
1228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

NTUplace3: An Analytical Placer for Large-Scale
Mixed-Size Designs With Preplaced Blocks and

Density Constraints
Tung-Chieh Chen, Student Member, IEEE, Zhe-Wei Jiang, Student Member, IEEE, Tien-Chang Hsu,

Hsin-Chen Chen, Student Member, IEEE, and Yao-Wen Chang, Member, IEEE

Abstract—In addition to wirelength, modern placers need to
consider various constraints such as preplaced blocks and den-
sity. We propose a high-quality analytical placement algorithm
considering wirelength, preplaced blocks, and density based on
the log-sum-exp wirelength model proposed by Naylor et al. and
the multilevel framework. To handle preplaced blocks, we use a
two-stage smoothing technique, i.e., Gaussian smoothing followed
by level smoothing, to facilitate block spreading during global
placement (GP). The density is controlled by white-space reallo-
cation using partitioning and cut-line shifting during GP and cell
sliding during detailed placement. We further use the conjugate
gradient method with dynamic step-size control to speed up the GP
and macro shifting to find better macro positions. Experimental
results show that our placer obtains very high-quality results.

Index Terms—Legalization (LG), physical design, placement.

I. INTRODUCTION

A S process technology advances, the feature size is getting
smaller and smaller. As a result, billions of transistors can

be integrated in a single chip. Meanwhile, the intellectual prop-
erty modules and predesigned macro blocks (such as embedded
memories, analog blocks, predesigned datapaths, etc.) are often
reused. As a result, modern advanced IC designs often contain
millions of standard cells and hundreds of macros with different
sizes. Hence, modern placers need to handle the instances with
large-scale mixed-size macros and standard cells.

Manuscript received September 17, 2006; revised August 18, 2007. This
work was supported in part by MediaTek Inc., National Science Council of
Taiwan, R.O.C., under Grant NSC 94-2215-E-002-030 and Grant NSC 94-
2752-E-002-008-PAE, and in part by RealTek Semiconductor Corporation.
This paper was recommended by Associate Editor C. J. Alpert.

T.-C. Chen is with the Graduate Institute of Electronic Engineering, National
Taiwan University, Taipei 106, Taiwan, R.O.C. He is also with SpringSoft, Inc.,
Hsinchu 300, Taiwan, R.O.C. (e-mail: donnie@eda.ee.ntu.edu.tw).

Z.-W. Jiang is with the Graduate Institute of Electronic Engineering, Na-
tional Taiwan University, Taipei 106, Taiwan, R.O.C. (e-mail: crazying@eda.
ee.ntu.edu.tw).

T.-C. Hsu was with the Graduate Institute of Electronic Engineering, Na-
tional Taiwan University, Taipei 106, Taiwan, R.O.C. He is now with Synopsys
Taiwan Ltd., Taipei 110, Taiwan, R.O.C. (e-mail: tchsu@eda.ee.ntu.edu.tw).

H.-C. Chen was with the Department of Electrical Engineering, National
Taiwan University, Taipei 106, Taiwan, R.O.C. He is currently serving in the
military in Taiwan, R.O.C. (e-mail: indark@eda.ee.ntu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan, R.O.C., and also with Waseda University, Tokyo 169-8050, Japan
(e-mail: ywchang@cc.ee.ntu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.923063

In addition, high-performance IC designs usually require sig-
nificant white space for further performance optimization, such
as buffer insertion and gate sizing. Therefore, density control
and white-space allocation (WSA) have become very impor-
tant. A wirelength-driven placer without considering placement
density tends to pack blocks together to minimize wirelength.
However, an overcongested region may not have enough white
space for buffer insertion and thus degrade the chip perfor-
mance. Although some congestion-aware placement algorithms
were proposed [3], [4], these algorithms intend to minimize the
routing congestion, which is different from the density control
since the density can still be high for some regions even if no
routing overflows occur in those regions.

Further, modern chip designs often consist of many pre-
placed blocks, such as analog blocks, memory blocks, and/or
I/O buffers, which are fixed in the chip and cannot overlap with
other blocks. These preplaced blocks impose more constraints
on the placement problem. A placement algorithm without
considering preplaced blocks may generate illegal placement
or inferior solutions.

Most of the recently proposed placement algorithms can
handle the mixed-size constraints [5]–[11]. However, very few
modern mixed-size placement algorithms can satisfactorily
handle preplaced blocks and the chip density. In this paper,
we present a high-quality mixed-size analytical placement algo-
rithm considering preplaced blocks and density constraints. Our
placer is based on a three-stage technique: 1) global placement
(GP); 2) legalization (LG); and 3) detailed placement (DP). It
has the following distinguished features.

1) Based on the log-sum-exp wirelength model1 proposed
by Naylor et al. [2] and the multilevel framework,
our placer consistently generates high-quality mixed-size
placement results.

2) To solve the unconstrained minimization placement prob-
lem, we use the conjugate gradient (CG) method with
dynamic step sizes. Experimental results show that the
method leads to significant run-time speedups.

3) Our placer handles preplaced blocks by a two-stage
smoothing technique. The preplaced block potential is
first smoothed by a Gaussian function to remove the
rugged potential regions, and then the potential levels are

1The log-sum-exp wirelength model is a patented technology [2], and use
requires a license from Synopsys.

0278-0070/$25.00 © 2008 IEEE

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1229

TABLE I
COMPARISONS BETWEEN OUR PLACER AND APLACE AND mPL; ALL THE PLACERS ARE BASED ON THE ANALYTICAL TECHNIQUE AND THE

LOG-SUM-EXP WIRELENGTH MODEL. UNKNOWN: NOT MENTIONED IN THE CORRESPONDING WORK

smoothed so that movable blocks can effectively spread
to the whole placement region.

4) Density constraints are considered during both GP and
DP. We reallocate the white space using partitioning and
cut-line shifting to remove density overflows between
different levels of GP. In DP, a cell-sliding technique is
applied to reduce the density overflow.

5) A macro shifting technique is used between levels of GP
to find better macro positions that are easier for LG.

6) A look-ahead LG scheme during GP is used to obtain
a better legal placement result. The legalizer is called
several times near the end of GP. This technique can
reduce the gap between GP and LG.

Table I summarizes the comparisons between our placer and
two state-of-the-art analytical placers, i.e., APlace 2.0/3.0 [12],
[13] and mPL5/6 [6], [14], which are also based on the log-sum-
exp wirelength model. In the table, “Unknown” denotes that the
corresponding method is not available in the literature.

The remainder of this paper is organized as follows.
Section II gives the analytical model used in our placer.
Our core placement techniques are explained in Section III.
Section IV reports the experimental results. Finally, the con-
clusions are given in Section V.

II. ANALYTICAL PLACEMENT MODEL

The circuit placement problem can be formulated as a
hypergraph H = (V,E) placement problem. Let the vertices
V = {v1, v2, . . . , vn} represent blocks and the hyperedges E =
{e1, e2, . . . , em} represent nets. Let xi and yi be the x and y
coordinates of the center of block vi, and let ai be the area of
the block vi. The circuit may contain some preplaced blocks
that have fixed x and y coordinates and cannot be moved. We
intend to determine the optimal positions of movable blocks so
that the total wirelength is minimized and there is no overlap
among blocks. The placement problem is usually solved in
three stages: 1) GP; 2) LG; and 3) DP. GP evenly distributes the
blocks and finds the best position for each block to minimize the
target cost (e.g., wirelength). Then, LG removes all overlaps.
Finally, DP refines the solution.

Fig. 1 shows the notation used in this paper.

Fig. 1. Notation used in this paper.

To evenly distribute the blocks, we divide the placement
region into uniform nonoverlapping bin grids. Then, the GP
problem can be formulated as a constrained minimization prob-
lem as follows:

min W (x,y)

s.t. Db(x,y) ≤ Mb, for each bin b (1)

where W (x,y) is the wirelength function, Db(x,y) is the
potential function that is the total area of movable blocks in
bin b, and Mb is the maximum allowable area of movable blocks
in bin b. Mb can be computed by

Mb = tdensity(wbhb − Pb) (2)

where tdensity is a user-specified target density value for each
bin, wb (hb) is the width (height) of bin b, and Pb is the base
potential that equals the preplaced block area in bin b. Note that
Mb is a fixed value as long as all preplaced block positions are
given and the bin size is determined.

The wirelength W (x,y) is defined as the total half-perimeter
wirelength (HPWL)

W (x,y) =
∑
net e

(
max

vi,vj∈e
|xi − xj | + max

vi,vj∈e
|yi − yj |

)
. (3)

Since W (x,y) is not smooth and nonconvex, it is hard to
directly minimize it. Thus, several smooth wirelength approx-
imation functions are proposed, such as quadratic wirelength

1230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

[15], [16], Lp-norm wirelength [13], [14], and log-sum-exp
wirelength [2], [5], [6]. The log-sum-exp wirelength model

γ
∑
e∈E

(
(log

∑
vk∈e

exp(xk/γ) + log
∑
vk∈e

exp(−xk/γ)

+ log
∑
vk∈e

exp(yk/γ) + log
∑
vk∈e

exp(−yk/γ)

)
(4)

proposed in [2] achieves the best result among these three
models [14]. When γ is small, the log-sum-exp wirelength is
close to the HPWL [2]. However, due to the computer precision,
we can only choose a reasonably small γ, for example, 1%
long of the chip width, so that it will not cause any arithmetic
overflow.

Since the density Db(x,y) is neither smooth nor differen-
tiable, mPL [14] uses inverse Laplace transformation to smooth
the density, whereas APlace [5] uses a bell-shaped function
for each block to smooth the density. We express the function
Db(x,y) as

Db(x,y) =
∑
v∈V

Px(b, v)Py(b, v) (5)

where Px and Py are the overlap functions of bin b and block v
along the x- and y-directions. We adopt the bell-shaped poten-
tial function [5] px to smooth Px. px is defined by

px(b, v)=




1 − ad2
x, 0 ≤ dx ≤ wv

2 + wb

b
(
dx− wv

2 −2wb

)2
, wv

2 +wb≤dx ≤ wv

2 + 2wb

0, wv

2 + 2wb ≤ dx

(6)
where

a =
4

(wv + 2wb)(wv + 4wb)

b =
2

wb(wv + 4wb)
(7)

wb is the bin width, wv is the block width, and dx is the center-
to-center distance of the block v and the bin b in the x-direction.
Fig. 2(a) and (b) shows the original and smoothed overlap
functions, respectively. The range of the block’s potential is
wv + 4wb in the x-direction. The smooth y-potential function
py(b, v) can be defined in a similar way, and the range of
the block’s potential is hv + 4hb in the y-direction. By doing
so, the nonsmooth function Db(x,y) can be replaced by a
smooth one

D̂b(x,y) =
n∑

v∈V

cvpx(b, v)py(b, v) (8)

where cv is a normalization factor so that the total potential of
a block equals its area.

The quadratic penalty method is used to solve (1), implying
that we solve a sequence of unconstrained minimization prob-

Fig. 2. (a) Overlap function Px(b, v). (b) Smoothed overlap function
px(b, v).

lems of the form

min W (x,y) + λ
∑

b

(
D̂b(x,y) − Mb

)2

(9)

with increasing λ’s. The solution of the previous problem is
used as the initial solution for the next one. We solve the
unconstrained problem in (9) by the CG method. Further, we
observe that CG with line search in [5] is not efficient since
the line-search method takes most portion of its runtime for the
minimization process. Therefore, we use CG with a dynamic
step size to minimize (9). Numerical results show that our
approach is much faster than that used in [5].

III. PROPOSED ALGORITHM

As mentioned earlier, our placement algorithm consists of
three stages: 1) GP; 2) LG; and 3) DP. We detail each stage in
the following sections.

A. GP

Our placement algorithm is based on the aforementioned an-
alytical technique and the multilevel framework. The multilevel
framework adopts a two-stage flow of clustering followed by
declustering. At each level of declustering, GP is performed to
find the best positions for macros and standard cells. For the
analytical search, the CG search with dynamic step-size control
is adopted to speed up the search for a desirable solution. To
handle preplaced blocks, we resort to a two-stage smoothing
technique of Gaussian smoothing followed by level smoothing
to smooth the search space and thus facilitate cell spreading. To
control the chip density, we apply white space distribution to
allocate more white space to areas with density overflows.
To facilitate macro and cell LG, we further apply macro shifting
and look-ahead LG (described in Section III-B2) at the GP
stage. We detail the aforementioned techniques in the following
sections.
1) Multilevel Framework: We use the multilevel framework

for GP to improve the scalability. Our algorithm is summarized
in Fig. 3. Lines 1–4 are the coarsening stage. The initial
placement is generated in line 5. Lines 6–23 are uncoarsening
stages. The details of each step are explained as follows.

During the coarsening stage, we cluster blocks to reduce the
number of movable blocks. The hierarchy of clusters is built
by the first-choice (FC) clustering algorithm [14]. To apply the

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1231

Fig. 3. Our multilevel GP algorithm.

FC clustering algorithm, we examine each block in the circuit
one-by-one, find the block with the highest connectivity, and
cluster these two blocks. We control the area of a clustered
block so that it will not be 1.5 times larger than the average area
of clustered blocks. The clustering process continues until the
number of blocks is reduced by five times, and then we obtain a
level of clustered circuit. The FC clustering algorithm is applied
several times until the block number in the resulting clustered
circuit is less than a user-specified number nmax, for example,
6000 by default.

After clustering, the initial placement for the coarsest level
is generated by minimizing the quadratic wirelength using the
CG method, the same method as in quadratic placement.

Then, we solve the placement problem from the coarsest
level to the finest level. The placement for the current level
provides the initial placement for the next level. The horizontal/
vertical grid numbers are set to the square root of the num-
ber of clusters in the current level, i.e., grid_num_v =
grid_num_h =

√
BlockNumber(Hlevel). Then, the base po-

tential Pb for each bin is computed, and the maximum area
of movable blocks Mb is updated accordingly. In addition, the
value of λ is initialized according to the strength of wirelength
and density gradients as

λ =
∑ |∂W (x,y)|∑∣∣∣∂D̂b(x,y)

∣∣∣ (10)

and the value of λ is increased by two times for each iteration.
A CG solver with dynamic step-size control is used to solve the
constrained minimization problem in (1) (in lines 10–17).

During uncoarsening, all blocks inside a cluster inherit the
center position of the original cluster. Macro shifting for LG
and WSA for density control are applied between uncoarsening
levels. We will explain them in Sections III-A4 and A5, respec-
tively. Then, the blocks are declustered, providing the initial
placement for the next level.

To measure the evenness of the block distribution, discrep-
ancy is used in [5]. They define discrepancy as the maximum
ratio of the actual total block area to the maximum allowable
block area over all windows within the chip. Unlike their
method, we use the overflow ratio to measure the evenness
of block distribution. We define the overflow ratio as the total
overflow area in all bins over the area of total movable blocks
as follows:

overflow_ratio =
∑

b max (Db(x,y) − Mb, 0)∑
total movable area

(11)

where overflow_ratio ≥ 0. The overflow ratio has a more
global view since it considers all overflow areas in the place-
ment region while discrepancy only considers the maximum
density of a window in the placement region. The GP stage
stops when the overflow ratio is less than or equal to a user-
specified target value, which is 0 by default.

Fig. 4 shows the block spreading process (Lines 10–17 of the
algorithm in Fig. 3). Each time we increase the value of λ, solve
the nonlinear equation, and obtain a placement result with fewer
overlaps. The block spreading process continues until the total
overflow ratio is small enough. Then, the spreading process
stops, and all blocks are declustered into the next level.
2) CG Search With Dynamic Step Sizes: We use the CG

algorithm to minimize (9). APlace uses the golden section line
search to find the optimal step size, which takes most portion of
its runtime during the minimization process. Instead, our step
size is computed by a more efficient method. After computing
the CG direction dk, the step size αk is computed by

αk =
swb

‖dk‖2
(12)

where s is a user-specified scaling factor, and wb is the bin
width. By doing so, we can limit the step size of block spreading
since the total quadratic Euclidean movement is fixed as

∑
vi∈V

(
∆x2

i + ∆y2
i

)
= ‖αkdk‖2

2 = s2w2
b (13)

where ∆xi and ∆yi are the amount of movement along the x-
and y-directions for the block vi in each iteration, respectively.

The value of s affects the precision of objective minimiza-
tion; smaller s values lead to better results but longer runtime.
In Fig. 5, the CPU times and HPWLs are plotted as functions
of the step sizes. The CPU time decreases as the step size s
becomes larger. In contrast, the HPWL decreases as the step
size s gets smaller. The results show that the step size signifi-
cantly affects the running time and the solution quality. In our

1232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Fig. 4. Block spreading process. As the overlap weight λ increases, the overlaps are gradually reduced. The process stops when the total overflow ratio is small
enough.

Fig. 5. CPU times and HPWLs resulting from different step sizes based on
the circuit adaptec1.

implementation, we set s between 0.2 and 0.3 to obtain a good
tradeoff between runtime and quality.

Fig. 6 shows our CG algorithm for minimizing the placement
objective during GP.
3) Base Potential Smoothing: Preplaced blocks predefine

the base potential, which significantly affects block spreading
(Fig. 7). Since the base potential Pb is not smooth, it forms
mountains that prevent movable blocks from passing through
these regions. Therefore, we shall smooth the base potential to
facilitate block spreading. We first use the Gaussian function to
smooth the base potential change, removing the rugged regions
in the base potential, and then smooth the base potential level so
that movable blocks can spread to the whole placement region.

The base potential of each block can be calculated by the
bell-shaped function. However, we observe that the potential
generated by the bell-shaped function has “valleys” between the
adjacent regions of blocks. Fig. 8(a) shows the base potential
generated by the bell-shaped function. The z-coordinate is the

Fig. 6. Our nonlinear placement objective solver. This algorithm is called in
Line 11 of the multilevel GP in Fig. 3.

value of Pb/(wbhb). If a bin has z > 1, it means that the
potential in the bin is larger than the bin area. There are several
valleys in the bottom-left regions, as shown in the figure; these
regions do not have free space, but their potentials are so low
that a large number of blocks may spread to these regions. To
avoid this problem, we calculate the exact density as the base
potential and then use the Gaussian function to smooth the base
potential. The 2-D Gaussian has the form

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (14)

where σ is the standard deviation of the distribution. Apply-
ing convolution to the Gaussian function G with the base

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1233

Fig. 7. Preplaced blocks and the corresponding exact base potential for the circuit adaptec2.

Fig. 8. Resulting base potential using different smoothing techniques. The z-coordinate is the value of Pb/(wbhb). Note that for a region with the potential level
>1.0, it means that the base potential in the region is larger than the bin area. (a) Bell-shaped smoothing. (b) Gaussian smoothing, resulting in a better smoothing
potential. (c) Gaussian smoothing with level smoothing. Note that the potential level is between 0.3 and 0.8, in which blocks can more easily be spread to the
whole chip.

potential P as

P ′(x, y) = G(x, y) ∗ P (x, y) (15)

we can obtain a smoother base potential P ′. Gaussian smooth-
ing works as a low-pass filter, which can smooth the local
density change, and the value σ defines the smoothing range. A
larger σ leads to a more smooth potential. In GP, the smoothing
range gradually decreases so that the smoothed potential gradu-
ally approaches the exact density. Fig. 8(b) shows the resulting
potential by making σ equal to 0.25 times the chip width.

After the Gaussian smoothing, we apply another landscape
smoothing function [17], [18] to reduce the potential levels. The
smoothing function P ′′(x, y) is defined as

P ′′(x, y) =

{
P ′ +

(
P ′(x, y) − P ′)δ , if P ′(x, y) ≥ P ′

P ′ − (P ′ − P ′(x, y)
)δ

, if P ′(x, y) ≤ P ′
(16)

where P ′ is the average value of P ′(x, y), and δ ≥ 1. We
normalize P ′ so that every P ′ is between 0 and 1 to ensure
that |P ′(x, y) − P ′| < 1.0. δ decreases from a large number
(e.g., 5) to 1, and a series of level-smoothed potential is
generated. Smoothing potential levels reduce “mountain” (high

potential regions) heights so that movable blocks can smoothly
spread to the whole placement area. Fig. 8(c) shows the result-
ing level-smoothed potential of Fig. 8(b) using δ = 2.
4) Macro Shifting: In the GP stage, it is important to pre-

serve legal macro positions since illegal macro positions may
make the task of LG much more difficult. To avoid this, we
apply macro shifting at each declustering level of the GP stage.
Right after each level of uncoarsening, macro shifting first
determines an order for all unclustered macros by both their
coordinates and sizes (similar to our mixed-size LG described
in Section III-B). Macro shifting then moves those macros to
their closest legal positions by diamond search according to
the predetermined order. Take the GP shown in Fig. 9(a) as an
example. Two macros spread to the positions where no nearby
legal positions can be found. After applying the macro shifting,
we can obtain legal macro positions as shown in Fig. 9(b).

Integrating with our multilevel framework, only macros with
sizes larger than the average cluster size of the current level
are processed. Then, the legal macro positions provide a better
initial solution for the next declustering level, and those macros
are still allowed to spread at subsequent declustering levels.
5) WSA for Density Control: After block spreading, some

regions may still have overflows. We reduce the overflows
by assigning an appropriate amount of white space. Unlike

1234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Fig. 9. Example of macro shifting. (a) A given GP with two macros being
placed at illegal positions. (b) Macro shifting result with legal macro positions.

Fig. 10. (a) Initial partitions with the overflow regions being marked.
(b) Corresponding slicing tree after the bottom-up white space calculation.
(c) Allocated white space amount after the top-down WSA. (d) Corresponding
partitions after the WSA.

the method proposed in [4] that applies WSA to reduce the
routing congestion, we use WSA to remove overflow regions.
We recursively partition the placement region and construct a
slicing tree to record the cut directions and blocks inside the
partition until the partitioned area is similar to that of a GP
bin. To prevent from generating subpartitions with large aspect
ratios, we choose the larger side to evenly divide the partition
into two subpartitions. The process is similar to a partitioning-
based GP flow, and the difference is that we divide the partition
based on geometric locations of blocks instead of the cut size
minimization. Fig. 10(a) shows the initial partitions and the cut
lines, and each partition has an area of 30.

After the construction of the partitions and the slicing tree,
we compute the white space in each partition and update the
data structures for the leaf nodes of the slicing tree. A negative
white space value w < 0 means that the partition has an over-
flow area of |w|. The partitions B, D, and E have overflow areas
of 1, 2, and 5, respectively. Then, the white space of an internal
node can be computed by summing up the white space of its
two children. Fig. 10(b) shows the white space for every node

after the bottom-up process. The white space of the root is 3,
and it should always be greater than or equal to 0, or the blocks
can never fit into the placement region.

After the white space calculation, the white spaces are dis-
tributed to the two children in a top-down process according to
the following rules.

1) If a child node has white space w < 0, we allocate 0 white
space to this child and allocate the remaining white space
to the other child.

2) If the two children both have white spaces greater than
or equal to 0, we allocate the white space proportional to
their original white space amount.

The new partition area a′ can be computed by a′ = a + w′ − w,
where a is the old partitioned area, w is the old white space,
and w′ is the new white space. The cut-line adjustment is also
performed in a top-down fashion. We can know the desired
areas of the two subpartitions from the data structure of the two
children, and then the cut line is accordingly shifted. Fig. 10(c)
shows the WSA after the top-down process, and Fig. 10(d)
illustrates the new partitions after the cut-line adjustment.

Finally, the new block positions can be computed by linear
interpolation of the coordinates of the old partition and the
new one.

B. LG

1) Mixed-Size LG: To obtain a better solution from the
GP result, the LG stage removes all overlaps with minimal
total displacement. We extend the standard-cell LG method in
[19] to solve the mixed-size LG problem. In our LG stage,
the LG orders of macros and cells are determined by their x
coordinates, widths, and heights. The LG priority of a block vi

is given by

priority(vi) = k1xi + k2wi + k3hi (17)

where k1, k2, and k3 are user-specified weights for each term.
(In our implementation, we use k1 = 1000 and k2 = k3 = 1
by default.) Since macros have larger widths/heights, they are
legalized earlier than standard cells when they have the same
x coordinate. Another difference between macros and cells is
that cells are packed into rows while macros are placed to their
nearest available positions.
2) Look-Ahead LG: It is often hard to determine when to

stop the block spreading during GP. If the blocks do not spread
enough, the wirelength may significantly be increased after LG
since the blocks are overcongested. If the blocks spread too
much, the wirelength before LG may not be good, and even the
LG step only slightly increases the wirelength. This situation
becomes even worse when the density is also considered, since
the placement objective is more complex. Thus, we incorporate
the LG process into the GP process (see Fig. 11).

We use a look-ahead LG technique to find a desired solution.
At the finest level, we apply LG after minimizing the nonlinear
objective in each iteration and record the best result that has the
minimum cost (wirelength and density penalty). Although look-
ahead LG may take a longer runtime due to more iterations of
LG, we can ensure that blocks do not overspread and thus obtain

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1235

Fig. 11. (a) Traditional flow, GP followed by LG. (b) A look-ahead LG
scheme during GP is used to obtain a better legal placement result.

a better legal placement. It should be noted that our look-ahead
LG differs from the pre-LG schemes of PATOMA [20] and
PolarBear [21] in two aspects. First, our look-ahead LG is used
to reserve the desired GP result in the finest level, whereas those
of PATOMA and PolarBear are used to guarantee the legality
during their recursive bipartitioning process. Second, our look-
ahead LG applies a Tetris-like LG to find the legalized results,
whereas PATOMA and PolarBear apply the row-oriented block
packing.

In our implementation, we activate the look-ahead LG only
when the overflow_ratio is less than 10%. Usually, the LG is
called about two to four times, and the best legalized result is
reported after GP.

C. DP

In the DP stage, we try to optimize the placement result with-
out moving macro blocks. We use the following techniques:
1) cell matching and branch-and-bound cell swapping for wire-
length optimization and 2) cell sliding for density optimization.
1) Wirelength Minimization: We extend the window-based

DP (WDP) algorithm [10] and name our approach cell matching
here. The WDP algorithm finds a group of exchangeable cells
inside a given window and formulates a bipartite matching
problem by matching the cells to all empty slots in the window.
To keep the legality of the placement solution, for each slot,
we only construct the matching relation for cells with widths
less or equal to the slot width. The cost is given by the
HPWL difference of a cell in each empty slot. In this paper,
we implement the shortest augmenting path algorithm [22]
to solve the bipartite matching problem. Though the bipartite
matching problem can optimally be solved in polynomial time,
the optimal assignment cannot guarantee the optimal HPWL
result because the HPWL cost of a cell connected to each empty
slot depends on the positions of other connected cells. Our
cell matching algorithm remedies this drawback by selecting
independent cells at one time to perform bipartite matching.
Here, by independent cells, we mean that there is no common
net between any pair of the selected cells. We also observed
that the bipartite matching problem can very quickly be solved
when the problem size is smaller than 100 cells. Therefore,
in addition to the cells selected from a local window, we
also randomly select cells from the full placement region in
each run of the cell matching. Compared with other DP algo-
rithms, cell matching can more globally optimize the placement
result.

Fig. 12. Density map for the circuit adaptec1. Dark color represents the
density overflow, and the value is defined by max(0, Db/Mb − 1). The target
density tdensity is set to 0.8. The overflow ratio is 0.022% (0.015%) before
(after) cell sliding. The density penalty (defined in Section IV-C) is reduced
from 6.32% to 3.09%, whereas HPWL only increases by 0.85%. (a) Before cell
sliding. (b) After cell sliding.

2) Density Optimization: In addition to wirelength mini-
mization during the DP, we optimize the chip density by cell
sliding. The objective of density optimization is to reduce the
density overflow in the congested area. In this stage, all the
macro blocks are fixed, and we only consider standard cells.
We divide the placement region into uniform bins, and then
our algorithm iteratively reduces the densities of overflowed
bins by sliding the cells from denser bins to sparser ones
while the cell order is preserved. Since vertical sliding often
generates misalignment between standard cells and site rows
for row-based designs, we only implement horizontal sliding to
maintain the legality of the placement solution. Each iteration
consists of two phases, i.e., left sliding and right sliding. In each
phase, we calculate the density of each bin and then compute
the area flow fbb′ between bin b and its left or right neighboring
bin b′. fbb′ denotes the desired amount of movable cell area to
move from bin b to bin b′. Recall that we define Db as the total
area of the movable cells in bin b, and Mb as the maximum
allowable area of movable blocks in bin b. If bin b does not have
any area overflow or the area overflow ratio of b is smaller than
b′, that is, Db ≤ Mb or Db/Mb ≤ Db′/Mb′ , we set fbb′ = 0.
Otherwise, we calculate fbb′ according to the capacity of b′. If
bin b′ has enough free space, we move the overflow area of bin b

1236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

TABLE II
ICCAD’04 IBM MIXED-SIZE BENCHMARK STATISTICS

TABLE III
ISPD’05 PLACEMENT CONTEST BENCHMARK STATISTICS

to bin b′. Otherwise, we evenly distribute the overflow area
between b and b′. Therefore, fbb′ is defined by

fbb′ =
{

Db − Mb, if (Mb′ − Db′) ≥ (Db − Mb)
DbMb′−Db′Mb

Mb+Mb′
, otherwise

(18)
where the second condition is derived from

Db −
(

Mb +
(Db − Mb + Db′ − Mb′)Mb

Mb + Mb′

)

=
DbMb′ − Db′Mb

Mb + Mb′
. (19)

After the area flow fbb′ is computed, the area flow is then
evenly distributed to all rows within the overflow bin. If the area
flow of a row is larger than the area of the leftmost (rightmost)
cell, we keep the concatenating cell on its right (left) until the
leftmost (rightmost) cell is large enough. Then, we can obtain
the coordinates of the leftmost (rightmost) cells that satisfy
the area flow of each row. If one row fails to slide out the
required area flow, the insufficient amount will again evenly be
distributed to the other rows, and the sliding process repeats
until the required area flow is reached or no further movement
is possible. Then, we update Db and Db′ . In the right sliding
phase, we start from the leftmost bin of the placement region,
and b′ is right to b. In the left sliding phase, we start from the
rightmost bin, and b′ is accordingly left to b. We iteratively slide
the cells from the area overflow region to a sparser region until
no significant improvement can be obtained. Fig. 12 shows the

TABLE IV
STATISTICS FOR THE ISPD’06 PLACEMENT CONTEST BENCHMARKS

TABLE V
COMPARISON AMONG OUR PLACER (NTUplace3), APLACE 2.0, AND mPL6

ON THE ICCAD’04 IBM MIXED-SIZE BENCHMARKS

TABLE VI
COMPARISON AMONG OUR PLACER (NTUplace3), APLACE 2.0, AND mPL6

ON THE ISPD’05 PLACEMENT CONTEST BENCHMARKS

density map before and after our cell-sliding procedure on the
circuit adaptec1.

IV. EXPERIMENTAL RESULTS

We compared our placer with APlace 2.0 and mPL6, which
achieved the best published results among all publicly available
placers, based on the 2004 International Conference on Com-
puter Aided Design (ICCAD’04) IBM mixed-size [23] and the
2005 International Symposium on Physical Design (ISPD’05)
placement contest [24] benchmark suites. The statistics are
shown in Tables II–IV, respectively. Note that APlace 2.0

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1237

TABLE VII
HPWL (× E6) COMPARISON BASED ON THE ISPD’06 BENCHMARKS

TABLE VIII
COMBINED DENSITY AND HPWL (DHPWL) (× E6) COMPARISON BASED ON THE ISPD’06 BENCHMARKS

and mPL6 are the latest publicly available versions. All re-
sults were generated on the same PC workstation with an
Opteron 2.4-GHz CPU based on the default parameters given
in each placer, and no manual parameter tuning for individual
circuits is allowed for fair comparison. Note that we tested on
APlace 2.0 based on its default mode instead of taking the
results of APlace 2.0 reported in [12] since manual parameter
tuning to each circuit of the ISPD’05 placement contest bench-
mark suite was applied to obtain those results, and it needs
much longer CPU times than those with the default mode.

We also compared with other eight state-of-the-art academic
placers, such as APlace 3.0 and mPL6, based on the ISPD’06
placement contest benchmark suite [25]. Since the eight aca-
demic placers are not available to us, we reported the results
given in [25] and [26].

A. ICCAD’04 IBM Mixed-Size Benchmarks

In the first experiment, we evaluated the performance of our
placer on the ICCAD’04 IBM mixed-size benchmark suite.
These benchmarks have nontrivial macro aspect ratios and pin
locations for individual cells or macros, and thus are more
realistic to modern circuit designs. Table V lists the HPWLs
and CPU times for our placer, APlace 2.0, and mPL6. The
last row in Table V shows the average normalized wirelength
and CPU time ratio based on our results. Compared with
APlace 2.0, our placer achieves 1% shorter wirelength and is
7.87× faster. Compared with mPL6, our placer obtains 1%
shorter wirelength and is 2.16× faster. On average, our placer
produces the best solution quality in a smaller runtime.

B. ISPD’05 Placement Contest Benchmarks

The ISPD’05 benchmarks have circuit sizes (placeable
blocks) ranging from 211 to 2169 K, and the physical structure
of these designs is completely preserved. These benchmarks

contain a large amount of white space, fixed blocks, and I/Os,
and give realistic challenges for modern placers. Table VI lists
the results of ours, APlace 2.0, and mPL6. As shown in the
table, our placer achieves the best average wirelength in the
shortest CPU time. On average, our resulting HPWL is smaller
than that of APlace 2.0 by 5% and similar to mPL6’s, and our
placer is 10.32× and 2.56× faster than APlace 2.0 and mPL6,
respectively.

C. ISPD’06 Placement Contest Benchmarks

In the third experiment, we reported the results on the
ISPD’06 placement contest benchmark suite [25]. The re-
sults of other placers were taken from [25] and [26]. Com-
pared to ISPD’05 benchmarks, the new benchmark suite has
more movable blocks and wider ranges of design utilizations.
Tables VII–IX compare the HPWL, density HPWL (DHPWL),
and CPU time of the placers on the ISPD’06 benchmarks,
respectively. The target density tdensity of each circuit is set
according to the number given in the last column of Table IV,
and the CPU times were measured on an Opteron 2.6-GHz PC
machine. The DHPWL is defined as [25], [26]

DHPWL = HPWL × (1 + density_penalty). (20)

To compute density_penalty, we made the bin grid width and
height equal to ten circuit row height, and density_penalty is
defined by

density_penalty = (overflow_ratio × bin_area

×density_target)2 (21)

and overflow_ratio is defined by (11).
Among all placers, we obtained both the best average HPWL

and the best average DHPWL. Further, according to the scor-
ing function in the 2006 ISPD Placement Contest [25], [26],

1238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

TABLE IX
CPU TIME (IN SECONDS) COMPARISON BASED ON THE ISPD’06 BENCHMARKS. OUR CPU TIME (NTUplace3) IS MEASURED ON AN OPTERON 2.4-GHz

MACHINE, WHILE OTHERS ARE ON AN OPTERON 2.6-GHz MACHINE

TABLE X
HPWL AND RUNTIME RESULTS FOR THE ISPD’05 BENCHMARK SUITE

TABLE XI
HPWL AND RUNTIME RESULTS FOR THE ISPD’06 BENCHMARK SUITE

placers with 2× (4×) CPU time incur about 4% (8%) penalty.
Therefore, our overall result, considering 1) HPWL, 2) density
penalty, and 3) the CPU factor, is the best among all par-
ticipating placers and is about 4%, 5%, and 6% better than
the three leading placers Kraftwerk, mPL6, and NTUplace2,
respectively.

D. HPWL and Runtime Analysis

Table X lists the HPWLs and CPU times of the GP, LG, and
DP stages for the ISPD’05 benchmark suite. On average, the
LG stage increases the wirelength by 7%, whereas the DP stage
decreases the wirelength by 5%. For the CPU time, GP spends
72% of the total runtime, which is much more than those of the
LG and DP stages.

Table XI shows the HPWL, DHPWL (combined cost with
wirelength and density), and CPU time of every placement
stage for the ISPD’06 benchmark suite. Similar to the results
for the ISPD’05 benchmark suite, on average, the LG stage
increases the wirelength by 7%, and the DP stage decreases the
wirelength by 6%. It should be noted that the DP result only
incurs 7% density penalty. Again, most of the CPU time was
spent on GP (79%).

TABLE XII
NORMALIZED DHPWLs WITH SOME INDIVIDUAL TECHNIQUE BEING

TURNED OFF FOR THE ISPD’06 BENCHMARK SUITE

E. Effects of Individual Techniques

In this experiment, we analyzed the effects of individual
techniques applied in NTUplace3. Table XII summarizes the
resulting DHPWL ratios, which are normalized to the DHPWLs
of the complete NTUplace3, with some individual technique
being turned off. The columns “w/o LAL” and “w/o Macro
Shifting” give the results with look-ahead LG and macro shift-
ing being turned off, respectively. The column “Plain LG”
represents that the LG order is determined by the x coordinate

CHEN et al.: NTUplace3: ANALYTICAL PLACER FOR LARGE-SCALE MIXED-SIZE DESIGNS 1239

TABLE XIII
HPWL IMPACTS OF MACRO SHIFTING ON THE ICCAD’04 IBM

MIXED-SIZE BENCHMARKS

Fig. 13. HPWLs and density penalties resulting from different WSA target
densities based on the circuit adaptec5.

of each block alone, whereas our LG gives higher priorities
to macros. The columns “w/o Cell Matching” and “w/o Cell
Sliding” give the results with cell matching and cell sliding
being turned off, respectively. As shown in the table, since look-
ahead LG preserves the desired placement result in the finest
level, NTUplace3 achieves 5% better average DHPWL than
that without the look-ahead LG. Further, because the macro
shifting provides better macro positions for LG, NTUplace3
obtains 3% better DHPWL in newblue1, which contains a
number of movable large macros. In the LG stage, NTUplace3
generates comparable results with that of plain LG, implying
that allowing macros to have a higher priority does not harm
the placement quality. Further, if the design utilization is high,
there are fewer spaces for macro LG; legalizing macros earlier
would increase the success rate of the LG. NTUplace3 can
get respective 2% and 1% better average DHPWLs than those
without cell matching and cell sliding, implying that the two DP
techniques are effective in reducing the HPWL and the density
penalty.

To further demonstrate the impacts of macro shifting on
circuits with many movable macro blocks, we also tested
NTUplace3 with macro shifting turned off on the ICCAD’04
IBM mixed-size benchmark suite. The HPWL results are sum-
marized in Table XIII. As shown in the table, NTUplace3 with
macro shifting on average can achieve 2% shorter HPWL than
that without macro shifting, implying again that the macro
shifting can provide better macro positions with the existence
of many macro blocks.

Fig. 13 shows the effect of WSA on the circuit adaptec5.
Although not presented here, the trend for other circuits are
similar. The target density for WSA affects the tradeoff between
HPWL and density penalty. When the target density for WSA
is 0.5, we can obtain a placement with only 0.84% penalty.

When the target density for WSA increases, the density penalty
increases and HPWL decreases. Thus, the target density for
WSA can be chosen with design requirements. For DHPWL
optimization, we could run WSA under several target densities
and choose the best one.

V. CONCLUSION

In this paper, we have proposed a high-quality mixed-
size analytical placer considering preplaced blocks and den-
sity constraints. Experimental results have shown that our
placer achieves very-high-quality placement results and is very
efficient.

REFERENCES

[1] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, and Y.-W. Chang, “A high-quality
mixed-size analytical placer considering preplaced blocks and density
constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2006,
pp. 187–192.

[2] W. C. Naylor, R. Donelly, and L. Sha, “Non-linear optimization system
and method for wire length and delay optimization for an automatic
electric circuit placer,” U.S. Patent 6 301 693, Oct. 9, 2001.

[3] X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability-driven white space
allocation for fixed-die standard-cell placement,” in Proc. ACM Int. Symp.
Phys. Des., 2002, pp. 42–47.

[4] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden, “Routability-driven
placement and white space allocation,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2004, pp. 394–401.

[5] A. B. Kahng and Q. Wang, “Implementation and extensibility of an an-
alytic placer,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 24, no. 5, pp. 734–747, May 2005.

[6] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie, “mPL6: Enhanced
multilevel mixed-size placement,” in Proc. ACM Int. Symp. Phys. Des.,
2006, pp. 212–214.

[7] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov, “Unifi-
cation of partitioning, placement and floorplanning,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Des., 2004, pp. 550–557.

[8] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive bisection place-
ment: Feng Shui 5.0 implementation details,” in Proc. ACM Int. Symp.
Phys. Des., 2005, pp. 230–232.

[9] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level placement for large-scale
mixed-size IC designs,” in Proc. ASP-DAC, 2003, pp. 325–330.

[10] Z.-W. Jiang, T.-C. Chen, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “NTU-
place2: A hybrid placer using partitioning and analytical techniques,” in
Proc. ACM Int. Symp. Phys. Des., 2006, pp. 215–217.

[11] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris,
“Unified quadratic programming approach for mixed mode placement,”
in Proc. ACM Int. Symp. Phys. Des., 2005, pp. 193–199.

[12] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a
high quality, large-scale analytical placer,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2005, pp. 890–897.

[13] A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in Proc.
ACM Int. Symp. Phys. Des., 2006, pp. 218–220.

[14] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ACM Int. Symp. Phys. Des.,
Apr. 2005, pp. 185–192. best paper award at ISPD’2005. [Online].
Available: http://www.gigascale.org/pubs/600.html

[15] H. Eisenmann and F. M. Johannes, “Generic global placement and floor-
planning,” in Proc. ACM/IEEE Des. Autom. Conf., 1998, pp. 269–274.

[16] M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 3,
pp. 356–365, Mar. 1991.

[17] J. Gu and X. Huang, “Efficient local search with search space smoothing:
A case study of the traveling salesman problem (TSP),” IEEE Trans. Syst.,
Man, Cybern., vol. 24, no. 5, pp. 728–735, May 1994.

[18] A. B. Kahng, S. Reda, and Q. Wang, “APlace: A general analytic
placement framework,” in Proc. ACM Int. Symp. Phys. Des., 2005,
pp. 233–235.

[19] D. Hill, “Method and system for high speed detailed placement of cells
within an integrated circuit design,” U.S. Patent 6 370 673, Apr. 9, 2002.

1240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

[20] J. Cong, M. Romesis, and J. R. Shinnerl, “Fast floorplanning by
look-ahead enabled recursive bipartitioning,” in Proc. ASP-DAC, 2005,
pp. 1119–1122.

[21] J. Cong, M. Romesis, and J. R. Shinnerl, “Robust mixed-size place-
ment under tight white-space constraints,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2005, pp. 165–172.

[22] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, no. 4,
pp. 325–340, Mar. 1987.

[23] ICCAD04 Mixed-Size Placement Benchmarks. [Online]. Available: http://
vlsicad.eecs.umich.edu/BK/ICCAD04bench/

[24] ISPD 2005 Placement Contest. [Online]. Available: http://www.
sigda.org/ispd2005/contest.htm

[25] ISPD 2006 Program. [Online]. Available: http://www.ispd.cc/
program.html

[26] G.-J. Nam, C. J. Aplert, and P. G. Villarrubia, “ISPD 2006 placement
contest: Benchmark suite and results,” in Proc. ISPD, 2006, p. 167.

[27] J. Roy, D. Papa, A. Ng, and I. Markov, “Satisfying whitespace require-
ments in top-down placement,” in Proc. ACM Int. Symp. Phys. Des., 2006,
pp. 206–208.

[28] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh,
“Dragon2006: Blockage-aware congestion-controlling mixed-size
placer,” in Proc. ACM Int. Symp. Phys. Des., 2006, pp. 209–211.

[29] P. Spindler and F. M. Johannes, “Fast and robust quadratic placement
combined with an exact linear net model,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2006, pp. 179–186.

Tung-Chieh Chen (S’04) received the B.S. degree
in electronics engineering from National Taiwan
University, Taipei, Taiwan, R.O.C., in 2003. He is
currently working toward the Ph.D. degree in the
Graduate Institute of Electronics Engineering, Na-
tional Taiwan University.

In 2007, he was a Visiting Scholar with the Uni-
versity of Texas, Austin. He is also currently a Senior
Engineer with SpringSoft, Inc., Hsinchu, Taiwan.

Dr. Chen was the recipient of the First Prize of
the ACM/SIGDA CADathlon Programming Contest

in 2007.

Zhe-Wei Jiang (S’05) received the B.S. degree in
electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., in 2003. He
is currently working toward the Ph.D. degree in
the Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.

His current research interests focus on large-
scale mixed-size placement and design for
manufacturability.

Tien-Chang Hsu received the B.S. degree in
electrical engineering and the M.S. degree in elec-
tronics engineering from National Taiwan Univer-
sity Taipei, Taiwan, R.O.C., in 2004 and 2006,
respectively.

He is currently with Synopsys Taiwan Ltd., Taipei,
Taiwan, R.O.C. His current research interests include
large-scale mixed-size placement, routing, and de-
sign for manufacturability.

Hsin-Chen Chen (S’05) received the B.S. degree
in electrical engineering from National Cheng Kung
University, Tainan, Taiwan, R.O.C., in 2005, and the
M.S. degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, R.O.C., in 2007.

He is currently doing his military service. His
research interests focus on floorplanning and large-
scale mixed-size placement.

Yao-Wen Chang (S’94–A’96–M’96) received the
B.S. degree from National Taiwan University, Taipei,
Taiwan, in 1988, and the M.S. and Ph.D. degrees
from the University of Texas at Austin in 1993 and
1996, respectively, all in computer science.

He is a Professor in the Department of Electrical
Engineering and the Graduate Institute of Electron-
ics Engineering, National Taiwan University. He is
currently also a Visiting Professor at Waseda Uni-
versity, Kitakyushu, Japan. He was with the IBM
T. J. Watson Research Center, Yorktown Heights,

NY, in the summer of 1994. From 1996 to 2001, he was on the faculty of
National Chiao Tung University, Taiwan. His current research interests lie
in VLSI physical design, design for manufacturability/reliability, and design
automation for biochips. He has been working closely with industry on projects
in these areas. He has coauthored one book on routing and over 130 ACM/IEEE
conference/journal papers in these areas.

Dr. Chang is a winner of the 2008 ACM ISPD Global Routing Contest and
the 2006 ACM ISPD Placement Contest. He received Best Paper Awards at
ICCD-95, and eleven Best Paper Award Nominations from DAC (four times),
ICCAD (twice), ISPD (twice), ACM TODAES, ASP-DAC, and ICCD in the
past eight years. He has received many awards for research performance,
such as the 2007 Distinguished Research Award, the inaugural 2005 First-
Class Principal Investigator Award, and the 2004 Dr. Wu Ta You Memorial
Award, all from National Science Council of Taiwan, the 2004 MXIC Young
Chair Professorship from the MXIC Corp, and for excellent teaching from
National Taiwan University (four times) and National Chiao Tung University.
He is currently an Associate Editor of IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD) and an
Editor of the Journal of Information Science and Engineering (JISE). He
has served on the ICCAD Executive Committee, the ACM/SIGDA Physical
Design Technical Committee, the ACM ISPD Organizing Committee, and the
technical program committees of ASP-DAC (topic chair), DAC, DATE, FPL,
FPT (program co-chair), GLSVLSI, ICCAD, ICCD, IECON (topic chair),
ISPD, SOCC (topic chair), TENCON, and VLSI-DAT (topic co-chair). He is
currently an independent board director of Genesys Logic, Inc, a member of
board of governors of Taiwan IC Design Society, and a member of the IEEE
Circuits and Systems Society, ACM, and ACM/SIGDA.

