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An Optimal Jumper-Insertion Algorithm
for Antenna Avoidance/Fixing

Bor-Yiing Su and Yao-Wen Chang, Member, IEEE

Abstract—As the process technology enters the nanometer era,
reliability has become a major concern in the design and manu-
facturing of very large-scale integration circuits. In this paper, we
focus on one reliability issue—jumper insertion in routing trees for
avoiding/fixing antenna-effect violations at the routing/postlayout
stages. We formulate the jumper insertion for antenna avoidance/
fixing as a tree-cutting problem and present the first optimal
algorithm for the tree-cutting problem. We show that the tree-
cutting problem exhibits the properties of optimal substruc-
tures and greedy choices. With these properties, we present an
O(V )-time optimal jumper-insertion algorithm that uses the min-
imum number of jumpers to avoid/fix the antenna violations in
a routing tree with V vertices. Experimental results show the
superior effectiveness and efficiency of our algorithm.

Index Terms—Physical_design, reliability, routing.

I. INTRODUCTION

A S THE PROCESS technology enters the nanometer era,
product reliability and manufacturing yield have become

major concerns in the design and manufacturing of very large-
scale integration circuits. The fine feature size of modern
IC technologies is typically achieved by using plasma-based
processes. In nanometer technology, more stringent process re-
quirements cause some advanced high-density plasma reactors
adopted in the production lines to achieve fine-line patterns [5].
However, these plasma-based processes will charge conducting
components of a fabricated structure. As a result, the accumu-
lated charges may affect the quality of ICs. This is called the
antenna effect.

During metallization, long floating interconnects act as tem-
porary capacitors and accumulate charges gained from the
energy provided by fabrication steps such as plasma etching.
A random discharge of the floating node due to subsequent
process steps could permanently damage transistors in the
IC [8], [9]. For instance, the exposed polysilicon and metal
structures connected to a thin-oxide transistor will collect
charge from the processing environment (e.g., reactive-ion etch)
and damage the transistor when the discharging current flows
through the thin oxide. The mechanism of antenna damage is
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not fully understood, but there is experimental evidence indi-
cating when charging occurs and how it may affect the quality
of gate oxide [8], [9]. Charging occurs when conductor layers,
which are not covered by a shielding layer of oxide, are directly
exposed to plasma. The amount of such charging is proportional
to this plasma-exposed area. If conductor layers are connected
to a diffusion layer pattern, such charges are discharged to the
substrate through the diffusion; see Fig. 1(b)–(d) for illustra-
tions. On the other hand, if the charged conductor layers are
connected only to the gate oxide, Fowler–Nordheim (F–N) tun-
neling current through thin-oxide discharges such charges and
causes damage to the thin oxide [8]; see Fig. 1(b) and (c). As
shown in Fig. 1, interconnects are manufactured layer by layer.
Before a conducting path to the diffusion is formed in metal-2
layer-pattern etching [see Fig. 1(d)], the interconnects in the
poly- and metal-1 layers might have accumulated so many
charges that they cause damage on the gate, as shown in the left-
hand side of Fig. 1(c) (note that there will not be any antenna
violation after a conducting path to the diffusion is formed).

There are three kinds of solutions to reduce the antenna effect
[2] as follows.

1) Jumper insertion: Break the signal wires with antenna
violations and route them to the highest layers by jumper
insertion. This reduces the charge amount for violated
wires during manufacturing.

2) Embedded protection diode: Add protection diodes on
every input port of a standard cell.

3) Diode insertion during layout design: Fix those wires
with antenna violations that have enough rooms for
“under-the-wire” diode insertion. During wafer manufac-
turing, all the inserted diodes are floating (or ground).
A diode can be used to protect all input ports that are
connected to the same output ports.

Comparing the three methods, for the second method of
embedded protection diode, since these diodes are embedded
and fixed, they might consume unnecessary areas when there
is no violation at the connecting wire. For the third method,
we need extra silicon area to place the diodes. Because the
number of diodes needed for fixing antenna violations grows
dramatically as the feature size shrinks, it is often hard to
preserve enough space for diodes in nanometer IC designs. As
a result, jumper insertion becomes a very popular approach
for avoiding/fixing antenna violations. The function of jumper
insertion can be explained using Fig. 2. In Fig. 2(a), when the
metal-1 layer is manufactured, the gate on the right might be
damaged because the large area of the metal-1 interconnection
can accumulate sufficient charges to damage the gate. However,
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Fig. 1. Antenna effect. (a) Example routing. (b) Late stage of polylayer-
pattern etching of (a). Charge on the left polypattern is discharged through the
gate, while charge on the right is discharged through the diffusion. (c) Late
stage of metal-1 layer-pattern etching of (a). Charge on the left metal-1 pattern
is discharged through the gate, while charge on the right is discharged through
the diffusion. (d) Late stage of metal-2 layer-pattern etching. Charges on all the
metal-2 patterns are discharged through the diffusion.

Fig. 2. Jumper insertion. (a) Stage before inserting a jumper. (b) Stage after
inserting a jumper from the metal-1 layer to the metal-2 layer.

if we insert a jumper to route the interconnect on the metal-
2 layer, as shown in Fig. 2(b), the effective conductor layer
becomes smaller. Therefore, the stored charge is not enough to
damage the gate on the right, and thus, we can avoid the antenna
violation.

Fig. 3. Jumper insertion for a wire of 1.3 Lmax long. (a) Two jumpers are
needed for fixing the antenna violation if jumpers can be inserted only beside
gate terminals. (b) One jumper suffices to fix the problem if it can be inserted
at an arbitrary position of the wire.

Fig. 4. (a) Routing tree with one sink node u1. (b) Work in [10] needs jumpers
c3, c4, and c5 to solve the antenna violations. (c) This paper needs only two
jumpers, c6 and c7, to satisfy the antenna rule.

Although jumper insertion is currently the most popular
approach for antenna avoidance/fixing, jumpers induce vias
that will consume silicon areas and reduce circuit performance.
Therefore, it is desired to fix antenna violations by using the
least jumpers. Recently, Ho et al. [4] proposed a bottom-up
approach to insert jumpers in a routing tree for antenna avoid-
ance. The work inserts jumpers only beside gate terminals, and
its optimality holds only for this special condition of inserting
jumpers right beside gate terminals. As an example, as shown
in Fig. 3, the wire segment is of 1.3 Lmax long, where Lmax

denotes the upper bound for antenna (i.e., any wire longer than
Lmax will violate the antenna rule). For this wire segment, the
work in [4] needs two jumpers to fix the antenna violation [see
Fig. 3(a)], while a single jumper suffices to fix the violation
[see Fig. 3(b)].

Another recent work by Wu et al. [10] extends the work in
[4] to handle the problem. With the implementation scheme
proposed by Kundu and Misra [6], the work in [10] can achieve
the linear-time complexity for jumper insertion in a routing
tree for antenna avoidance/fixing. To fix the antenna violation
of a sink node (a gate terminal in this paper), the work first
removes all subtrees around the node that violate the antenna
rules. After all such subtrees are removed, if the sink still
violates the antenna rule, the work will continually remove
the heaviest branch from the sink until the antenna rules are
satisfied. The approach in the study in [10] is not optimal
under some special cases. As the routing-tree example shown in
Fig. 4(a), u is a sink node that violates the antenna rules, and c1

and c2 are two inserted jumpers. The number beside each edge
denotes the antenna charge weight (measured by the antenna-
strength-to-gate-size ratio, the wire length, the wire area, and/or
the wire perimeter), and the maximum antenna weight that
a sink node can bear is assumed to be ten. For the work in
[10], the algorithm will remove all of the subtrees around u.
Thus, it inserts jumpers c3 and c4. However, u still violates
the antenna rules. As a result, the algorithm will insert jumper
c5 at the heaviest branch e(u, c3), as shown in Fig. 4(b). For
this case, nevertheless, two jumpers suffice to solve the antenna
violations; see the jumpers c6 and c7 shown in Fig. 4(c).
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In this paper, we consider the general case of inserting
jumpers at arbitrary positions (e.g., in any position of a tree
edge). We formulate the general jumper insertion for antenna
avoidance (applicable at the routing stage) and/or fixing (ap-
plicable at the postlayout stage) as a tree-cutting problem. We
show that the tree-cutting problem exhibits the properties of
optimal substructures and greedy choices. With these proper-
ties, a greedy algorithm suffices to find an optimal solution [3].
Based on the theory, we present an O(V )-time optimal jumper-
insertion algorithm that uses the minimum number of jumpers
to fix the antenna violations in a routing tree with V vertices.
Compared with the previous work in [4] and four types of
heuristics, our algorithm outperforms those methods by large
margins. Experimental results based on the layouts generated
from the multilevel routers in the study in [1] and [7] on a set
of commonly used Microelectronics Center of North Carolina
(MCNC) benchmarks show that our algorithm can significantly
reduce the number of antenna violations.

The remainder of this paper is organized as follows.
Section II formulates the problem of jumper insertion on a
routing tree for avoiding/fixing antenna violations. Section III
presents an optimal algorithm for the proposed problem.
Section IV proves the optimality of the algorithm. Section V
analyzes the complexity of the algorithm. Section VI extends
the algorithm to the handling of Steiner trees and obstacles.
Section VII reports the experimental results. Finally, the con-
clusions and future work are given in Section VIII.

II. PROBLEM DEFINITION

To avoid/fix the antenna violation, we require that the total
effective conductor connecting to a gate be less than or equal to
a threshold Lmax. The threshold could be the wire-length limit,
the wire-area limit, the wire-perimeter limit, the ratio of antenna
strength (length, area, perimeter, etc.) to the gate size, or any
model of the strength of antenna effect caused by conductors.
Typically, a net is modeled as a routing tree, where a node in
the tree denotes a circuit terminal (a gate or a diffusion) and an
edge denotes the interconnection between two circuit terminals.
Since the interconnection connecting to a diffusion terminal
will not cause any antenna violation, as explained in Section I,
we shall focus on those connecting to gate terminals.

Let T = (V,E) be a routing tree, the set V of nodes repre-
sents all gate terminals, the set E of edges denotes the wires
connecting the circuit terminals, and an edge weight gives the
measure of the wires with the same unit as Lmax. A gate will
violate the antenna rule if the effective conductor incident on
the gate (i.e., the effective weight—the sum of the weights of
the edges incident to the corresponding node) is larger than
Lmax. To reduce the antenna effects on a gate, we can apply
the technique illustrated in Fig. 2 by adding a jumper on a
wire connecting to the gate to reduce the effective conductor.
This operation is modeled as adding a cutting node on the
tree edge corresponding to the wire to reduce the effective
edge weight associated with the gate node. As aforementioned,
jumpers are implemented by vias which will consume silicon
areas and reduce circuit performance. Therefore, it is desired
to fix antenna violations by using the least jumpers. In other

Fig. 5. Algorithm BUJI deals with the leaf nodes first, and then call Subrou-
tines LessEqual and More to deal with the subleaf nodes.

words, given a routing tree T = (V,E) and an upper bound on
the antenna Lmax, we intend to add the minimum number of
cutting nodes so that the effective edge weight associated with
each node is smaller than Lmax. Let L(u) denote the sum of
edge weights (wire lengths, wire areas, wire perimeter limit,
the ratio of antenna strength, etc.) between the node u and all
its neighbors. We formulate the problem of jumper insertion
on a routing tree for antenna avoidance/fixing as a tree-cutting
problem as follows:

• Jumper Insertion on a Routing Tree for Antenna Avoid-
ance (Problem JITA): Given a routing tree T = (V,E)
and an upper bound Lmax, find the minimum set C of
cutting nodes, c �= u for any c ∈ C and u ∈ V , so that
L(u) ≤ Lmax, ∀u ∈ V .

III. ALGORITHM FOR FINDING THE MINIMUM |C|
For the JITA problem, we present in this section an O(V )-

time optimal algorithm, named Bottom-Up Jumper Insertion
(BUJI), for finding the minimum cutting set C for a given
routing tree T = (V,E) with V nodes (note that we use V
to denote the set or the number of nodes in a routing tree).
Algorithm BUJI is summarized in Fig. 5. To simplify the
presentation, we assume that the antenna bound Lmax is
measured by wire length. Let l(e) [or l(u, v)] be the length
(i.e., weight) of the edge e = (u, v) in T . Let p(u) denote node
u’s parent. In the BUJI algorithm, we add the cutting nodes
into the original tree in a bottom-up manner. We first define a
subleaf node as follows.
Definition 1: A subleaf is a node for which all its children

are leaf nodes, and all the edges between it and its children have
lengths ≤ Lmax.

We derive the algorithm based on the following two steps.
Step 1) (lines 2–8 of Algorithm BUJI): Deal with every leaf

node. In this case, our main goal is to prevent every
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Fig. 6. Explanation of lines 5–8 in the BUJI algorithm.

Fig. 7. Case when totallen ≤ Lmax.

leaf node from antenna violation. Obviously, if we
have dealt with a leaf node, we need not consider it
any more. Therefore, line 3 of the BUJI algorithm
marks these nodes to ensure that every leaf node is
processed only once. If l(u, p(u)) ≤ Lmax, the leaf
node u satisfies the antenna rule, and thus, we do
nothing. However, if l(u, p(u)) > Lmax, we might
have to add cutting nodes to satisfy that L(u) ≤
Lmax. For this case, we can further divide it into two
subcases as follows.
1) u ∈ C: In this subcase, since u is not a gate

terminal, we need not insert any cutting node to
prevent it from violating antenna rules.

2) u �∈ C: In this subcase, we need at least one
cutting node to prevent u from antenna viola-
tion. We claim that l(u, c) = Lmax (and thus
l(c, p(u)) = l(u, p(u))− Lmax) gives the best
position for inserting the cutting node (the proof
is given in the next section; see Fig. 6 for an
illustration). Therefore, we add c into C, add c
into V , and cut the node u and edge e(u, c) from
the original tree T (lines 5–8).

Step 2) (lines 9–14 of BUJI): Deal with every subleaf node.
In this case, our main goal is to prevent every subleaf
node from antenna violation. Moreover, we delete
some nodes and edges to make each subleaf node
as a leaf node. We classify the subleaf nodes into
two categories by the sum of lengths between the
node and its children. Let up be a subleaf node
and ui, ∀1 ≤ i ≤ k be its children. Let totallen =∑k

i=1 l(ui, up).
Case 2.1) totallen ≤ Lmax: For this case, we apply

the LessEqual subroutine; see Fig. 7. If up

and its children form an isolated compo-
nent, they must satisfy the antenna rule,
and thus, we are done with the subroutine.
If totallen + l(up, p(up)) ≤ Lmax, up will

Fig. 8. (a) Illustration of the LessEqual subroutine. Here, l(up, u1) +
l(up, u2) + l(up, u3) + l(up, c) = Lmax. (b) Illustration of the More
subroutine.

Fig. 9. Case when totallen > Lmax.

not violate the antenna rule. Therefore, we
simply cut up’s children from the original
tree to make up as a leaf node (lines 3–5
in LessEqual). Otherwise, we must add at
least one cutting node c to prevent up from
antenna violation. We claim that l(c, up) +
totallen = Lmax gives the best position for
inserting the cutting node; see Fig. 8(a).
Therefore, we add c into C, and cut up

and all its children from the original tree
T to make c as a leaf node (lines 6–9 in
LessEqual).

Case 2.2) totallen > Lmax: For this case, we apply
the More subroutine; see Fig. 9. We first
introduce the set S = ∪k

i=1{l(e(ui, up))}
from the subleaf node up and its k children.
Then, we apply the linear-time algorithm
SPLIT, as presented in the study in [6], to
split the set S into two disjoint subsets, Sh

and Sl, where Sh is the higher subset and
Sl is the lower subset (to make this paper
self-contained, we also give the SPLIT
algorithm in Fig. 10). The two subsets
have three important properties: 1) for any
a ∈ Sl and any b ∈ Sh, we have a ≤ b;
2)

∑
s∈Sl

s ≤ Lmax; and 3) for any b ∈
Sh, we have

∑
s∈Sl

s + b > Lmax.
Moreover, the SPLIT algorithm will return
the Sh subset. We claim that ci on edge
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Fig. 10. This subroutine returns the required subset Sh from S. Median-find-
and-halve (S) finds the median m of set S and partitions S into two subsets
Sl and Sh, where each element in Sl is ≤ m and each element in Sh is ≥ m.
Moreover, |Sh| ≤ |Sl| ≤ |Sh| + 1.

e(ui, up) with l(ci, up) = 0 [and, thus,
l(ci, ui) = l(up, ui)] and l(e(ui, up)) ∈
Sh, ∀1 ≤ i ≤ |Sh| gives the best positions
for inserting the cutting nodes; see
Fig. 8(b). Therefore, we add c1, . . . , c|Sh|
into C and cut u1, . . . , u|Sh| from the orig-
inal tree T (lines 1–6 in More). Moreover,
we call Subroutine LessEqual to further
reduce up into a leaf node (line 7 in More).

When the total length of the tree T is not larger
than Lmax, Algorithm BUJI terminates, and C is a
cutting set of the minimum size.

It should be noted that we focus on the processing
of gate terminals (sinks) in the preceding discus-
sions. When the source nodes of the routing tree
are encountered, Algorithm BUJI can be applied as
usual by treating the source nodes as cutting nodes,
since the source nodes play the same role as the
cutting nodes for antenna-effect processing.

IV. PROOF OF THE OPTIMALITY OF |C|
Algorithm BUJI is greedy in nature. To prove that Algorithm

BUJI finds the optimal cutting set (of the minimum size), we
have to show that the JITA problem exhibits optimal substruc-
ture and has the greedy-choice property [3]. A problem exhibits
optimal substructure if an optimal solution to the problem
contains within it optimal solutions to the subproblems; a
problem has the greedy-choice property if a globally optimal
solution can be arrived at by making a locally optimal (greedy)
choice [3].
Theorem 1: The JITA problem exhibits optimal substructure.
Proof: We prove this property by contradiction. Given a

tree T = (V,E), suppose that the cutting set C is the optimal
solution of the tree. Every cutting node in C cuts the given
tree into two subtrees. Let some cutting node c ∈ C cut T into
subtree T1 and T2. Let the cutting set C1 ⊆ C(C2 ⊆ C) be the
set of cutting nodes in T1(T2). Thus, C = C1 ∪ C2 ∪ {c}. If
C1 does not form an optimal solution on T1, let C ′1 be the

optimal solution on T1, and thus, |C ′1| < |C1|. Let C ′ = C ′1 ∪
C2 ∪ {c}. We have |C ′| = |C ′1|+ |C2|+ 1 < |C1|+ |C2|+
1 = |C|. This contradicts the assumption of the optimality of
set C. Therefore, the JITA problem has optimal substructure.�

Now, we show that the JITA problem has the greedy-choice
property, and Algorithm BUJI finds the best solution in each
step. First, we show that Algorithm BUJI has greedy-choice
property among all leaf nodes. Then, we show that BUJI has
greedy-choice property among all subleaf nodes.
Lemma 1: Lines 2–8 of Algorithm BUJI finds the best

cutting set so that every leaf node u satisfies the antenna rule
(i.e., L(u) ≤ Lmax,∀ leaf nodes u).

Proof: If l(u, p(u)) ≤ Lmax, leaf node u must satisfy the
antenna rule. Therefore, we do nothing. Otherwise, we must
add at least one cutting node to satisfy the antenna rule. More-
over, if u ∈ C, since u is not a gate terminal, we need not insert
any cutting node to prevent it from violating antenna rules.

In lines 5–8, we deal with the case when u is not a cutting
node. In this case, we must insert at least one cutting node
between u and p(u) to prevent u from antenna violation.
The possible cutting range is represented by a thick line in
Fig. 6. Let the optimal solution add the cutting node c′ between
u and up with L(u) ≤ Lmax and L(p(u)) ≤ Lmax. Because
l(c, p(u)) = l(u, p(u))− Lmax ≤ l(c′, p(u)), if we replace c′

with c, the antenna rule that L(u) ≤ Lmax is satisfied, and
the antenna rule that L(p(u)) ≤ Lmax is more tightly satisfied.
Therefore, among all nodes on the cutting range, c is the best
position of adding cutting nodes. �

We proceed to show that lines 9–14 in BUJI finds the best
cutting set for each subleaf node up. In this step, we classify the
subleaf nodes into two categories based on the sum of lengths
between up and its children ui:

∑k
i=1 l(up, ui) ≤ Lmax and

∑k
i=1 l(up, ui) > Lmax. Therefore, we show that each case is

with the greedy-choice property, and we find the best cutting
set in each case.
Lemma 2: Subroutine LessEqual finds the best cutting

set so that every subleaf node up satisfies the antenna
rule [i.e., L(up) ≤ Lmax,∀ subleaf nodes up satisfying
∑k

i=1 l(up, ui) ≤ Lmax, where up = p(ui)].
Proof: If up and its children form an isolated compo-

nent, they must satisfy the antenna rule. Therefore, we do
nothing. If

∑k
i=1 l(ui, up) + l(up, p(up)) = L(up) ≤ Lmax is

satisfied, up satisfies the antenna rule, and thus, we need
no cutting node. As a result, we can directly make up as
a leaf node without adding any cutting nodes in line 5 of
Subroutine LessEqual. Otherwise, because

∑k
i=1 l(ui, up) +

l(up, p(up) > Lmax, we need to insert at least one cutting
node to maintain L(up) ≤ Lmax. Therefore, the least num-
ber of cutting nodes is one. The possible cutting range is
represented by a thick line in Fig. 8(a). Suppose that the
optimal solution adds cutting node c′ other than c to maintain
L(up) ≤ Lmax and L(p(up)) ≤ Lmax. For the case that c′ is
on edge e(up, c), since l(c, p(up)) = l(up, p(up))− l(c, up) ≤
l(c′, p(up)) = l(up, p(up))− l(c′, up) if we replace c′ with c,
L(up) ≤ Lmax is satisfied, and L(p(up)) ≤ Lmax is satisfied
more tightly. For the case that c′ is on some edge between up

and its children, since l(c, p(up)) = l(up, p(up))− l(c, up) ≤
l(up, p(up)) if we replace c′ with c, L(up) ≤ Lmax is satisfied,
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and L(p(up)) ≤ Lmax is satisfied more tightly. Therefore, c is
the best position for adding the cutting node. �
Lemma 3: Subroutine More finds the best cutting set so that

every subleaf node up satisfies the antenna rule [i.e., L(up) ≤
Lmax,∀ subleaf nodes up satisfying

∑k
i=1(l(up, ui)) > Lmax,

where up = p(ui)].
Proof: By the proof of the study in [6], we know that the

set S = Sl ∪ Sh has the following three properties.
1) For any a ∈ Sl and any b ∈ Sh, we have a ≤ b.
2)

∑
s∈Sl

s ≤ Lmax.
3) For any b ∈ Sh, we have

∑
s∈Sl

s + b > Lmax.
Using the properties above, we can easily verify that Sl is the

set with
∑

s∈Sl
s ≤ Lmax, and the size of the set is maximized.

Moreover, if two or more sets have the same maximum size
and satisfy the same summation rule, Sl is the one with the
minimum

∑
s∈Sl

s value. Since
∑

s∈Sl
s ≤ Lmax, we need no

cutting nodes inside the set, but we must add cutting nodes on
every edge in Sh. Since Sl’s size is maximized, the minimum
number of cutting nodes is |S| − |Sl| = |Sh|. Moreover, every
edge e(ui, up) with l(e(ui, up)) ∈ Sh needs a cutting node.
The cutting range of every edge e(ui, up) is represented by
the thick line shown in Fig. 8(b). Let the optimal solution
choose the set S ′l (and S ′h = S \ S ′l) with the optimal size
|Sl| such that the optimal solution does not add any jumper
on edge e(u′i, up), ∀l(e(u′i, up)) ∈ S ′l. In addition, let the
optimal solution select |Sh| cutting nodes c′1, c′2, . . . , c

′
|Sh|.

Since l(ci, up) = 0 ≤ l(c′i, up), ∀1 ≤ i ≤ |Sh|, and
∑

s∈Sl
s ≤

∑
s′∈S′

l
s′, L(up) =

∑
s∈Sl

s +
∑|Sh|

i=1 0 + l(up, p(up)) ≤
L′(up) =

∑
s′∈S′

l
s′ +

∑|Sh|
i=1 l(c′i, up) + l(up, p(up)). Thus, if

we replace each c′i by c0, the antenna rule on up is satisfied
more tightly. Therefore, c1, . . . , c|Sh| are the best positions for
adding the cutting nodes. As a result, we can cut the original
tree T and call Subroutine LessEqual (line 7 in More) to further
reduce up into a leaf node. �

Based on the above theorem and lemmas, we have the
following theorem.
Theorem 2: The BUJI algorithm finds an optimal solution.
Proof: By Lemmas 2 and 3, lines 9–14 of Algorithm

BUJI exhibit the greedy-choice property on subleaf nodes.
Moreover, by Lemma 1, lines 2–8 of Algorithm BUJI also
exhibit the greedy-choice property on leaf nodes. Therefore,
Algorithm BUJI has the greedy-choice property on both leaf
nodes and subleaf nodes. Since Algorithm BUJI has the greedy-
choice property and the JITA problem has optimal substructure
property (by Theorem 1), Algorithm BUJI finds an optimal
cutting set, which is based on the theory presented in [3]. �

V. COMPLEXITY ANALYSIS

We analyze the time and space complexity of Algorithm
BUJI in this section.

A. Time Complexity

In the BUJI algorithm, we use the bottom-up method to
find the optimal solution for a given routing tree. We consider
each leaf and each subleaf only once. Since every node in

Fig. 11. u, v1, and v2 are gate terminals, and s is a Steiner point. Charges
accumulated on edges e(u, s), e(s, v1), and e(s, v2) will all cause antenna
effect on u.

the tree might be a subleaf and might be cut into a leaf, we
traverse each node at most twice. When we traverse a leaf node,
it takes only constant time. When we traverse subleaf nodes
using Subroutine LessEqual, it also takes only constant time.
In Subroutine More, we use the linear-time SPLIT algorithm
to find the set Sh. This step needs constant time on each node.
Furthermore, we use constant time to cut the tree. Thus, the
More subroutine requires constant time on each node. To sum
up, we traverse each node at most twice, and in each traversal,
we compute each node in constant time. Therefore, the total
time complexity of the BUJI algorithm is O(V ), where V is the
number of nodes in the given routing tree.

B. Space Complexity

All we need to store are the tree T and the cutting set
C. A tree needs only O(V + E) space. Moreover, according
to the algorithm, we add at most two cutting nodes for each
edge. Therefore, we need O(E) space to keep the set C. Since
O(E) = O(V ) in a tree, the total space complexity is O(V ).
We have the following theorem.
Theorem 3: Algorithm BUJI optimally solves the JITA prob-

lem in O(V ) time using O(V ) space, where V is the number of
vertices in the routing tree.

VI. EXTENSIONS

We extend the aforementioned optimal jumper-insertion al-
gorithm on spanning trees to Stenier trees and consider the
restrictions induced by routing obstacles in this section.

A. Jumper Insertion on Steiner Trees

Because Steiner points are just wire junctions, they cannot
help discharge the wire. See Fig. 11 for an illustration, where
u, v1, and v2 are gate terminals and s is a Steiner point. The
charges accumulated on edges e(u, s), e(s, v1), and e(s, v2)
will all cause antenna effect on the gate terminal u.

As a result, we have to modify our algorithm to deal with
Steiner trees. We present in this section an O(V )-time opti-
mal algorithm, named Bottom-Up Jumper Insertion on Steiner
Trees (BUJIST), for finding the minimum cutting set C for a
given routing tree T = (V,E) with V nodes. Let T = (V,E)
be a Steiner tree. Let the set VG of nodes represent all gate
terminals, and the set VN of nodes represent all other nodes
in the tree, including Steiner points, source nodes, and cutting
nodes. Thus, we have V = VG ∪ VN . Let the set E of edges
denote the wires connecting the circuit terminals or junctions
and an edge weight give the measure of the wires with the same
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Fig. 12. Algorithm BUJIST deals with the leaf nodes first, and then calls
Subroutines LessEqualST and MoreST to deal with the subleaf nodes.

unit as Lmax. For every node u ∈ V , let w(u) be the weight
function of u. The weight function records the accumulated
edge weights that connect to node u from the processed nodes
(Algorithm BUJIST is summarized in Fig. 12).

Now, we explain how to modify the BUJI algorithm for the
BUJIST one.

Step 1) (lines 1–2 of Algorithm BUJIST): Set the ini-
tial weight function value for each node u. w(u)
records the edge weight that affects node u from the
processed nodes. We first set w(u)← 0 for every
node u ∈ V , since no nodes have been processed in
the beginning.

Step 2) (lines 4–10 of Algorithm BUJIST): Deal with every
leaf node. Since we use w(u) to record the accu-
mulated edge weight from the processed nodes, we
must use w(u) + l(u, p(u)) [instead of l(u, p(u))]
to check whether node u satisfies the antenna rules
or not. The other processes in this part remain
the same.

Step 3) (lines 11–19 of BUJIST): Deal with every subleaf
node. We have three possible cases to consider for
this step. Let totallen =

∑k
i=1 l(ui, up) + w(ui).

Case 3.1) up and all of its children are ∈ VN In
this case, all of up’s children have been
processed. Moreover, up and all its chil-
dren are in VN , and thus, they need not
satisfy the antenna rule. Therefore, we just
combine up and its children into a new
leaf node and record totallen in w(up) (see
lines 13–15 of Algorithm BUJIST).

Case 3.2) totallen ≤ Lmax: For this case, we apply
the LessEqualST subroutine; see Fig. 13. If

Fig. 13. Case when totallen ≤ Lmax.

Fig. 14. Case when totallen > Lmax.

totallen + w(up) + l(up, p(up)) ≤ Lmax,
up will not violate the antenna rule. If
up ∈ VN , it must be a Steiner point, and
all the edges between up and its children
contribute to its weight. Thus, we simply
combine up and its children into a new leaf
node and update its weight as totallen (see
lines 4–5 of Subroutine LessEqualST).
Moreover, if up or any of its children is in
VG, it means that the new leaf node up has
to satisfy the antenna rule, and thus, we
add up into VG. Otherwise, we let up be its
original type (see lines 6–8 of Subroutine
LessEqualST). The other processes in this
part remain the same.

Case 3.3) totallen > Lmax: For this case, we apply
the MoreST subroutine; see Fig. 14. Since
we use w(u) to record the accumulated
edge weights from the processed nodes,
we must use w(u) + l(u, p(u)) [instead of
l(u, p(u))] to check whether node u sat-
isfies the antenna rules or not. The other
processes in this part remain the same.

In fact, the underlying ideas of Algorithm BUJIST are the
same as those of Algorithm BUJI. Therefore, the optimality
proof of Algorithm BUJIST for the JITA problem on Steiner
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trees is similar to that of the BUJI algorithm. Moreover, all of
the modifications in the BUJIST algorithm can be completed
in constant times. Thus, the time complexity of the BUJIST
algorithm is still O(V ). The additional space requirement of
the BUJIST algorithm is the weight function w(u) of every
node u ∈ V , which uses O(V ) space. Therefore, the space
complexity of Algorithm BUJIST is O(V ).
Theorem 4: Algorithm BUJIST optimally solves the JITA

problem on Steiner trees in O(V ) time using O(V ) space,
where V is the number of vertices in the Steiner tree.

B. Jumper Insertion on Steiner Trees With Obstacles

Since jumper-insertion routes a signal wire to the top-most
layer, we must further consider the routing with obstacles in the
active layers—the layers from the current routing layer up to the
top-most layer, which could be prerouted nets, power/ground
nets, clock nets, etc. We can modify the BUJIST algorithm
to deal with the obstacles, called BUJIST with obstacles
(BUJISTO). When some node u violates the antenna rules, we
have to add a cutting node c on edge e(u, p(u)). However, if
the position that the BUJIST algorithm wants to add a jumper
has an obstacle in some upper layer, we can find the optimal
substitution of c to evade from the obstacle. According to the
BUJIST algorithm, we always add cutting nodes at critical
positions on edges. Thus, if we find any substitution that is
closer to p(u) than c, node u will violate the antenna rules. As
a result, we have to find a substitution from edge e(u, p(u))
that is closer to node u than the cutting node c. It is obvious
that when we move a cutting node on edge e(u, p(u)) from
node c toward node u, the first position that evades all obstacles
is the best substitution of the cutting node c. We can use this
method repeatedly when the selected positions of cutting nodes
are occupied by obstacles.

VII. EXPERIMENTAL RESULTS

We implemented the BUJIST, the BUJI, and the BUJISTO
algorithms in the C++ language on a 1.6-GHz Intel Pentium
PC with 256-MB memory under the Windows XP operating
system. We performed two sets of experiments to verify the
quality of 1) the BUJIST and the BUJI algorithms on randomly
generated Steiner/spanning trees and 2) the BUJISTO algorithm
on the layouts from the multilevel router [1], [7] on a set of
commonly used MCNC benchmarks.

A. Randomly Generated Routing Trees

For the JITA problem, we compared this paper with the
International Symposium on Physical Design (ISPD)-04 work
[4] and four heuristic methods. The four heuristics are described
as follows.

1) Heuristic Decreasing Degree with Decreasing Edge
Length (DDDE):
a) Sort the nodes with decreasing order by degrees and,

then, process each node by this order.
b) When dealing with a node u, we first sort its inci-

dent edges by decreasing edge lengths and then add

jumpers on the edges by this order until all antenna
violations are fixed. We apply the following jumper-
insertion rule: If L(u) ≤ Lmax, we need no jumpers
for u to satisfy the antenna rule. Otherwise, we insert
jumpers to satisfy the rule. Considering an edge e of
u, if L(u)− l(e) > Lmax, we add a jumper on e just
beside u to prevent the antenna violation caused by
this edge. Therefore, L(u) is reduced by the amount
l(e). Otherwise, if L(u)− l(e) ≤ Lmax, we add a
jumper on e such that L(u) equals Lmax. With this
insertion scheme, we can make sure that each node in
the routing tree satisfies the antenna rule.

2) Heuristic Increasing Degree with Decreasing Edge
Length (IDDE): This heuristic is the same as the DDDE
heuristic, except that the nodes are sorted with increasing
degrees in the first step.

3) Heuristic Decreasing Degree with Increasing Edge
Length (DDIE): This heuristic is the same as the DDDE
heuristic, except that the edges were sorted with increas-
ing edge lengths in the second step.

4) Heuristic Increasing Degree with Increasing Edge Length
(IDIE): This heuristic is the same as the DDDE heuristic,
except that the nodes were sorted with increasing degrees
in the first step, and the edges were sorted with increasing
edge lengths in the second step.

For comparative study, we first randomly generated tree
nodes on grid planes of the dimension 104 µm× 104 µm,
assuming that each node is a gate terminal. Then, we con-
structed a Steiner tree and a minimum spanning tree based
on the given gate terminals separately. We performed the fol-
lowing three experiments for our BUJIST algorithm, our BUJI
algorithm, the ISPD-04 work [4], and the aforementioned four
heuristics.

1) First, we apply the BUJIST algorithm on Steiner trees,
the BUJI algorithm, the ISPD-04 method, and the four
heuristics on the minimum spanning trees to find the
number of jumpers required for each method to fix all
antenna violations.

2) Second, for a given spanning tree, we find the minimum
number of jumpers required for fixing all antenna viola-
tions for various Lmax values.

3) Third, giving Lmax as a constant, we find the running
times for the algorithms and the heuristics to fix all
antenna violations for routing trees with various numbers
of nodes.

Table I shows the numbers of jumpers required for each
method to fix all antenna violations for a routing tree with
10 to 250 gate terminals by changing Lmax from 50 to
200 µm. Note that this Lmax range is typical for the 90- to
250-nm CMOS technologies. Column 1 gives the number
of gate terminals in the routing tree. Column 2 gives the
Lmax value, and Columns 3, 4, 6, 8, 10, 12, and 14 list the
numbers of jumpers required (#J) for fixing the antenna
violations for each Lmax for the BUJIST algorithm on the
Steiner trees, the BUJI algorithm, the ISPD-04 work [4],
the DDDE, IDDE, DDIE, and IDIE heuristics on minimum
spanning trees, respectively. Columns 5, 7, 9, 11, 13, and 15
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TABLE I
COMPARISONS OF THE NUMBERS OF JUMPERS REQUIRED FOR BUJIST ON STEINER TREES, BUJI, ISPD-04, DDDE, IDDE, DDIE, AND IDIE

ON MINIMUM SPANNING; TREES FOR FIXING ALL ANTENNA VIOLATIONS (NA: THE PERCENTAGE IS NOT AVAILABLE)

TABLE II
COMPARISONS OF THE NUMBERS OF JUMPERS REQUIRED FOR BUJI, ISPD-04, DDDE, IDDE, DDIE, AND IDIE

FOR FIXING ALL ANTENNA VIOLATIONS BASED ON A ROUTING TREE OF 500 000 NODES

give the percentages of additional jumpers required (%More)
for the respective BUJI, ISPD-04, DDDE, IDDE, DDIE, and
IDIE methods over the BUJIST algorithm to fix all antenna
violations, i.e., %More = (#Jumpers of the method−
#Jumpers of BUJIST)/#Jumpers of BUJIST. However, if
the BUJIST algorithm inserts no jumpers in the test case, we
simply mark an “NA” in each corresponding field.

It is obvious that our BUJI and BUJIST algorithms outper-
form other methods significantly. Note that we list the results
of the BUJIST algorithm here just for readers’ reference. The
BUJIST algorithm works on Steiner trees, while other methods
all apply on minimum spanning trees. Since Steiner trees have
less total edge lengths than minimum spanning trees, the accu-
mulated charges on Steiner trees are also smaller than those on
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Fig. 15. Numbers of jumpers required to fix antenna violations for various
Lmax values.

minimum spanning trees. Therefore, the BUJIST algorithm gets
some advantage over other methods in the number of jumpers
required to fix the antenna violations. Nevertheless, judging
from the results of the BUJI algorithm (which also works
on minimum spanning trees), the behavior of our algorithm
is the major key to the significant reduction in the jumpers
required.

In order to have a fair comparison, we also compared the
BUJI algorithm, the ISPD-04 method, and the four heuristics
on the same minimum spanning trees. Moreover, in order to
show the scalability of the algorithms/heuristics, we conducted
the experiment on a minimum spanning tree with 500 000
nodes. Table II shows the numbers of jumpers required for
fixing all antenna violations for the minimum spanning tree
by changing Lmax from 50 to 800 µm. Column 1 gives the
Lmax value, and Columns 2, 3, 5, 7, 9, and 11 list the numbers
of jumpers required (#Jump) for fixing the antenna violations
for each Lmax for the BUJI algorithm, the ISPD-04 work [4],
the DDDE, IDDE, DDIE, and IDIE heuristics, respectively.
Columns 4, 6, 8, 10, and 12 give the percentages of additional
jumpers required (%More) for the respective ISPD-04, DDDE,
IDDE, DDIE, and IDIE methods over the BUJI algorithm
to fix all antenna violations, i.e., %More = (#Jumpers
of the heuristic−#Jumpers of BUJI)/#Jumpers of BUJI. In
Fig. 15, the numbers of jumpers required for fixing antenna
violations are plotted as functions of the Lmax values.
From the above experiments, tables, and curves, we have the
following findings.

1) It is not surprising that BUJI performs much better than
the other five methods. The phenomenon can be explained
as follows: When we deal with nodes in a bottom-up
manner, BUJI always pushes the jumper upward until at
a position that just satisfies the antenna rule, adding more
freedom and thus reducing the chance of antenna viola-
tions for the upper nodes. Therefore, BUJI can save a sig-
nificant number of jumpers for antenna avoidance/fixing.
In contrast, the other five methods do not have such an
optimization scheme. Considering %More, BUJI outper-

forms ISPD-04 by as large as 49.3% for Lmax = 150 µm,
DDDE and IDDE by as large as 38.6% for Lmax =
200 µm, and DDIE and IDIE by as large as 80.1% for
Lmax = 150 µm. Considering the number of jumpers
inserted, BUJI requires fewer jumpers than the other five
methods. Moreover, the smaller the Lmax, the bigger
the difference in the number of jumpers required. For
example, when Lmax = 50 µm, ISPD-04 needs 137 863
more jumpers than BUJI, the DDDE and IDDE heuristics
need 96 095 more jumpers, and the DDIE and IDIE
heuristics even need 199 905 more jumpers. However,
when Lmax = 800 µm, the results for the six methods are
the same. This is a reasonable phenomenon. The smaller
the Lmax, the more likely the antenna violation occurs.
Therefore, more jumpers are needed, and more decisions
of choosing the positions for the jumpers must be made.
Thus, the superiority of BUJI is more apparent. When
Lmax is larger, fewer antenna violations occur and thus
fewer jumpers are needed for fixing the violations. More-
over, the ranges for feasible jumper insertions are larger
because the tolerances for the jumper positions are larger.

2) Heuristics DDDE and IDDE obtain almost the same
results and so do the heuristics DDIE and IDIE. Fur-
thermore, heuristics DDDE and IDDE outperform the
heuristics DDIE and IDIE. The results reveal that edge
lengths are more critical than node degrees for jumper
insertion for fixing antenna violations. Moreover, the
result shows that adding jumpers on edges in a decreasing
edge-length order results in better solution quality than
adding jumpers in an increasing edge-length order. This
phenomenon is consistent with the underlying idea used
in the More subroutine of the BUJI algorithm.

Table III shows the CPU times required for antenna fixing
on routing trees of the number of nodes ranging from 100 000
to 1 000 000, based on Lmax = 50 µm. Column 1 gives the
numbers of nodes in the routing trees. Because the numbers of
nodes are so huge, the program spent most of the CPU times
on reading the input files. Therefore, we list the CPU times
for reading the input files and running the algorithm/heuristics
separately in order to examine the time complexity more
closely. The second column (File) gives the CPU times for
reading the input files. The first (Main) and second (Total)
columns in each algorithm/heuristic give the respective CPU
times for executing the main body of the algorithm/heuristic
and running the both parts combined.

In Fig. 16, the CPU time for executing the main body of
the algorithm/heuristic is plotted as a function of the number
of nodes in the routing tree. As shown in the table and the
figure, the empirical running times for the six methods are
close to linear, and BUJI requires slightly smaller CPU times
than the other five methods for fixing antenna violations. In
particular, BUJI requires only 6.5 s to find an optimal solution
for a routing tree of one million nodes. Therefore, the BUJI
algorithm can handle a test case of a very huge number of
nodes in very short time. Fig. 17 shows a layout resulting from
BUJI with 429 jumpers for antenna fixing on a routing tree
with 1615 nodes on the plane, based on Lmax = 500 µm.



1828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 10, OCTOBER 2007

TABLE III
COMPARISONS OF THE CPU TIMES REQUIRED FOR BUJI, ISPD04, DDDE, IDDE, DDIE, AND IDIE

TO FIX THE ANTENNA VIOLATIONS, BASED ON Lmax = 50 µm

Fig. 16. CPU times required for antenna fixing for routing trees of various
numbers of nodes.

Fig. 17. Layout resulting from the BUJI algorithm with 429 jumpers for
antenna fixing on a tree with 1615 nodes. Circles denote the nodes of the routing
tree and the × signs denote the inserted jumpers.

B. MCNC Layouts

We also performed experiments based on the layouts gener-
ated from the multilevel routers in the study in [1] and [7] on a

TABLE IV
MCNC BENCHMARK STATISTICS

TABLE V
ANTENNA FIXING RATES

set of commonly used MCNC benchmarks to test the quality
of our BUJISTO algorithm. The statistics of the benchmark
circuits are listed in Table IV. Six test cases are chosen from
the MCNC benchmarks since only these test cases record the
source and sink information for each net. The column “Circuit”
denotes the circuit name, “Size” denotes the circuit dimension,
“# Layers” denotes the number of routing layers, “# Nets”
denotes the number of nets, and “# Pins” denotes the number
of pins.

The antenna threshold Lmax set in [4] is 100 µm; in this
paper, 50 and 100 µm are both tested. See Table V for the
experimental results. The results show that our BUJISTO algo-
rithm can significantly reduce the number of antenna violations.
For Lmax = 100 µm, the fixing rates range from 55.10% to
89.80% with the average 68.16%; for Lmax = 50 µm, the
fixing rates range from 55.10% to 68.4% with the average
58.60%. The fixing rate for Lmax = 100 µm is higher, since a
larger antenna threshold leads to higher flexibility for finding
a cutting point for jumper insertion. Furthermore, the fixing
rates highly depend on the routing configurations, particularly
the routing obstacles in the current and upper layers for jumper
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insertion. A sparser layout implies fewer obstacles for jumper
insertion. Consequently, the sparser the layout, the higher the
fixing rate.

VIII. CONCLUSION

We have presented a linear-time optimal jumper-insertion
algorithm for avoiding/fixing antenna violations on routing
trees. It is the first optimal algorithm for the general tree-cutting
problem. Empirical results have shown that our algorithm uses
linear time and obtains solutions of very high quality. This
paper can apply to any routing trees (could be a net to be
globally routed or a net after detailed routing) and thus readily
be incorporated into a router for antenna-effect avoidance or a
postlayout optimizer for antenna-violation fixing.
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