and
then route each of them. The router adopts a two-stage technique
of global routing followed by detailed routing. In global routing,
we use the network flow algorithm to solve the assignment problem
from the wire-bonding pads to the bump pads and then create
the global path for each net. The detailed routing consists of
three stages, namely: 1) cross-point assignment; 2) net ordering
determination; and 3) track assignment, to complete the routing.
Experimental results based on seven real designs from the industry
demonstrate that the router can reduce the total wirelength by
10.2%, the critical wirelength by 13.4%, and the signal skews by
13.9%, as compared with a heuristic algorithm currently used in
industry.

Index Terms—Detailed routing, global routing, physical design.

I. INTRODUCTION
A. Flip-Chip Design

UE TO THE increasing complexity and decreasing fea-
ture size of very large scale integration (VLSI) designs,
the demand of more I/O pads has become a significant problem
of package technologies. A relatively new packaging technol-
ogy, i.e., the flip-chip package, as shown in Fig. 1, is created for
higher integration density and rising power consumption. Flip-
chip bonding was first developed by IBM in the 1960s. It gives
the highest chip density of any packaging method to support the
pad-limited application-specific integrated circuit designs.
Flip-chip is not a specific package, or even a package type,
e.g., pin grid array (PGA) or ball grid array (BGA). Flip-chip
describes the method of electrically connecting the die to the
package carrier. The package carrier, which is either a substrate
or a lead frame, provides the connection from the die to the
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outside devices of the package. The die of a PGA/BGA package
is attached to the carrier face up, and later, a wire is bonded first
to the die, then looped and bonded to the carrier. In contrast,
the interconnection between the die and carrier in the flip-chip
package is made through a conductive bump ball that is placed
directly on the die surface. Finally, the bumped die is flipped
over and placed face down, with the bump balls connecting to
the carrier directly. The flip-chip technology is the choice in
high-speed applications because of the following advantages:
reduced signal inductance (high speed), reduced power/ground
inductance (low power), reduced package footprint, smaller die
size, higher signal density, and lower thermal effect. However,
in recent integrated circuit designs, the I/O pads are still placed
along the boundary of the die. This placement does not suit the
flip-chip package. As a result, we use the top metal or an extra
metal layer, which is called a redistribution layer (RDL), as
shown in Fig. 2, to redistribute the wire-bonding pads to the
bump pads without changing the placement of the I/O pads.
Since the RDL is the top metal layer of the die, the routing angle
in an RDL cannot be any angle as in the PGA/BGA packages.
Bump balls are placed on the RDL and use the RDL to connect
to wire-bonding pads by bump pads.

The flip-chip package is generally classified into two types,
namely: 1) the peripheral array, as shown in Fig. 3(a), and
2) the area array, as shown in Fig. 3(b). In the peripheral array,
the bump balls are placed along the boundary of the flip-chip
package. The disadvantage of the peripheral array is that we
only have a limited number of bump balls. In the area array,
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Fig. 1. (a) Flip-chip. (b) Flip-chip package.
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Fig. 3. (a) Peripheral array. (b) Area array. (c) RDL routing result.

the bump balls are placed in the whole area of the flip-chip
package. The advantage of the area array is that the number of
bump balls is much more than that of the peripheral array; thus,
it is more suitable for modern VLSI designs. Since the flip-chip
design is for high-speed circuits, the issue of signal skews is
also important. Thus, a special router, i.e., the RDL router [11],
is needed to reroute the peripheral wire-bonding pads to the
bump pads and then connect the bump pads to the bump balls.
Consider that the routing of multipin nets and the minimization
of the total wirelength and the signal skews are also needed for
an RDL router. Fig. 3(c) shows one RDL routing result for an
area-array flip-chip.

B. Previous Work

To the best knowledge of the authors, there is no previous
work in the literature on the routing problem for flip-chip
designs. Similar works are the routing for PGA packages, BGA
packages, and planar graphs, including [1]-[4], [8]-[10], and
[12]-[15]. Yu and Dai [14] used the geometric and symmetric
attributes of the pin positions in the BGA packages to assign
pins of the BGA packages. However, in flip-chip designs, the
positions of wire-bonding pads and bump pads do not always
have these geometric and symmetric attributes. PGA routers are
presented in [3] and [10], whereas a BGA router is provided
in [4]. These three routers are any-angle multilayer routers
without considering the pin assignment problem, single-layer
routing, and total wirelength minimization. Wang et al. [12] and
Yu et al. [15] applied the minimum-cost network flow algorithm
to solve the I/O pin routing problems. All these routers focused
only on routability and did not consider multipin nets and
signal skews. Wang et al. [12] also did not consider the routing
congestion problem. Furthermore, they assumed that wires can
be any angle; thus, their methods are not suitable for the RDL
routing, typically with a 90° angle routing. For the previous
works on the planar routing [1], [2], and [5], since the pins
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can be placed anywhere in the chip, it is a nameplate-complete
problem, and thus, most likely, there exists no efficient optimal
algorithm for the planar routing. In the flip-chip routing, since
wire-bonding pads and bump pads are placed in arrays, we can
take the advantage of the regular structure to find an efficient
algorithm for the RDL routing. Thus, the flip-chip routing
problem is also different from the planar routing one.

C. Our Contributions

To our best knowledge, this paper is the first work in the
literature to propose an RDL router to handle the routing
problem of flip-chip designs with real industry applications. We
present a unified network flow formulation to simultaneously
consider the concurrent assignment of the wire-bonding pads to
the bump pads and the routing between them. Our algorithm
consists of two phases. The first phase is the global routing
that assigns each wire-bonding pad to a unique bump pad.
By formulating the assignment as a maximum-flow problem
and applying the minimum-cost maximum-flow (MCMF) al-
gorithm, we can guarantee 100% detailed routing completion
after the assignment. The second phase is the detailed routing
that efficiently distributes the routing points between two adja-
cent wire-bonding (bump) pads and assigns wires into tracks.
In addition to the traditional single-layer routing with only
routability optimization, our RDL router also tries to optimize
the total wirelength and the signal skews between a pair of
signal nets under the 100% routing completion constraint. Ex-
perimental results based on seven real designs from the industry
demonstrate that the router can reduce the total wirelength by
10.2%, the critical wirelength by 13.4%, and the signal skews
by 13.9%, as compared with a heuristic algorithm currently
used in industry.

The rest of this paper is organized as follows: Section II
gives the formulation of the RDL routing problem. Section III
details our global and detailed routing algorithms. Section IV
shows the experimental results. Finally, conclusions are given
in Section V.

II. PROBLEM FORMULATION

We introduce the notations used in this paper and formally
define the routing problem for flip-chip packages. Fig. 4 shows
the modeling of the routing structure of the flip-chip package.
Let P be the set of wire-bonding pads, and let B be the set
of bump pads. For practical applications, the number of bump
pads is larger than or equal to the number of wire-bonding
pads, i.e., |B| > |P|, and each bump pad can be assigned to
more than one wire-bonding pad. Let Ry, = {r%,r5, ... 72}
be a set of m bump pad rings in the center of the package,
and let R, = {r},r5, ... 77} be a set of k wire-bonding
pad rings at the boundary of the package. Each bump pad
ring r? consists of a set of ¢ bump pads {bj,b5,...,b.}, and
each wire-bonding pad ring rf consists of | wire-bonding
pads {p{,pé, .. 7p{}. Let N be the set of nets (could be
two-pin or multipin nets) for routing. Each multipin net n
in N is defined by a set of wire-bonding pads and a set of
bump pads that should be connected. Each two-pin net can
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Fig. 4. Four sectors in a flip-chip package.

be assigned to a bump pad not included in the sets of bump
pads for the multipin nets. Since the RDL routing for current
technology is typically on a single layer, it does not allow
wire crossings, for which two wires intersect each other in the
routing layer. As shown in Fig. 4, based on the two diagonals of
the flip-chip package, we partition the whole package into four
sectors, namely: 1) North = {Py, By, RY, R)}; 2) East =
{Pg,Bg,RY,RFY}; 3) South ={Ps,Bg, Rﬁ, RY}; and
4) West = {Pw,Bw, R}V, R}" }, where P;(B;) and R},(R}),
i € {N, E,S, W} are the set of the wire-bonding (bump) pads
and the set of the wire-bonding (bump) pad rings in the ¢ sector,
respectively. For practical applications, the wire-bonding pads
in one sector only connect to the bump pads in the same sector.

We define an interval to be the segment between two adjacent
bump pads in the same ring 7® or the segment between two
adjacent wire-bonding pads in the same ring rf . Given a flip-
chip routing instance, there are two types of routing, namely:
1) the monotonic routing and 2) the nonmonotonic routing. A
monotonic routing can be formally defined as follows.

Definition 1: A monotonic routing is a routing such that for
each net n connecting from a wire-bonding pad p to a bump
pad b, n intersects exactly one interval in each ring r® and
exactly one interval in each ring r? .

As shown in Fig. 5(a), the nets no and n4 are monotonic
routes. If we exchange the positions of two bump pads b, and
b4, the routings of no and n, are nonmonotonic, as shown
in Fig. 5(b). The wirelengths of the nets ns and net ny4 are
increased. This shows a drawback of the nonmonotonic rout-
ing. Since the nonmonotonic routing occupies more routing
resource, it causes significant problems for the single-layer
routing. Thus, a good flip-chip package routing should be a
monotonic routing without detours, as shown in Fig. 6, because
the monotonic routing results in smaller total wirelength and
higher routing completion, as compared to the nonmonotonic
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Fig. 6. Monotonic routing with and without detours.

routing. Furthermore, the signal skew, i.e., the difference of
wirelength between the longest net and the shortest one, should
also be considered for routing on the flip-chip package.

Based on the aforementioned definition, the routing problem
can be formally defined as follows.

Problem 1: The single-layer flip-chip routing problem is to
connect asetof p € P andasetof b € B so that no wire crosses
each other, the routing is monotonic, and the total wirelength
and the signal skew are minimized.

III. ROUTING ALGORITHM

In this section, we present our routing algorithm. First, we
give the overview of our algorithm. Then, we detail the methods
used in each phase.

A. Algorithm Overview

According to the routing flow shown in Fig. 7, our algorithm
consists of two phases, namely: 1) global routing based on the
MCMEF algorithm [5] and 2) detailed routing based on the cross-
point assignment, the net ordering determination, and the track
assignment.

In the first phase, we construct four flow networks, namely:
1) Gn;2) Gg; 3) Gg; and 4) Gy, one for each sector, to solve
the assignment of the wire-bonding pads to the bump pads.
Since we have only one layer for routing, the assignment should
not create any wire crossings. We avoid the wire crossings
by restricting the edges in the networks not to intersect each
other. We first consider two-pin nets and then multipin nets. The
reason is that multipin nets allow more than one wire-bonding
pad to connect to one bump pad. Thus, the multipin nets may
block the two-pin nets. Under this condition, a wire-bonding
pad may not find a global path. Thus, the two-pin nets need to
be considered first. We will detail the reason in Section I11-B4.
After applying MCMF, we obtain the flows representing the
routes from wire-bonding pads to bump pads for the nets. Those
flows give the global paths for the nets.

In the second phase, we use the cross-point assignment,
the net ordering determination, and the track assignment to
determine detailed routes. A cross point is the point for a net
to pass through an interval. First, we find the cross points for
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Algorithm: RDL Routing(P, B, N)

P: set of all wire-bonding pads;

B: set of all bump pads;

N: set of all nets;

1 begin

2 Construct four graphs Gy, Gg, Gs, Gy with only

3 2-pin nets;

4 Apply MCMF to find the assignment of each p € P to
5 b € B in the same sector and the global path

6 for each 2-pin net;

7 Add additional edges to represent the multi-pin net in the
8 four graphs;

9 Apply MCMF to find the assignment of each p € P to
10 b € B in the same sector and the global path

11 for each multi-pin net;

12 Find all cross points in all intervals for each net n € N,
13 for the outermost ring r? to the innermost ring r;?

14 S« Net_Ordering_Determination();

15 //'S contains the routing sequence;

16 Track_Assignment(.S);

17 end

Fig. 8. Overview of the RDL routing algorithm.

all nets passing through the same interval. For all nets that
pass through the same interval, we evenly distribute these cross
points. Second, we use the net ordering determination technique
presented in [7] to create the routing sequence between two
adjacent rings so that we can guarantee to route all nets.
Finally, we assign at least one track to each net based on the
routing sequence obtained from the net ordering determination
algorithm. Fig. 8 summarizes our routing algorithm.

B. Global Routing

In this section, we first show the basic flow network formula-
tion. Then, we detail the capacity of each edge, the intermediate
nodes, the tile nodes, and the cost of each edge. Finally, we
discuss how to handle the multipin nets.
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1) Basic Network Formulation: We describe how to con-
struct the flow network Gg to perform the concurrent as-
signment for the South sector. The other three sectors can be
processed similarly. As shown in Fig. 9(a), we define Dg =
{dY,d5,...,d5} to be a set of h intermediate nodes. Each
intermediate node represents an interval (p?, pi 1) ((BL,BE 1)
in a wire-bonding (bump) pad ring. Ts = {t{,t5,...,t5
is a set of u file nodes. Each tile node represents a tile
(pg,p;+1,pifl,pzfjl)(( by, S b)) between two
adjacent wire-bonding (bump) pad rings. We construct a graph
Gs =(PsUDgUBgUTs, E) and add a source node s and
a sink node t to Gg. Each intermediate node d has a capacity
of K4, where K represents the maximum number of nets that
are allowed to pass through an interval d. Each tile node ¢ has
a capacity of L;, where L, represents the maximum number of
nets that are allowed to pass through a tile ¢. We will detail how
to handle the capacity of the intermediate nodes and the tile
nodes so that MCMF can be applied in Section III-B2. There
are 11 types of edges:

1) edges from a wire-bonding pad to a bump pad;
2) edges from a wire-bonding pad to an intermediate node;
3) edges from a wire-bonding pad to a tile node;
4) edges from an intermediate node to a bump pad;
5) edges from an intermediate node to another intermediate
node;
6) edges from an intermediate node to a tile node;
7) edges from a tile node to a bump pad;
8) edges from a tile node to an intermediate node;
9) edges from a tile node to another tile node;
10) edges from the source node to a wire-bonding pad;
11) edges from a bump pad to the sink node.

Each edge is associated with a (cost, capacity) tuple to be
described in the following sections. Recall that we do not allow
wire crossings for all wires. Since I represents the possible
global paths for all nets, we can guarantee that no wire crossings
will occur if there are no crossings in edges. Thus, we construct
all the edges and avoid crossings of all edges at the same time.
Fig. 9(b) shows an example flow network Gg for the South
sector. The last two types of edges are not shown here. Further-
more, we do not construct edges between the two tile nodes in
the center of the two wire-bonding pad rings because the place-
ment of these tile nodes is symmetric. We can solve MCMF
in time O(|V|?y/]E|) based on the network flow algorithm
presented in [5], where V' is the vertex set in the flow network.

Theorem 1: Given a flow network with the vertex set V
and edge set F, the global routing problem can be solved in
O(|V|?\/|E|) time.

Proof: Immediate from the aforementioned discussions.
]

2) Capacity Assignment and Node Construction: Now, we
introduce the capacity of each edge, the intermediate nodes,
and the tile nodes. Fig. 10 shows the capacity and cost for all
11 types of edges in the complete flow network. For an edge e,
if e is from a wire-bonding pad to a bump pad, an intermediate
node, or a tile node, the capacity of e is set to one. If e is from
an intermediate node or a tile node to a bump pad b, then the
capacity of e is set to My, where M, is the maximum number
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of nets that are allowed to connect to the bump pad b. Recall
that an intermediate node d has a capacity of K4, where K is
the maximum number of nets that are allowed to pass through
this intermediate node d. This means that the capacity of each
incoming edge of an intermediate node d is equal to K. If e
is an incoming edge of a tile node ¢, then the capacity of e is
set to L;, where L; is the maximum number of nets that are
allowed to pass through the tile node ¢. As shown in Fig. 11, in
order to model this situation, we decompose each intermediate
node d into two intermediate nodes d’' and d”, and an edge is
connected from d” to d’, with a capacity of K. All outgoing
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edges of d are now connected from d’, with a capacity of Ky,
and all incoming edges of d are now connected to d”, with a
capacity of K. Each tile node ¢ is also decomposed into two
tile nodes ¢’ and ", and the capacity of a tile node ¢t is set to
L;, where L; is the maximum number of nets that are allowed
to pass through this tile node ¢. The capacity of the edges from
the source node to the wire-bonding pads is set to one, and the
capacity of the edges from each bump pad b to the sink node is
set to M. There are three worst cases of congestion in a tile,
as shown in Fig. 12. The four nodes in the three figures are
all bump pads. In Fig. 12(a) and (c), the maximum number of
nets passing through the tile is 2K. In Fig. 12(b), the maximum
number of nets passing through the tile is 3K. If we do not use
the tile node ¢, the maximum number of nets in Fig. 12(a)—(c)
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could exceed the capacity of a tile (2K > L; or 3K > Ly).
Since the capacity of each tile node is well modeled in our flow
network, we can totally avoid this congestion problem.

3) Cost of Edges: The cost function of each edge is defined
by the following equation:

Cost = a x W, (D

where W1, denotes the Manhattan distance between two ter-
minals of an edge, and « is an adaptive parameter to adjust
the cost of different types of edges. By adjusting the value of
«, we can control the wirelength of each net to avoid large
signal skews among different nets. As an example shown in
Fig. 13(a), we assign the smallest « to the dashed (red) edge
that connects an intermediate node to a bump pad to assign the
intermediate node to the bump pad first. By doing so, the rout-
ing for a net starting from a preceding ring can be completed
earlier to reduce its routing length (and, thus, signal skew).
As an example shown in Fig. 13(b), the dashed (red) edge that
connects one tile node to another tile node is also assigned the
smallest « to assure that fewer bump pad rings are used. Since
the wirelength between the tile node ¢ and the bump pad 1 is the
same as that between ¢ and the bump pad 2, we have to assign
the smallest « to the dashed (red) edge to make ¢ connect the
bump pad 2 first. Thus, we can reduce the number of long nets
to reduce the signal skew by using fewer bump pad rings. If a
wire-bonding pad is assigned to a bump pad directly, it might
generate a very short net. Hence, we assign the largest « to the
dotted (blue) edge that connects a wire-bonding pad to a bump
pad to avoid too short connections between the two types of
pads to reduce the signal skew. Finally, the solid (black) edge
that connects two intermediate nodes, a tile node to a bump pad,
or an intermediate node to a tile node is assigned a medium a.
Since the solid (black) edge does not influence the signal skew,
the medium « is set to one. The costs of the edges from the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

source node to the wire-bonding pads and the costs of the edges
from the bump pads to the sink node are both set to zero.

4) Multipin Net Handling: For practical flip-chip routing,
if a bump pad can be assigned to any two or even more wire-
bonding pads, we can just increase the capacity of the bump
pad to connect more wire-bonding pads. Since we construct the
edges for the two-pin nets and the multipin nets simultaneously,
the global routing result is optimal. However, for other practical
flip-chip routing, a net may connect multiple wire-bonding
pads (which are assigned the same signal such as power or
ground pads) to a bump pad. This bump pad cannot be assigned
to other nets. As stated before, we first assign two-pin nets
and then multipin nets. We only construct the edges associated
with the two-pin nets and apply MCMF for the assignment.
After the assignment, we delete all edges from the source node
s and all edges to the sink node ¢. (However, the flows of the
edge e, the intermediate node d, and the tile node ¢ for each
assigned two-pin net will be kept in the flow network.) The
global paths of the assigned two-pin nets are not deleted and
considered as blockages F' during the construction of the edges
for the multipin nets. Recall that if there are no edge crossings
in the flow network, then there are no wire crossings in the final
routing solution. When we construct the edges for the multipin
nets, an edge e exists only if e does not intersect any blockages
or never crosses the assigned two-pin nets. Then, we add the
edges from the source node to the wire-bonding pads associated
with the multipin nets and the edges from the bump pads
associated with the multipin nets to the sink node. Fig. 14(a)
illustrates an example. We assume that a multipin net n consists
of ((p2, P4, ps), (b3, bg)), which means that three wire-bonding
pads 2, 4, and 5 are only free to be assigned to one of the two
bump pads 3 and 9. No other wire-bonding pads can be assigned
to these two bump pads. Redundant edges are deleted by the
blockage f;. For example, the edge from ps to the intermediate
node between bg and bg is deleted because it intersects the
blockage (ps,bs). By using MCMEF, the wire-bonding pads
and bump pads are grouped into two sets: {ps,b3} and
{p4, ps, by }. Fig. 14(b) illustrates why we handle two-pin nets
first. In this example, we assume that only the bump pad 1 for
two-pin nets and the bump pad 2 for multipin nets can be
assigned to wire-bonding pads. If we handle the multipin net 2
first, then the two-pin net 1 cannot be assigned to the bump
pad 1 to find a global path. The reason is that the multipin net 2
divides the region into two subregions and blocks the wire-
bonding pad 1. In order to avoid this situation, we shall handle
two-pin nets first. The similar idea is applied in the planar
routing. As shown in Fig. 15(a), in a planar routing, if a net
such as net 1 or net 2 is routed to divide the region into two
subregions, it should be routed later. Otherwise, as shown in
Fig. 15(b), other nets such as net 3 or net 4 may cross the net.

Based on the global routing algorithm, we have the following
theorem.

Theorem 2: Given a set of wire-bonding pads, a set of
bump pads, and a set of nets, if there exists a feasible solution
computed by the MCMF algorithm, we can guarantee 100%
detailed routing completion.

Proof: In our global routing model, MCMF is optimal
for two-pin nets and suboptimal for multipin nets. Since we
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Group 1: {p2, bs}
Group 2: {p4, ps, bs}

(a)

(a) Assign multipin nets. (b) Handle multipin nets first.

. ® B

Fig. 14.

|
HE  ® 2w

@ (b)

Fig. 15. (a) Routing sequence:
{1,2,3,4,5}.

{5,3,4,1,2}. (b) Routing sequence:

consider the routing resource in the global routing stage and
will never assign nets to exceed the capacity of an interval or a
tile, we will never violate the design rules. Also, because we do
not allow edge crossings during the flow network construction,
the final routing solution will not generate wire crossings. Thus,
after the assignment, all global paths are routable in the detailed
routing stage. |

C. Detailed Routing

In this section, we explain the three methods used in our
detailed routing. As shown in Fig. 16, after the global routing,
each global path contains only wire-bonding pads, intermediate
nodes, and bump pads. The two global paths (dj,t,d;) and
(dy,t,by), which pass through the tile node ¢, are remodeled
as (dy, d;) and (d,, b,). Tile nodes are not needed for the final
representations of the global paths because a tile node is just
used to avoid the congestion overflow.

1) Cross-Point Assignment: Based on the global routing re-
sult (discussed in Section III-B), we use the cross-point assign-
ment algorithm to evenly distribute nets that pass through the
same interval (see Fig. 17 for an example). As shown in Fig. 17,
the two nets from wire-bonding pads ps and ps pass through
the same intermediate node. Thus, we split the intermediate
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D :Intermediate
Nodes

B : Bump Pads

E :Edges

P : Wire-bonding
Pads
Redundant Edges

f; i Blockage

T : Tile Nodes

[} df : Intermediate Node i

b,, : Bump Pad i
Net Segments
‘V <> t : Tile Node

Fig. 16. Redefined global paths.

Cross Pomt

//\\ AN

Wire- bondmg Pad

Intermedlate Node Bump Pad

Fig. 17. Cross-point assignment.

node into two cross points. Since the maximum number of
intermediate nodes is ((|B| — |Rp|) + (|P| — |Rp|)), we have
the following theorem.

Theorem 3: The cross-point assignment problem can be
solved in O(|B| + | P|) time.

Proof: If there are ¢; bump pads in the bump pad ring 7 in
the South sector, there will be (g; — 1) intervals of the bump pad
ring . Hence, there will be (¢; — 1) intermediate nodes. Since
the number of bump pad rlngs is \RS |, the maximum number

of intermediate nodes is Zl b ‘(qz — 1) = |Bg| — |R}|. As for
the wire-bonding pads, the condition is the same as that of the
bump pads, and the conditions of the remaining three sectors are
the same as those of the South sector. Thus, the maximum num-
ber of intermediate nodes is ((|B| — |Rs|) + (|P| = |Rp|)),
and the time complexity is O(|B| + |P|) (the upper bound of



1424

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

1 23 4 56 7 8 9 10
————— O+ O+ OseO ————— |
: s ss s dd dddd | #® Cross Points
I
| | © Bump Pads
I
| I B Wire-bonding Pads
| d d d d s s s s s s |
—E-@ -B— B -—8-—8 858 5
1 2’ 3 4 5 6’ 7 8 9 10
(a)
10°
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Routing Sequence: {(1, 1), (10°, 10), (9°, 9), (8’, 8), (7°, 7), (6°, 6), (5’, 5), (2, 2°), 3, 3°), (4, 4’)}

(b)
Fig. 18.

((|B] = |Rsl) + (JP] — |Rp|))) to assign cross points to each
intermediate node. ]

2) Net Ordering Determination: After the assignment of
cross points, each net has its path to cross each interval. For
two adjacent rings, we can treat the routing between the two
rings as a channel routing. Thus, we can use the net ordering
determination algorithm presented in [7] to generate a routing
sequence S = ((n§,nd), (n§,nd),..., (n3,ng)), with k net
segments. Each net segment n;(j,;j') is represented by a
source—destination pair/tuple (nf,n?). We first determine
the source and destination for each net based on the
counterclockwise traversing distance along the leftmost
and rightmost boundaries. If the counterclockwise traversing
distance along the leftmost boundary is shorter than the
counterclockwise traversing distance along the rightmost
boundary, the terminal j is a source, and the terminal j' is a
destination. Otherwise, the terminal j is a destination, and the
terminal j' is a source. For example, given the net 1 shown in
Fig. 18(a), since the counterclockwise traversing distance along
the leftmost boundary is shorter than the counterclockwise
traversing distance along the rightmost boundary, we make the
terminal 1 a source and the terminal 1’ a destination. For the
net 10, however, since the counterclockwise traversing distance
along the leftmost boundary is longer than the counterclockwise
traversing distance along the rightmost boundary, we make the
terminal 10’ a source and the terminal 10 a destination. Starting
from an arbitrary terminal, we then generate a circular list
for all terminals ordered counterclockwise according to their
positions on the boundaries. A stack is used to check if there
exist crossovers among the net segments. For each terminal
of net segment n;, if it is a source, then we push it into the
stack. If this terminal is a destination and the top element of
the stack belongs to the same net segment, then net segment
n; is matched, and the top element is popped. Otherwise, if
the stack is empty, or this terminal is a destination and the
top element of the stack does not belong to the same net

(a) Net segments between two adjacent rings. (b) Stack for net ordering determination.

segment, then we search the circular list for the next terminal.
We keep searching the circular list until all nets are matched.
As shown in Fig. 18(b), we start with the terminal 1. Since
the terminal 1 is a source, we push it into the stack. Then,
we search each terminal on the boundary counterclockwise.
The terminal 1’ is searched, and it is a destination; thus, we
compare it with the top element of the stack. Because these
two terminals belong to the same net segment, we pop the top
element and determine the routing sequence of the net segment
n1. Keeping on searching, since the terminals 2/, 3/, and 4’ are
all destinations, we do not push them into the stack. Since the
terminals 5, 6', 7', 8, 9’, and 10’ are all sources, we push them
into the stack. Then, we process the terminal 10, which is a
destination and matches the top element in the stack. Thus, we
pop the net segment 11y and add it into the routing sequence.
Repeating this step, we can get the resulting routing sequence.
With this sequence .S, we can guarantee that each net segment
between two adjacent rings can be routed without intersecting
each other. For example, given an instance shown in Fig. 18(a),
according to the above-described net ordering determination
algorithm, we can obtain the sequence S={((ny,n}), ("),
n10)7 (né, n9)7 (T’Lé, n8)7 (n,% n7)7 (nlfja nﬁ)a (n%a n5)7 (n27 n/2)7
(n3,nh), (ng,n})). According to the net ordering determina-
tion algorithm, we have the following theorem.

Theorem 4: Given a set N of nets, the net ordering determi-
nation problem can be solved in O(|N|?) time.

Proof: According to the net ordering determination algo-
rithm, the worst case happens when only one net is matched
during each searching cycle. In this case, the total number of
terminal searches is Zgh_l 2(|N| —i) = |N|?> + |N|. Hence,
the time complexity is O(| N |?). [ |

3) Track Assignment: With the net ordering, we can use
maze routing to route all nets for any two adjacent rings.
However, maze routing is quite slow and generates too many
bends. (For example, for a small circuit with 513 nets, we need
25 min on a 1.2-GHz SUN Blade 2000 workstation with 8-GB
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Routing Sequence: {(1, 17), (107, 10), (9°,9), (8’, 8), (7", 7), (6’, 6), (5°, 5), (2, 2°), (3, 3"), (4, 4°)}

(®)

Fig. 19. (a) Example for track assignment. (b) Blocking point.

memory to complete the detailed routing.) Thus, we propose a
track assignment algorithm to assign tracks to each net segment
of any two adjacent rings. For each net segment n; in S,
according to the relative locations of n$ and n¢, we search a
track to be assigned to n; from the top to the bottom or from
the bottom to the top. We search the tracks from the top to
the bottom if n{ is on the top-right side of n¢ or n{ is on the
bottom-right side of nf Otherwise, we search the tracks from
the bottom to the top. If we find a track h and it does not create
any overlap with other wires, then we assign h to n;. As shown
in Fig. 19(a), we assign net segment n; first. Since the terminal
1 is a source and the net ordering determination algorithm
makes each net routed counterclockwise from the source to the
destination along the boundary, we search from track 1 to track
6. Thus, n; is assigned to track 1 first. Since the terminal 5’ is a
source, we search from track 6 to track 1. Thus, ns is assigned
to track 6 first. Also, we record the blocking points @) for n;. A
blocking segment is a wire on track h + 1 (if we search from the
top to the bottom) or i — 1 (if we search from the bottom to the
top) to stop n; from being assigned to A + 1 or h — 1 without
creating any overlap with it. A blocking point g; is a terminal of
the blocking segment whose projection on h overlaps with n;.
As shown in Fig. 19(b), the point g3 on track hs is the blocking
point for net ng. If we cannot find such h, we rip up and reroute
all net segments n; to n;_;. For each net segment n; to be
rerouted, we use the concept of the dogleg in the channel rout-
ing to break a segment into two segments based on the blocking
point g, such as q3 in Fig. 19(b). Then, we assign the segment
that will not overlap with g;, on the lowest possible track (if we
search from the top to the botto m) or on the highest possible
track (if we search from the bottom to the top). After assigning
tracks, we record the new blocking points for ng. Note that

®  Cross Points

o Bump Pads

. Wire-bonding Pads

O q; : Blocking Point i

Algorithm: Track Assignment(S;, H)

S;: a routing sequence between rings r; and r;4;

H': the maximum number of tracks;

1 begin

2 for each net segment n; in S;

Let (23, y8) ((zd,y?)) be the coordinate of the
source (destination) of n;;

if ((27>xf and yf>yy) or (x§>af and yf<yf))

4
5
6 Find a track h of H from the top to the bottom
7
8

w

without creating an overlap with other wires;

else
9 Find a track i of H from the bottom to the top
10 without creating an overlap with other wires;
11 if such h exists
12 Assign h to n;;
13 else
14 for all pre-routed net segment 75
15 Divide into two segments according
16 to the blocking point gy;
17 Assign the segment not overlapping with g
18 to the first available track along the cur-
19 rent search direction (from top to bottom
20 or bottom to top);
21 end

Fig. 20.  Algorithm for track assignment.

since, now, each net segment may be assigned with more than
one track, we may have more than one blocking point for
each net. Fig. 20 summarizes the track assignment algorithm.
According to this algorithm, we have the following theorem.
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Theorem 5: Given a set N of nets and the number of
tracks H, the track assignment problem can be solved in
O(NPH(|Ry| + |R,|)) time.

Proof: The worst case of the track assignment algorithm
is that we have to rip up and reroute every time while assigning
the next net. Thus, the total number of times to assign nets to
tracks is ZLZ‘N = |N|? + |N|/2. When assigning a net, the
maximum number of track searches is H, and the number of
channels is (|R,| 4+ |Ry| — 1). Hence, the time complexity is
O(NPH(Ry| + |Ry))). n

D. Complexity Analysis

If there are |B| bump pads, |P| wire-bonding pads, |D|
intermediate nodes, |T'| tile nodes, |Rp| bump pad rings, and
|R,| wire-bonding pad rings, we can construct a flow network
composed of |V| vertices and |E| edges for the global routing,
where |V| = |B|+ |P| +|D|+ |T| and |E| = edges among
these vertices. In the detailed routing, there are |N| global
paths, and each channel is divided into H tracks. Hence, the
time complexity is as follows: O(|V'|?1/|E]) (global routing)+
O(|B|+|P|) (cross-point assignment) + O(|N|?)(net ordering
determination) + O(|N|2H (| Ry| + |R,|)) (track assignment)
= O(|VI*(\/]E] + H(|Ry| + |Rp|))). The space complexity is
O(|E|) since we have O(|B|+ |P|+ |D|+ |T'|) nodes and
O(|E|) edges. Thus, we can solve the RDL routing problem
in polynomial time.

Theorem 6: Given a set P of wire-bonding pads, a set B of
bump pads, and a set N of nets, if there exists a feasible solution
computed by the RDL routing algorithm, the RDL routing
problem can be solved in O(|V|2(\/|E| + H(|Ry| + |R,))))
time and O(|E|) space.

Proof: The time complexity analysis is immediate from
Theorems 1, 3, 4, and 5. First, since |V|=|B|+|P|+|D|+|T],
the time complexity of the global routing O(|V'|?y/|E[) domi-
nates that of the cross-point assignment O(|B| + | P|). Second,
the time complexity of the track assignment O(|N |2 H (| Ry| +
|Rp|)) dominates that of the net ordering determination
O(|N|?). Finally, since |N|=|P|, the time complexity
O(|V'|?) dominates O(| N|?). Thus, the time complexity of the
RDL routing algorithm is given by O(|V|2(\/]E| + H(|Ry| +
|Ry|))). The space complexity of pads O(| B| 4 |P|) dominates
that of nodes O(|D| + |T|). Since there is an edge from the
source node s to every wire-bonding pad of P, and there
is an edge from every bump pad of B to the sink node ¢,
the space complexity of edges O(|E|) dominates that of pads
O(|B]| + | P|). Thus, we can reduce the space complexity from
O(BI+ |P| + |D| + [T| + |E|) to O( E)). n

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in the C+-+ programming
language on a 1.2-GHz SUN Blade 2000 workstation with
8-GB memory. The benchmark circuits, which are listed in
Table I, are real industry designs. In Table I, “Circuits” denotes
the names of circuits; “#Nets” denotes the number of nets;
“#R,” denotes the number of wire-bonding pad rings; “#p”
denotes the number of wire-bonding pads; “#R};” denotes the
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number of bump pad rings; and “#b” denotes the number of
bump pads. In each of fs900, fs2116, and fs4096, the number of
wire-bonding pads equals the number of bump pads. Thus, each
wire-bonding pad needs to be assigned to exactly one bump
pad. Hence, these three cases are more difficult for routing than
the other four cases.

In Table II, we show how to calculate the values of Mj,
K4, H;, and L;. As defined in the previous sections, M, is
the maximum number of nets allowed to connect to a bump
pad b, K  is the maximum number of nets allowed to pass
through an intermediate node d, H; is the maximum number
of tracks between two adjacent pad rings ¢ and ¢ + 1, and L
is the maximum number of nets allowed to pass through a tile
node ¢. All these variables can be expressed by the equations
shown in the table. We calculate the values of these variables
during the RDL routing process. The parameters used to cal-
culate the My, K4, H;, and L, variables are listed in Table III.
They are all structure and design-rule related parameters.

Since there are no flip-chip routing algorithms in the litera-
ture, we compared our algorithm with the following heuristic
currently used in industry. This heuristic is called the nearest
node connection (NNC) algorithm. In NNC, the wires are
routed sequentially. If a wire-bonding pad p can find a free
bump pad b in a restricted area of the nearest bump pad ring
r’ , then it connects p to b. If there are no free bump pads in 2,
then we search for a free bump pad in the next bump pad ring
rb 1. This process is repeated until we find a free bump pad.

The experimental results are shown in Table IV. We report
the total wirelength, the critical wirelength (the wirelength of
the longest net), the maximum signal skews, and the central
processing unit times. Since the routability is guaranteed to be
100%, we do not report it. As compared with NNC, the ex-
perimental results show that our network-flow-based algorithm
reduces the total wirelength by 10.2%, the critical wirelength
by 13.4%, and the signal skews by 13.9%, in reasonably longer
running time. Note that for fs2116 and fs4096, NNC fails to find
a routing solution. In Fig. 21, the running time of our algorithm
is plotted as a function of the number of nets. Empirically,
the running time of our RDL routing algorithm approaches
quadratic (about N217) to the number of nets N, with the least
square analysis for the log—log plot of the function. In Table V,
we report the memory usage (in kilobytes) for each circuit for
the RDL routing. In Fig. 22, the memory requirement of our
algorithm is plotted as a function of the number of nets. The em-
pirical memory complexity of our RDL routing algorithm is be-
tween linear and quadratic (about NV 147y to the number of nets
N, again with the least square analysis for the log—log plot of
the function. The experimental results show that our network-
flow-based RDL algorithm is effective and efficient for flip-
chip designs. Fig. 23 shows the RDL routing result of £fs900.

We also explore the effects of different o on wirelength and
skew. In Table II, we give the equations for the computation of
the upper bound of the smallest o and the lower bound of the
largest .. The two bounds come from the geometric relation of
the pad placement. Nets that are composed of the wire-bonding
pads of the inner wire-bonding pad ring and the bump pads of
the outer bump pad ring are often short. Thus, by modeling dpp
and dpp into the equation of the lower bound of the largest «,
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TABLE 1
BENCHMARK CIRCUITS FOR RDL ROUTING

#Nets
Circuits . L. #Rp #p #Rb #b
(2-pin/multi-pin)
fs90b740 646/0 2 646 7 812
fsa0ac013aa 657/4 2 657 17 1156
fsalac015aa 639/6 2 639 17 1156
fwaa281 513/24 2 513 13 676
£s900 900/0 4 900 15 900
fs2116 2116/0 6 2116 23 2116
£s4096 4096/0 8 4096 32 4096
TABLE 1II
EXPERIMENTAL VARIABLES
Variable Mathematical Expression
_ |1, for the bump pads that are connected by 2-pin nets
M, b J, j =1, for the bump pads that are connected by multi-pin nets
) —
Wi =X Sy ~ Wy | 4 q , for the intermediate nodes between two adjacency bump pads
w, +S,,
K, K, = %
Wp 72X 5oy “ Wy |4 , for the intermediate nodes between two adjacency wire-bonding pads
Wy, + Sy
Doy =2X Sy =Wy +1, for the tracks between two adjacent bump pad rings
Wy, + 8,
d. -2 - . . .
H, H = G Z 2 X Sy ~ Wy +1, for the tracks between two adjacency wire-bonding pads
i w, +58,,
Dos = Spw = Spw =Wy J +1, for the tracks between a bump pad ring and a wire-bonding pad ring
W, + 8y,
L L, =min(H,K,)
Upper
Bound of Upper Bound of the Smallest .= ﬁ
the Smallest ’Rp‘x dpy” + 7 dpp
a
Lower 1 1 1
Bound of 2 dpp AR 4 dPBz + 4 d882 +dp + dPB2
the Largest Lower Bound of the Largest o.= p
PB
a

TABLE III
STRUCTURE AND DESIGN-RULE RELATED PARAMETERS

Parameter Meaning
Wi the interval width between two adjacent bump pads
Wip the interval width between two adjacent wire-bonding pads
Spw the minimum spacing required between a bump pad and a wire
Spw the minimum spacing required between a wire-bonding pad and a wire
Sww the minimum spacing required between two wires
Wy the wire width
d,, the distance between two adjacent wire-bonding pad rings
dyp the distance between two adjacent bump pad rings
dpg the distance between a wire-bonding pad ring and a bump pad ring

we can avoid short nets. Furthermore, we want to make the
nets of the outer wire-bonding pad rings be assigned to the
outer bump pad rings; thus, we model dpp and dpp into
the equation of the upper bound of the smallest . In order to

minimize the signal skew, the largest v has to be larger than
the lower bound, and the smallest v has to be smaller than
the upper bound. Furthermore, we also observe that when the
largest (smallest) « is scaled up (down), the critical wirelength
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TABLE IV
RDL ROUTING RESULTS (N/A: NOT AVAILABLE)
Algorithm Total wirelength ( & m) Critical wirelength ( i m) Skew CPU time (s)
Our Improve Our Improve Our Improve Our
Circuits NNC method ment NNC method ment NNC method ment NNC method
f590b740 814927 779089 4.6% 3682 3357 8.9% 3392 3067 9.6% 0.28 0.68
fsa0ac013aa | 773717 700831 10.4% 5274 4539 13.9% 5139 4404 14.3% 0.39 0.87
fsa0ac015aa | 699986 618363 13.2% 5254 4068 22.5% 5118 3932 23.2% 0.34 0.79
fwaa281 663762 579199 14.6% 4755 4208 11.5% 4496 3949 12.2% 0.24 0.54
£5900 1888992 | 1745834 8.2% 6000 5400 10.0% 5700 5100 10.5% 0.71 1.39
fs2116 fail 6208840 N/A fail 8800 N/A fail 8500 N/A fail 9.46
154096 fail 16807614 N/A fail 13300 N/A fail 13000 N/A fail 43.79
Average 10.2% 13.4% 13.9%
50
45 | —® Time (sec)
40
35
= 30 g 0 SSUSISNG SIS 813
g 25 i % Gl
2 20 x ol £
[c]
15 (€, dg oo
10 5 o
5 Eoosh
0 = ppbd
0 500 1000 1500 2000 2500 3000 3500 4000 4500 voronox %\%g
# Nets X P & Q
[ellie
Fig. 21. Running time for the RDL routing. § o
TABLE V 1 A
MEMORY USAGE FOR EACH CIRCUIT x b
Circuits #Nets Memory (K bytes)
fwaa28laa 537 962
fsa0ac015aa 645 866 Fig. 23. RDL routing result for £s900.
fs90b740 646 830
fsa0ac013aa 661 830 in Table VI. In this experiment, we tested three pairs of the
5900 900 3258 smallest a and the largest v values on fs90b740. We first set
152116 2116 6886 the largest (smallest) a to 1 and then scaled it up (down) to
154096 4096 13555 see the effects of different « to the total wirelength, the critical
wirelength, and the signal skew. The percentages listed in the
Memory Usage parentheses give the normalized ratios to that with the smallest
16000 ; :
t000 |5 Memory G byten gnd the largest a being set to 1. From the experimental results
12000 in Table VI, as the largest (smallest) o scales up (down), the
£ 10000 total wirelength increases while the critical wirelength and the
Z 8000 signal skew decrease.
2 6000
4000
2
o V. CONCLUSION
¢ = DN 1IN 2":‘; t 200 0 S AN e In this paper, we have developed an RDL router for the flip-
ets

Fig. 22. Memory usage for the RDL routing.

and the signal skew may be further improved at the cost of
larger total wirelength. Thus, we use this property to minimize
the critical wirelength and the signal skew without increasing
the total wirelength too much. We conducted an experiment
to explore the effects of different «, and the results are listed

chip package. The RDL router consists of the two stages of
global routing followed by detailed routing. The global routing
applies the network flow algorithm to solve the assignment
problem from the wire-bonding pads to the bump pads and
then creates the global path for each net. The detailed routing
applies the three-stage technique of cross-point assignment, net
ordering determination, and track assignment to complete the
routing. Experimental results demonstrate that our router can
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TABLE VI
EFFECTS OF DIFFERENT o« ON WIRELENGTH AND SKEW

a value | Smallesta =1 Smallest ¢ =2 Smallesta =5
Result Largest a =1 Largest @ =0.2 | Largest a =0.1
Total wirelength (1 m) 776313 (100%) | 779089 (100.4%) | 808143 (104.1%)

Critical wirelength (¢ m) 3493 (100%) 3357 (96.1%) 3254 (93.2%)

Skew 3203 (100%) 3067 (95.8%) 2596 (81.0%)

CPU time (s) 0.68 0.68 0.68

achieve much better results in routability, wirelength, critical
wirelength, and signal skews, as compared with a heuristic
algorithm currently used in industry.
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