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Abstract—We present in this paper a new interconnect-driven
multilevel floorplanner, called interconnect-driven multilevel-
floorplanning framework (IMF), to handle large-scale building-
module designs. Unlike the traditional multilevel framework
that adopts the “Λ-shaped” framework (inaccurately called the
“V-cycle” framework in the literature): bottom-up coarsening
followed by top-down uncoarsening, the IMF, in contrast, works
in the “V-shaped” manner: top-down uncoarsening (partitioning)
followed by bottom-up coarsening (merging). The top-down par-
titioning stage iteratively partitions the floorplan region based
on min-cut bipartitioning with exact net-weight modeling to re-
duce the number of global interconnections and, thus, the total
wirelength. Then, the bottom-up merging stage iteratively applies
fixed-outline floorplanning using simulated annealing for all
regions and merges two neighboring regions recursively. Ex-
perimental results show that the IMF obtains the best pub-
lished fixed-outline floorplanning results with the smallest average
wirelength for the Microelectronics Center of North Carolina/
Gigascale Systems Research Center benchmarks. In particular,
IMF scales very well as the circuit size increases. The V-shaped
multilevel framework outperforms the Λ-shaped one in the op-
timization of global circuit effects, such as interconnection and
crosstalk optimization, since the V-shaped framework considers
the global configuration first and then processes down to local ones
level by level, and thus, the global effects can be handled at earlier
stages. The V-shaped multilevel framework is general and, thus,
can be readily applied to other problems.

Index Terms—Floorplanning, multilevel framework, partition-
ing, physical design, simulated annealing (SA).

I. INTRODUCTION

A S NANOMETER IC technologies advance, design com-
plexity is growing at a dramatic speed. Modern chip

designs often consist of millions of transistors, and designs with
billions of transistors are already in production. To cope with
the increasing design complexity, IP modules are widely reused
for large-scale designs. Therefore, efficient and effective design
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methodology and tools capable of placing and optimizing large-
scale modules are essential for modern chip designs.

A. Framework Evolution

The floorplanning frameworks are evolving to tackle the
challenges with constantly increasing design complexity. Three
major frameworks have been extensively studied in the liter-
ature: the flat, the hierarchical, and the multilevel frameworks.
Many flat algorithms based on various floorplan representations
have been proposed in the literature [2]–[10]. However, these
algorithms do not scale well as the design size increases.
To cope with the scalability problem, hierarchical approaches
are proposed. The hierarchical approaches recursively divide a
floorplanning region into a set of subregions and solve these
subproblems independently. Adya et al. [11] propose a “floor-
placement” framework (used in their program Capo 9) that
combines partitioning and floorplanning techniques to handle
both floorplanning and placement problems. It first partitions
a floorplan and then finds legal subfloorplans. Cong et al. [12]
present a fast floorplanner called PATOMA using look-ahead-
enabled recursive bipartitioning. It partitions a floorplan and
uses row-oriented block packing and zero-dead space floorplan-
ning to find legal subfloorplans. Both the floorplacement and
PATOMA are based on the hierarchical framework, in which
the floorplanning stage is only used for legalization and overlap
removal. The top-down hierarchical technique is efficient in
handling large-scale problems. Nevertheless, a drawback of
the hierarchical approaches is that they might lack the global
information for the floorplanning interaction among different
subregions.

To remedy the deficiency, the multilevel framework is pro-
posed to solve the floorplanning problem, as well as graph/
circuit partitioning, placement, and routing. All of the existing
multilevel frameworks adopt a two-stage technique, bottom-
up coarsening followed by top-down uncoarsening, which is
known as the “Λ-shaped” framework (note that this framework
is often called the “V-cycle” framework in the literature; to
differentiate from our new multilevel framework presented in
this paper, nevertheless, we think it is more appropriate to name
it the “Λ-shaped” framework as it works bottom-up and then
top-down). Lee et al. [13] first proposed a Λ-shaped multilevel-
floorplanning algorithm based on the B∗-tree representation [2],
called MB∗-tree. It adopts a two-stage technique: clustering fol-
lowed by declustering, which is based on the cost metric of area
and connectivity. Hu et al. [14] proposed a Λ-shaped multilevel
genetic floorplanning algorithm, called MLGFA. However, the
algorithm only optimizes the chip area without considering the
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Fig. 1. (a) Λ-shaped multilevel framework of MB∗-tree. (b) V-shaped multilevel framework of IMF.

wirelength. Furthermore, both of the multilevel-floorplanning
algorithms consider only variable-die floorplanning.

B. Our Contributions

In this paper, we present the first “V-shaped” multilevel
framework (note that this “V-shaped” multilevel framework is
different from the “V-cycle” multilevel framework in the lit-
erature; as aforementioned, the so-called “V-cycle” multilevel
framework is in fact the Λ-shaped one). Unlike the traditional
Λ-shaped multilevel frameworks that apply the bottom-up
coarsening followed by the top-down uncoarsening, our
V-shaped multilevel framework adopts the two-stage technique
of top-down uncoarsening followed by bottom-up coarsening.
The V-shaped multilevel framework outperforms the Λ-shaped
one in the optimization of global circuit effects, since the
V-shaped framework first considers the global configuration
and then processes down to local ones level by level, and thus,
the global effects can be handled at earlier stages.

Based on the new framework, we develop the first V-shaped
multilevel-floorplanning algorithm to handle the interconnect-
driven large-scale floorplan designs. Our V-shaped
interconnect-driven multilevel-floorplanning framework (IMF)
adopts the two-stage technique of top-down partitioning
followed by bottom-up merging. The top-down partitioning
stage iteratively partitions the floorplan region based on
min-cut bipartitioning with exact net-weight modeling (ENW)

to reduce the number of global interconnections and, thus,
the total wirelength. Then, the bottom-up merging stage
iteratively applies fixed-outline floorplanning using simulated
annealing (SA) for all regions and merges two neighboring
regions recursively. Experimental results show that the IMF
obtains the best fixed-outline floorplanning results with the
smallest average wirelength for the Microelectronics Center of
North Carolina (MCNC)/Gigascale Systems Research Center
(GSRC) benchmarks, compared with the publicly available
floorplanners B∗-tree, MB∗-tree, Parquet 3.1/4.0, and Capo 9.0/
10.2. We also show that IMF scales very well as the circuit size
increases, based on the ami49_x large-scale building-module
benchmarks.

The remainder of this paper is organized as follows.
Section II compares our V-shaped multilevel framework with
the Λ-shaped and the hierarchical ones. Section III presents our
floorplanning algorithms. Section IV shows the experimental
results, and finally, the conclusions are given in Section V.

II. MULTILEVEL FRAMEWORK

The traditional Λ-shaped multilevel frameworks apply a two-
stage technique: bottom-up coarsening followed by top-down
uncoarsening. We take MB∗-tree [13] for an example. Fig. 1(a)
shows the MB∗-tree multilevel framework. It is based on a
two-stage technique of bottom-up clustering followed by top-
down declustering. The clustering stage iteratively groups a set
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of modules based on a cost metric of area and module connec-
tivity. The declustering stage iteratively ungroups a set of the
previously clustered modules and uses SA to refine the solution.
Experimental results showed that MB∗-tree obtains solutions
of very small white space. For modern floorplanning, however,
the interconnections among modules are a very important cost
metric for routability and performance optimization and, thus,
should be carefully considered. Since MB∗-tree first works in
a bottom-up manner by clustering local modules based on area
and local connectivity, it does not have the view for the global
configuration at the earlier stages. Therefore, it is very likely
that MB∗-tree can only obtain a suboptimal solution, since it
may make a wrong choice during the clustering stage, and it
may become very hard to further refine the floorplan solution
during the declustering stage.

Fig. 1(b) illustrates our V-shaped IMF framework. Unlike
MB∗-tree that adopts a Λ-shaped framework, our IMF uses
the V-shape of top-down partitioning followed by bottom-up
merging. Partitioning determines the global locations of mod-
ules, while merging legalizes and refines the floorplan. At the
initial step, all the modules are located at the center of the
chip. Then, the chip is partitioned into two subregions, and
modules are moved from the chip center to the centers of
new subregions. The partitioning continues until the number of
modules in a region is smaller than a threshold. Then, we obtain
a “partitioned floorplan,” and the partitioning stage finishes.

At the merging stage, fixed-outline floorplanning is applied
to every region. We use SA to find a feasible floorplan to fit
all modules into the region and minimize the wirelength. Then,
two neighboring regions are merged into one larger region, and
fixed-outline floorplanning is used again to refine the floorplan.
Merging and refining are performed recursively until all regions
are merged into one single top-level floorplan. Finally, the final
floorplan result is obtained. Note that the IMF framework is
independent of the floorplan representation, so every existing
floorplan representation can be used.

Table I lists the characteristics of our IMF multilevel frame-
work, the MB∗-tree multilevel framework [13], the Capo floor-
placement framework [11], and the PATOMA framework [12].
Our IMF framework and the MB∗-tree framework are based on
the multilevel framework, while the Capo framework and the
PATOMA framework are based on the hierarchical framework.
Although Capo and PATOMA use partitioning, unlike IMF,
they do not have the refinement stage to further improve their
results.

III. ALGORITHM

The IMF algorithm consists of three steps: 1) chip-dimension
determination; 2) the partitioning stage; and 3) the merging
stage.

A. Chip-Dimension Determination

Given a set of modules with the total area A and the
maximum white-space fraction γ, we can construct a fixed
outline with the aspect ratio (height/width) α. The chip di-
mension (H∗,W ∗) can be computed by H∗ =

√
(1 + γ)Aα

and W ∗ =
√

(1 + γ)A/α [15]. If max(Hi,Wi) of a module

TABLE I
FRAMEWORK COMPARISONS

mi is larger than max(H∗,W ∗), the module mi can never fit
into the chip boundary. In this case, the chip dimension can
be computed by H∗ = max(Wi,Hi) and W ∗ = (1 + γ)A/H∗.
The new dimension of the chip can ensure that every module fits
into the chip boundary. Note that the chip area A∗ = H∗W ∗ =
(1 + γ)A remains the same as the original formulation.

B. Partitioning Stage

At the initial level, the locations of all modules are set to the
center of the chip region. To prevent generating subregions of
large aspect ratios, we choose the longer side to divide the re-
gion into two subregions. After the shapes of two subregions are
determined, we move the modules to the two centers of the two
subregions to minimize the half-perimeter wirelength (HPWL).

The module-location determination problem can be formu-
lated as a hypergraph-partitioning problem. We first derive an
ENW to map the HPWL cost exactly to the min-cut cost.
With the exact modeling, in other words, minimizing HPWL
is equivalent to finding the min-cut cost. Therefore, the given
hypergraph is partitioned using a min-cut bipartitioner to ob-
tain the minimum HPWL. The new locations of the modules
are thus determined by the partitioner, and each subpartition
corresponds to a subregion.
1) Exact Net-Weight Modeling: Since the net weight in the

traditional terminal propagation (TTP) for the min-cut-based
placement is a constant value, the weight with the change in
HPWL cannot be exactly modeled, whether a net is cut or not.
The underlying idea for our ENW (terminal propagation) is
that we want to map the min-cut cost exactly to the HPWL
change, which is similar to the “bounding-box-aware terminal
propagation (BBTP)” proposed by Selvakkumaran and Karypis
in [16] and [17]. They first proposed BBTP in [16] and, later,
discussed the BBTP in detail under seven cases in [17]. Another
net-weighting method was proposed in [18], in which the
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Fig. 2. Example of determining a net weight. (a)–(c) Three possible partitioning results. (d)–(f) Corresponding partitioning hypergraphs.

authors discussed the net-weighting method for partitioning
based on four cases. However, they can obtain exact modeling
only for two-terminal nets, i.e., they can only obtain suboptimal
results for multiterminal nets. Unlike the previous work that
exhaustively enumerates potential cases, we derive a unified
model to assign the net weights to map the HPWL value exactly.
Our HPWL modeling can not only be applied to vertical-cut or
horizontal-cut partitioning but can also be applied to placement
feedback (repartitioning) [19]. Furthermore, our unified HPWL
model can even apply to the partitioning associated with two
nonadjacent regions, for which the method presented in [17]
would need to enumerate tens of cases for the HPWL modeling
and thus is obviously much more complex and harder for
implementation.

We give our unified HPWL modeling as follows. A circuit
is modeled as a hypergraph. Each node in the hypergraph
corresponds to a module inside the target region, with the node
weight being set to the area of the corresponding module. Each
hyperedge denotes a two- or multiterminal net in the circuit,
with the hyperedge weight being set to the value of the HPWL
contribution if the hyperedge is cut.

Let w1 be the HPWL when all modules are at the side closer
to the span of the terminals; w2 is the HPWL when all modules

are at the opposite side, and w12 is the HPWL when modules are
at the both sides (see Fig. 2 for an illustration). Let ncut be the
cutsize of the net for the corresponding hypergraph. Therefore,
we have w12 ≥ w2 ≥ w1. Then, we introduce a partitioning
hypergraph with two fixed nodes to represent the two sides
and with movable nodes to represent the movable modules. We
then add two hyperedges e1 and e2 into the hypergraph. The
hyperedge weight can be determined as follows. We introduce
e1 to connect the fixed node corresponding to the side closer to
the span of terminals and all movable nodes and e2 to connect
between all movable nodes. We then assign the weight of the
hyperedge e1 as the value w2 − w1 (note that w2 ≥ w1) and
that of the hyperedge e2 as the value w12 − w2. Partitioning
the resulting hypergraph can determine to which partition the
module belongs. We have the following theorem.
Theorem 1: With the unified net-weight modeling, we have

HPWL = w1 + ncut.
Proof: There are three possible partitioning results: 1) All

nodes are at the partition corresponding to the side closer to
the span of terminals; 2) all nodes are at the other partition;
and 3) nodes are at the two different partitions. Without loss
of generality, we use Fig. 2(d)–(f) to represent respective
cases 1)–3), and the three partitioning results correspond to
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the configurations shown in Fig. 2(a)–(c), respectively. For
easier explanation, a four-terminal net with two fixed terminals
(representing the two sides of the partitions) and two modules
is considered (nevertheless, the following claims still hold for
other cases). The x-range of the two terminals (i.e., the span
between the two terminals in the x-direction) is within that
of the centers of the two partitions, and the center of the left
partition is closer to the x-range. For each net, we compute
three HPWL values (w1, w2, and w12). In Fig. 2(a), the two
modules are at the left side. w1 is equal to the half of the
bounding box shown in Fig. 2(a), represented by the dotted
lines. w2 is the HPWL when the two modules are at the
opposite side [the right side for the example shown in Fig. 2(b)].
Similarly, w12 is the HPWL when the two modules are at
different sides [Fig. 2(c)]. For the case shown in Fig. 2, it is
easy to see that w12 ≥ w2 ≥ w1. For the case of Fig. 2(d),
no hyperedge in the resulting hypergraph is cut. Therefore, its
cutsize ncut = 0. In Fig. 2(e), e1 is cut, and the cutsize is given
by ncut = weight(e1) = w2 − w1. In Fig. 2(f), both e1 and e2

are cut, and thus, the cutsize ncut = weight(e1)−weight(e2) =
(w12 − w2) + (w2 − w1) = w12 − w1. For all of these three
cases, we conclude that the corresponding HPWL (which are
w1, w2, and w12, respectively) is given by w1 + ncut (w1 +
0, w1 + (w2 − w1), and w1 + (w12 − w1), respectively). The
claims for the cases with a net of more than two terminals
are similar. �

Furthermore, we have the following theorem.
Theorem 2: The unified net-weight modeling exactly maps

HPWL to the min-cut cost.
Proof: Let HPWLi be the HPWL of net i, and w1,i be the

HPWL of net i when its modules are all at the side closer to the
span of the terminals [see Fig. 2(a)] and ncut,i be the cutsize of
net i. By Theorem 1, we have

min
(∑

HPWLi

)
= min

(∑
(w1,i + ncut,i)

)

=
∑

w1,i + min
(∑

ncut,i

)

since
∑

w1,i is a constant. Therefore, the unified net-weight
modeling exactly maps HPWL to the min-cut cost. Thus, find-
ing the minimum HPWL is equivalent to finding the min-cut as
long as the external terminals are given. �

The partitioning stage continues until the number of modules
in each partition is smaller than a threshold. Then, the parti-
tioned floorplan is obtained.

C. Merging Stage

In the merging stage, we first use fixed-outline floorplanning
to pack the modules in the partition and, then, merge two
neighboring regions into one larger region if the merging leads
to a better result. The fixed-outline floorplanning is applied
again to legalize/refine the floorplan. If the merging does not
result in a better solution, we will simply keep the original
floorplan.
1) Fixed-Outline Floorplanning: Each region has its own

height and width, and all modules in the region must fit into the
region to generate a feasible floorplan. We treat the modules and

I/O pads outside the current region as fixed terminals. We use
the B∗-tree representation with SA to find a feasible floorplan
within the region. The reasons are twofold: 1) The B∗-tree has
been shown an efficient and effective data structure for floorplan
design [2]; and 2) we intend to make fair comparison with the
state-of-the-art multilevel-floorplanning work MB∗-tree [13],
which is also based on the B∗-tree.

The cost function Φ for SA is similar to the one in [20], and
it is defined as follows:

Φ = k1
AF

AF,norm
+ k2

WL

WL,norm
+ k3

(
WF

HF
− WR

HR

)2

(1)

where AF is the current floorplan area, AF,norm is the area
normalization factor, WL is the current wirelength, WL,norm is
the wirelength normalization factor, WF is the current floorplan
width, HF is the current floorplan height, WR is the width of
the region, HR is the height of the region, and k1, k2, and k3 are
user-specified parameters. To calculate the area/wirelength nor-
malization factors, several random perturbations are performed
before SA starts, and AF,norm(WL,norm) is set to the average
value of AF (WL).
2) Accelerative Fixed-Outline Floorplanning (AFF): We

observe that it takes much more time for fixed-outline floor-
planning than for partitioning/merging. Therefore, we propose
an AFF technique to speed up the whole framework. Typically,
fixed-outline floorplanning spends most time in computing
the wirelength, as also observed in [21]. Furthermore, many
floorplanning results might not be feasible because the resulting
floorplans cannot fit into the bounding box. To speed up floor-
planning, we first set k2 = 0 for the cost function to perform
area-driven fixed-outline floorplanning. Then, we calculate the
wirelength only when the floorplan can fit into the bounding
box with a smaller cost. If the resulting wirelength is better than
the best wirelength, we save the current result as the best result.
Since we can reduce significant running time for computing
the wirelength, we may increase the number of perturbations to
search for better floorplan solutions. This technique can reduce
significant running time without trading too much solution
quality.
3) Partition Merging: If the fixed-outline floorplanning can-

not find a feasible floorplan within the bounding box, then
we still keep the solution. In the next refinement level, two
partitioned regions are merged. To merge two vertical regions,
we make the root of the B∗-tree for the upper subfloorplan
as the right child of the right-most node of the B∗-tree for
the bottom subfloorplan. The width of the merged floorplan
is equal to the maximum width of the subfloorplans, and the
height of the floorplan is less than or equal to the sum of the
two subfloorplan’s heights due to the packing. To merge two
horizontal regions, we first find the node which corresponds to
the right-most module of the left subfloorplan. Then, we make
the root of the B∗-tree for the right subfloorplan as the left child
of the node we found. The height of the merged floorplan is
equal to the maximum height of the two subfloorplans, and the
width of the merged floorplan is equal to the sum of the two
subfloorplan’s widths.
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Fig. 3. IMF algorithm.

The merging stage iteratively merges two previously parti-
tioned regions and then refines the floorplan solution based on
fixed-outline SA. The merging stage continues until all regions
are merged into one top-most region, and the final floorplan is
obtained.

D. Algorithm

Fig. 3 summarizes our algorithm. The inputs are dimensions
of modules, a (multiterminal) netlist, the location of the I/O
pads, and fixed-die parameters. We first initialize our data
structures and determine the chip boundary. Then, all modules
are set to the center of the floorplanning region. In the parti-
tioning stage, we create a hypergraph for the current region and
apply a state-of-the-art hypergraph/circuit partitioner, such as
hMetis [22], to obtain a min-cut bipartitioning result (by using
hMetis which is based on the Λ-shaped multilevel framework,
our implementation applies the V-shaped framework with the
Λ-shaped one inside the partitioning stage). The modules are
then moved to the centers of the subregions according to the
partitioning result. The partitioning stage continues until every
region has fewer modules than nmax modules, and the parti-
tioned floorplan is obtained. In the merging stage, the fixed-
outline floorplanning with wirelength minimization is applied
to pack the modules into the regions. Then, two regions are
merged into a larger one if the merging leads to a better result;
otherwise, we will keep the original floorplan. After all regions
are merged, we obtain the final floorplan.

Note that our V-shaped multilevel-floorplanning framework
is different from the floorplacement framework [11] as follows.
1) The floorplacement framework calls the floorplanner during
the partitioning stage when there exists large blocks or many
blocks in the region. After floorplanning, large blocks are
fixed, and the partitioning process continues with the remaining
blocks. In our V-shaped framework, we do not fix any blocks
during the partitioning stage, and thus, we have more flexibility
in determining the block positions. 2) If the floorplanner cannot
find a feasible solution in the floorplacement framework, it
only merges the neighboring regions and refines the merged

TABLE II
COMPARISONS OF THE HPWL BY USING THE TTP AND THE ENW.

IN EACH ENTRY, BOTH THE MINIMUM/AVERAGE VALUES

OBTAINED IN TEN RUNS ARE REPORTED

region once. In contrast, our V-shaped multilevel framework
recursively merges and refines the regions up to the top level,
which has higher chances to find a desirable solution.

IV. EXPERIMENTAL RESULTS

We made the comparisons with the following state-of-the-art
floorplanning algorithms/packages: our IMF, B∗-tree [2], MB∗-
tree [13], Parquet-3.1/-4.0 [23], PATOMA [12], Capo 9.0 [11],
and Capo 10.2 [11] (note that Capo 10.2 was released in
May 2006 when this paper was under revision). We used
the MCNC and the GSRC [24] benchmark suites. All pro-
grams were compiled with gcc 3.3.2, and all experiments were
preformed on a Linux PC with an Intel Pentium-4 3.2-GHz
CPU with 3-GB memory. Note that, although, most exist-
ing standard-cell/mixed-size placers can handle the large-scale
circuit-placement problem. They usually focus more on the
standard-cells of the same height. Therefore, the standard-cell/
mixed-size placers cannot handle large-scale building-module
floorplanning well. We have tried well-known publicly avail-
able placers, such as Feng Shui 2.6/5.0 [26] and mGP [27], [28].
They all cannot obtain feasible or desirable building-module
floorplans. Therefore, we shall not compare with those mixed-
size placers.

For fair comparisons, we set the maximum white-space
fraction γ to 15% and the chip aspect ratio α to 1% for all
circuits. The I/O pads were scaled to the chip boundary. The
wirelength was estimated using HPWL.

A. Exact Net-Weight Modeling

Table II compares the net-weight modeling based on the
TTP and our ENW. For TTP, all net-weights are equal to 1.0.
For ENW, the weights of the nets are assigned according to
the scheme described in Section III-B1. The experiments were
taken on the three largest GSRC benchmark for testing the
effectiveness of the partitioning. We used the state-of-the-art
Λ-shaped multilevel partitioner hMetis [22] (version 1.5.3) for
min-cut partitioning. We performed partitioning on each circuit
ten times to get the minimum/average HPWL. We set nmax =
10 (i.e., partition all regions until each of them contains fewer
than ten modules). From Table II, we observe that the ENW can
reduce the HPWL by 6%–7%. Note that the runtimes are not
reported here for both methods since they are about the same.

B. Comparisons of Solution Quality

Table III lists the HPWLs and CPU times obtained by B∗-
tree, MB∗-tree, Capo, Parquet, PATOMA, IMF, and IMF with
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TABLE III
COMPARISONS FOR HPWL AND CPU TIME AMONG B∗-TREE, MB∗-TREE, CAPO, PARQUET, PATOMA, IMF, AND IMF+AFF. ∗ THE HPWL VALUES

WITHIN THE PARENTHESES DENOTE THAT THE RESULTS CANNOT FIT INTO THE BOUNDING BOXES (B∗-TREE/MB∗-TREE) OR THAT THERE ARE

OVERLAPS IN THE RESULT (CAPO 9/PATOMA). THE AVERAGE HPWL RATIO CONSIDERS ONLY THE RESULTS THAT CAN FIT INTO THE BOUNDING BOXES

AFF (IMF+AFF) for the MCNC/GSRC benchmarks. The num-
ber of modules ranges from 9 to 300, and the number of nets
ranges from 83 to 1893. The average HPWL and CPU time are
normalized to the result of IMF. Since B∗-tree and MB∗-tree
cannot handle fixed-die constraints, we set their mode to wire-
length optimization alone to make the comparisons. By doing
so, B∗-tree and MB∗-tree should gain some advantages. In
contrast, Parquet is a fixed-outline floorplanner (which is based
on the sequence-pair representation). For fair comparison, the
I/O pads for all circuits are fixed along the user-specified
chip boundaries. Thus, the I/O pad locations for variable-die
floorplanners are the same as those for fixed-die floorplanners.
Furthermore, we reported the best results obtained by Parquet
3.1 and 4.0 since neither version dominated the other. We used
the default wirelength minimization mode (−minWL) and set
the maximum white-space fraction γ = 0.15 and chip aspect
ratio 1.0, except that the aspect ratio of the circuit hp was
set to 1.075 to allow all modules to fit into its bounding box.
The average white space of the B∗-tree (MB∗-tree) variable-die
floorplanner is about 24.1% (26.2%), and none of its resulting
floorplans fits into the bounding box. The white spaces of
the fixed-die floorplanners are all less than 15.0%, and all
results can fit into the bounding boxes (however, the floorplacer
Capo 9.0 does not legalize all modules for the benchmark
circuit hp).

As shown in Table III, IMF reduces the HPWL by 10%
(31%) on average as compared with Parquet (PATOMA). Al-
though B∗-tree (MB∗-tree) minimizes the HPWL alone, it
only reduces the HPWL by 4% (1%) and incurs significantly
larger white spaces as compared with IMF. The CPU times
for B∗-tree and Parquet are comparable, while the multilevel
floorplanners, MB∗-tree and IMF, and the hierarchical floor-
placer/floorplanner Capo and PATOMA spend much less CPU
time, particularly for larger circuits. IMF+AFF achieves 4.3×
speedup at the cost of 9% HPWL overhead as compared with
IMF. Based on the results, the AFF can significantly reduce
the running time, and it is particularly suitable for large-scale
circuits since it achieves larger speedup (e.g., 16.7× for n300)
with only 1% overhead in the HPWL value. Therefore, the
AFF option is turned on when handling large-scale circuits.

The runtime of the Capo floorplacer is between that of the
IMF and the IMF+AFF. The solution quality of Capo 9.0
is 11% and 2% worse than the IMF’s and the IMF+AFF’s
solution quality, respectively. The solution quality of Capo 10.2
is 9% worse than the IMF’s solution quality and similar to the
IMF+AFF’s solution quality, but its runtime is larger than the
IMF+AFF’s runtime. PATOMA is very fast, but it fails to find
legal floorplans for many circuits, and its resulting HPWL is not
good enough.

C. Scalability of the Floorplanners

To verify the scalability of the algorithms/floorplanners, we
tested on the large-scale floorplan-benchmark circuits used in
[13], which are duplicated from the largest MCNC benchmark
circuit ami49. For [13], they simply duplicated all modules and
nets of the circuit ami49. However, these kinds of synthetic
circuits are not general, since there is no interconnection
between the duplicated copies of circuits. The clustering
(partitioning) method would take advantage of these kinds
of special structures. To make the comparison fairer, we
also added interconnections among different copies of du-
plicated circuits. For the circuit ami49_x, we duplicated
each module/net x times. For each module mi, we dupli-
cated it as mi,1,mi,2, . . . ,mi,x and added x − 1 nets between
(mi,1,mi,2), (mi,1,mi,3), . . . , (mi,1,mi,x). We divide block
widths/heights by five for the benchmarks to avoid overflows
in computing the wirelength.

Table IV lists the results for the five algorithms/floorplanners
on ami49_x circuits. The average HPWL ratio is normal-
ized to that of the IMF+AFF. The resulting HPWL of the
IMF+AFF on average outperforms B∗-tree, MB∗-tree, Par-
quet, PATOMA, and Capo 9.2 by about 20%, 29%, 56%,
36%, and 5%, respectively. Capo 10.2 obtains 2% shorter
HPWL than the IMF+AFF’s but uses 3.23× CPU time on
average. The resulting HPWL ratios for Parquet and MB∗-
tree grow up to 50% or more as the circuit size increases.
The CPU times for B∗-tree and Parquet grow dramatically
as the circuit size increases while both the IMF+AFF and
Capo can scale to very large-scale designs. The experimental
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TABLE IV
COMPARISONS FOR HPWL AND CPU TIME AMONG B∗-TREE, MB∗-TREE, CAPO, PARQUET, PATOMA, AND MF+AFF FOR ami49_x

CIRCUITS. NR: NO LEGAL RESULT OBTAINED (PATOMA) OR CPU TIME EXCEEDED 12-HR (B∗-TREE/PARQUET)

Fig. 4. Resulting floorplan for ami49_200 using the IMF+AFF.

results show that the IMF+AFF has superior scalability and
maintains high-quality results for large-scale designs. Fig. 4
shows the resulting layout of the circuit ami49_200 by using
the IMF+AFF.

V. CONCLUSION

We have presented a new IMF algorithm based on the V-
shaped multilevel framework. IMF adopts a two-stage tech-
nique: partitioning followed by merging. The ENW is used in
the partitioning stage, and an AFF is applied in the merging
stage. Experimental results show that the IMF+AFF scales very
well as the circuit size and interconnection complexity increase.
The V-shaped multilevel framework is general and, thus, can be
applied to other problems.
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