
654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 4, APRIL 2008

Short Papers
Effective Wire Models for X-Architecture Placement

Tung-Chieh Chen, Yi-Lin Chuang, and Yao-Wen Chang

Abstract—In this paper, we derive the X-half-perimeter wirelength
(XHPWL) model for X-architecture placement and explore the effects
of three different wire models on X-architecture placement, including
the Manhattan-half-perimeter wirelength (MHPWL) model, the XHPWL
model, and the X-Steiner wirelength (XStWL) model. For min-cut par-
titioning placement, we apply the XHPWL and XStWL models to the
generalized net-weighting method that can exactly model the wirelength
after partitioning by net weighting. For analytical placement, we smooth
the XHPWL function using log-sum-exp functions to facilitate analytical
placement. This paper shows that both the XHPWL and XStWL models
can reduce the X wirelength effectively. In particular, our results reveal
the effectiveness of the X architecture on wirelength reduction during
placement and, thus, the importance of the study on the X-placement
algorithms, which is different from the results given in the work of
Ono et al. which suggests that the X-architecture placement might
not improve the X-routing wirelength over the Manhattan-architecture
placement.

Index Terms—Min-cut, net weighting, partitioning, physical design,
placement, Steiner tree, X architecture.

I. INTRODUCTION

A. X Architecture

As integrated-circuit (IC) geometries keep shrinking, interconnect
delay has become the dominant factor in determining circuit perfor-
mance. To minimize interconnect delay, the X architecture [3] has been
introduced as a new interconnect architecture for the ICs to reduce
interconnect length and thus improve circuit performance. The X
architecture allows 45◦ and 135◦ routes, leading to smaller wirelength
and, thus, smaller delay and power consumption. Theoretically, the
maximum wirelength reduction by using the X architecture can be up
to 29%, as shown in Fig. 1.

The traditional Manhattan architecture has its obvious advantages
of easier design, but it incurs significant and needless wirelength
over the Euclidean optimum. As reported in [3], the X architecture
results in significantly shorter average wirelength than the Manhattan
architecture. The X architecture’s pervasive uses of diagonal routing
can reduce wirelength. Furthermore, the wirelength reduction makes
the circuit design problem easier to solve, resulting in faster timing
closure.

Although the via count may increase in the X architecture, some
previous studies on X-architecture routing have shown that the via
issue is not a significant problem. Koh and Madden [4] pointed out that
the increase in via cost is much less than expected, and the wirelength
reduction may outweigh the additional via cost. The X-architecture

Manuscript received May 21, 2007; revised August 18, 2007 and October 29,
2007. This work was supported in part by the National Science Council of
Taiwan under Grants NSC 94-2215-E-002-030 and NSC 94-2752-E-002-008-
PAE. This paper was recommended by Associate Editor P. H. Madden.

T.-C. Chen and Y.-L. Chuang are with the Graduate Institute of Electronics
Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C. (e-mail:
donnie@eda.ee.ntu.edu.tw; nicky@eda.ee.ntu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan, R.O.C. (e-mail: ywchang@cc.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2008.917959

Fig. 1. Maximum wirelength reduction for the X architecture can be up to
29% compared with the Manhattan architecture. This situation occurs when the
two pins are on a 45◦ line.

full-chip routing [5] further shows that the via count for the X
architecture is similar to that for the Manhattan architecture.

B. Previous Work

To fully utilize the X architecture, we need to consider both
X-architecture-aware placement and routing. Some X-routing algo-
rithms have been proposed in the literature [4]–[6], and their results
show that the wirelength can be reduced effectively by using the X
architecture. In contrast, not much work on X placement is studied in
the literature. In [7], both 45◦ and 60◦ wiring metrics were explored.
The work was based on some simplified assumptions that all cells
are of the unit size and that only five pins and higher degree nets
are considered. Furthermore, the simulated annealing method does not
scale well.

Based on the partitioning placement framework, Teig and Ganley
[8], [9] patented 45◦/135◦ diagonal cutlines (or X cutlines) to partition
the placement region to favor diagonal wiring. Very recently, Ono et al.
[2] conducted a complete study on the patents [8], [9]. They found that
X cutlines do not lead to better placement results for the X architecture;
the resulting wirelength by using the X cutlines is even worse than
that by using traditional Manhattan cutlines. Teig and Ganley [9] also
proposed a new wirelength cost metric for X placement. However, we
will show later that this wire model may not lead to shorter total X
wirelength.

C. Our Contribution

In this paper, we derive a new X-half-perimeter wirelength
(XHPWL) model for X-architecture placement. We define the X
bounding box as the smallest bounding box formed by the 0◦/
45◦/90◦/135◦ line segments that enclose all terminals of a net. The
XHPWL is the half of the perimeter length of the X bounding box. We
then incorporate this new wire model into both min-cut partitioning
and analytical placement algorithms. Experimental results show that
the total X-Steiner wirelength (XStWL) can be reduced effectively.

Without X placement, our experimental results show that X routing
reduces the wirelength by only about 7.7% compared with the tradi-
tional Manhattan routing. With X placement, the X routing can reduce
the wirelength by 11.0% and 11.6% for analytical and min-cut parti-
tioning placements, respectively. The results reveal the effectiveness of
the X architecture on wirelength reduction during placement and, thus,
the importance of the study on the X-placement algorithms.

This paper is organized as follows. Section II introduces our new
XHPWL model. The XHPWL model is applied to min-cut partitioning
and analytical placement algorithms in Sections III and IV, respec-
tively. The experimental results are given in Section V, and Section VI
gives the conclusion.

0278-0070/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 4, APRIL 2008 655

Fig. 2. Manhattan bounding box and X bounding box. (a) Manhattan bound-
ing box. (b) X bounding box.

Fig. 3. Procedure of computing the perimeter length of the X bounding
box. (a) Compute the Manhattan bounding box. (b) Remove the dotted line
segments. (c) Add the oblique line segments. (d) Obtain the resulting X
bounding box.

II. XHPWL MODEL

Traditional placement for the Manhattan architecture is based on the
minimization of the Manhattan-half-perimeter wirelength (MHPWL
for short, or traditionally called HPWL). An example Manhattan
bounding box of a four-terminal net is shown in Fig. 2(a). The
MHPWL is the half of the perimeter length of the Manhattan bounding
box, and the MHPWL of a net e can be computed by

MHPWL(e) = max
vi,vj∈e

|xi − xj | + max
vi,vj∈e

|yi − yj | (1)

where vi is a terminal of the net and (xi, yi) is the coordinate of vi.
The MHPWL does not consider the 45◦/135◦ routes of the X archi-

tecture. We thus propose a new XHPWL model for the X architecture.
We define the X bounding box as the smallest bounding box formed
by 0◦/45◦/90◦/135◦ line segments. Fig. 2(b) shows an example X
bounding box of the four terminals.

To compute the perimeter length of the X bounding box, we can
use the procedure shown in Fig. 3, and the XHPWL of a net e can be
computed by

XHPWL(e)= (
√

2−1)

(
max

vi,vj∈e
|xi−xj |+ max

vi,vj∈e
|yi−yj |

)

− (
√

2/2−1)

(
max

vi,vj∈e
|xi+yi−xj−yj |

+ max
vi,vj∈e

|xi−yi−xj +yj |
)

(2)

where vi is a terminal of the net and (xi, yi) is the coordinate of vi.
Based on the triangle inequality, the total length of the added oblique
line segments in Fig. 3(c) is always smaller than that of the removed
line segments in Fig. 3(b). We have the following two properties for

the X bounding box and another two properties for XHPWL for the
case when no obstacle is present. Let the size of the X (Manhattan)
bounding box for a point set P be Sx(P)(SM (P)).

Property 1) Sx(P) ≤ SM (P) for a point set P .
Property 2) Every optimal X-Steiner tree (with the minimum wire-

length) must be within its X bounding box.
Property 3) XHPWL(e) ≤ MHPWL(e) for a multiterminal net e.
Property 4) The XHPWL is a lower bound of the wirelength of a

two-pin net for X routing.

Teig and Ganley [9] also proposed a method to estimate the
wirelength. They first use a Manhattan bounding box to enclose all
terminals. Then, the wirelength is estimated by L + S ∗ (

√
2 − 1),

where L(S) is the length of the longer (shorter) side of the bounding
box. Although their wire model can also correctly compute the shortest
wirelength of a two-pin net for X routing, our experimental results
show that their wire model may not lead to shorter total X wirelength.
Compared with their wire model, our XHPWL is superior for at least
the following two reasons, which will be shown in the later sections:
1) The fidelity of XHPWL for estimating XStWL is higher than that
of their wire model, and 2) XHPWL can easily be applied to analytical
placement because of the concept of the “bounding box.”

III. X-ARCHITECTURE MIN-CUT PARTITIONING PLACEMENT

Partitioning placement recursively divides a placement region into
several subregions, cuts a netlist into subnetlists, and assigns the
subnetlists into regions [10]–[13]. Through the min-cut partitioning,
the partitioning placer minimizes the cut size of each cutline, and the
total wirelength is minimized indirectly.

To apply X-architecture wire models to min-cut placement, we
use the net weighting technique proposed in [1]. Their net-weighting
method can be generalized as follows. A circuit is modeled as a
hypergraph. Each node in the hypergraph corresponds to a cell inside
the region, with the node weight being set to the area of the corre-
sponding cell. A two- or multiterminal net corresponds to one or two
hyperedges. The hyperedge weight is set to the value of the wirelength
contribution if the hyperedge is cut so that we can map the cut size to
the resulting wirelength.

We consider a rectangular region to be vertically or horizontally
divided into subregions 1 and 2. Let c1 and c2 be the centers of
the two subregions. A net has multiple terminals {v1, v2, . . . ,
vm, t1, t2, . . . , tn}, where v1, v2, . . . , vm are connected to the mov-
able cells inside the region and t1, t2, . . . , tn are fixed terminals
outside the region. Let w1 be the wirelength when all cells are in
subregion 1, w2 be the wirelength when all cells are in subregion 2,
and w12 be the wirelength when cells are in both subregions.
We assume that all cells are placed at the center of the assigned
region. See Fig. 4 used in [1] for an illustration of a net with
three terminals. We have w1 = wirelength({c1, t1, t2, . . . , tn}), w2 =
wirelength({c2, t1, t2, . . . , tn}), and w12 = wirelength({c1, c2, t1,
t2, . . . , tn}), where wirelength({p1, p2, . . . , pn}) is the wirelength of
the point set {p1, p2, . . . , pn} based on the given wire model.

We create a hypergraph G which has two fixed pseudonodes to
represent the two subregions and has movable nodes to represent the
movable cells. For a net, we introduce two hyperedges e1 and e2: e1

connects all movable nodes and the fixed pseudonode corresponding to
the subregion that results in a smaller wirelength; e2 connects between
all movable nodes. We then assign the weights of the hyperedges
as weight(e1) = |w2 − w1| and weight(e2) = w12 − max(w1, w2).
If the net has only one movable cell, we do not need to add e2 because
it is impossible to obtain the case with cells in both regions. w12

is usually larger or equal to max(w1, w2) because separating cells
into both regions often results in a larger wirelength. However, if

656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 4, APRIL 2008

Fig. 4. Example of determining a net weight [1]. (a)–(c) are three possible
partitioning results. (d)–(f) are corresponding partitioning hypergraphs.

Fig. 5. X-architecture min-cut partitioning placement flow.

w12 < max(w1, w2), we may make weight(e2) = 0 to avoid negative
edge weights for which some hypergraph partitioners cannot handle.
It is shown in [1] that the aforementioned net-weighting method can
exactly map the resulting total wirelength (based on the given wire
model) to the min-cut cost.

Partitioning the resulting hypergraph gives the partition to which
the cell belongs and the cut size ncut. We have the following two
theorems [1].

Theorem 1: With the generalized net weighting, the wirelength l of
a net with the cut size ncut is given by l = min(w1, w2) + ncut.

Theorem 2: The generalized net-weighting method exactly maps
the resulting total wirelength (based on the given wire model) to the
min-cut cost.

The theorems can be proved by the similar method used in [1].
Two models can be used in the generalized net-weighting method

to minimize the total XStWL for min-cut partitioning placement:
1) the XHPWL model and 2) the XStWL model. For the XHPWL
model, we can use (2) as the wirelength function to evaluate w1,
w2, and w12 for each net and assign net weights according to the
aforementioned method. For the XStWL model, we need to construct
X-Steiner trees to evaluate w1, w2, and w12 for each net.

We adopt the min-cut partitioning placement framework proposed
in [12] to implement our X-architecture partitioning placer. Fig. 5
shows the flow. It contains a loop of recursive bipartitioning. First,
all cells are located at the top-level partition (the whole chip). We

Fig. 6. X-architecture analytical placement flow.

TABLE I
COMPARISON OF THE RESULTING TOTAL XHPWL BASED ON DIFFERENT

PLACEMENT ALGORITHMS/WIRE MODELS

create the partitioning hypergraph according to the circuit netlist.
Then, the weights of hyperedges in the hypergraph are assigned by the
aforementioned net-weighting method. After min-cut partitioning, we
obtain the resulting subpartitions and corresponding cells within them.
If the circuit sizes in those subpartitions are still large, we add these
subpartitions into the bin list to be partitioned later. We take each time
the first bin from the bin list and bipartition it. The partitioning loop
continues until the bin list is empty, and we legalize the placement by
removing all overlaps to obtain the final placement.

IV. X-ARCHITECTURE ANALYTICAL PLACEMENT

The force-directed approach is widely used for the analytical place-
ment. The interconnection between cells provides wire forces to pull
cells together and minimize the total wirelength. Considering the wire
forces alone, however, cannot always obtain legal placement due to
large amounts of overlaps. Consequently, we need to add spreading
forces to remove the overlaps between cells. The analytical placement
is usually solved in an iterative fashion. The placement process min-
imizes the total wirelength and gradually adds more spreading forces
until cells evenly spread to the whole chip.

For X-architecture analytical placement, we need to minimize the
total X wirelength instead of the total Manhattan wirelength. Thus, we
shall change the wire model from MHPWL to XHPWL. To facilitate
XHPWL optimization, we use log-sum-exp (LSE) functions to smooth
the XHPWL function in (2). The smoothed XHPWL function is shown
in the following:

XHPWL-LSE(e)

= γ(
√

2−1)

(
log

∑
vi∈e

e
xi
γ + log

∑
vi∈e

e
−xi

γ

+ log
∑
vi∈e

e
yi
γ + log

∑
vi∈e

e
−yi

γ

)

− γ(
√

2/2−1)

(
log

∑
vi∈e

e
xi+yi

γ + log
∑
vi∈e

e
−xi−yi

γ

+ log
∑
vi∈e

e
xi−yi

γ + log
∑
vi∈e

e
−xi+yi

γ

)
. (3)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 4, APRIL 2008 657

TABLE II
COMPARISON OF THE RESULTING TOTAL MSTWL AND TOTAL XSTWL BASED ON DIFFERENT PLACEMENT ALGORITHMS/WIRE MODELS

This function has similar property to the MHPWL-LSE function:
When γ is sufficiently small, the XHPWL-LSE wirelength is close to
the XHPWL.

The wire-force direction is given by the gradient direction of the
wirelength function. The wire forces are along the gradient directions
toward the interior of the bounding box. Therefore, compared with the
XHPWL function, the XHPWL-LSE function can effectively reduce
the size of the X bounding box and obtain smaller total X wirelengths
for the X-architecture placement.

We adopt the analytical placement framework proposed in [14] to
implement our X-architecture analytical placer. Fig. 6 shows the flow,
which contains two loops. The inner loop uses the conjugate gradient
method to minimize the objective function, αW + βO, where W is
the wirelength function, O is the overlap function, and α and β are the
corresponding weights. The outer loop updates α and β to remove
overlaps gradually (we use the same method described in [14] to
update α and β). To optimize the X wirelength, we use the XHPWL-
LSE in (3) for W . The placement loop continues until all cells are
spread enough or the overlaps are small enough. Then, we legalize the
placement by removing all overlaps to obtain the resulting placement.

V. EXPERIMENTAL RESULTS

We applied different wire models to both the min-cut partition-
ing placer NTUplace1 [12] and the analytical placer NTUplace3
[14]. For the min-cut partitioning placer, we have four wire models:
MHPWL, XHPWL, XStWL, and TGXWL [9]. For the analytical
placer, we have two wire models: MHPWL and XHPWL. We do
not use XStWL and TGXWL for analytical placement because they
cannot be applied directly. All experiments were performed on an
AMD Opteron 2.6-GHz machine.

We used the benchmark “IBM version 2.0,” which is widely used
in academia [15]. Although not reported here, the results on the
ISPD’05 and ISPD’06 Placement Contest Benchmarks [16], [17] are
similar. We used FLUTE [18] as our Steiner-tree estimator because it
is very accurate and fast. For X-architecture Steiner trees, we first used
FLUTE to find Steiner points to determine the Steiner-tree topology.
Then, X routing was applied to compute the minimum distance for
each net segment. Although this approach is not X-architecture aware,
it can still provide good estimation of the XStWL. Our placers are
comparable to other state-of-the-art academic placement tools in wire-
length, including APlace 2.0 [19], Capo 10.2 [11], Feng Shui 5.1 [13],
and mPL6 [20].

Total XHPWL

In this paper, we show how much XHPWL can be reduced by
using the XHPWL model. Table I gives the total XHPWL for different
placement algorithms/wire models. As shown in the table, the XHPWL
model can reduce the average total XHPWL by 0.9% for the min-cut

and 3.2% for the analytical placement. The reductions are consistent
for all circuits. Note that the XStWL model increases wirelength
by 1.8% because this objective function does not optimize the total
XHPWL directly.

Total Steiner-Wirelength Comparisons

We use the total Steiner wirelength to evaluate the quality of the
placement. Compared with the half-perimeter wirelength, the Steiner
wirelength is much closer to the routed wirelength. The results are
shown in Table II. The left part of the table reports the total Manhattan-
Steiner wirelengths (MStWLs), whereas the right part shows the
total X-Steiner ones. We also compare the total XStWL using the
wire model of Teig and Ganley (TGXWL). The average values are
normalized to the respective placement algorithms using the MHPWL
model. For the total X-Steiner, compared with the MHPWL model,
the XStWLs are reduced by 0.7% and 4.7% for min-cut partitioning
placement using the XHPWL and XStWL models, respectively. For
analytical placement, compared with the MHPWL model, the XStWL
is reduced by 2.8% on average. Note that TGXWL failed to generate
any placement with a shorter total XStWL for all cases.

CPU Time

The XHPWL and XStWL models need more computation efforts
than the MHPWL one. For the min-cut partitioning placement, the
XHPWL and XStWL models incur the runtime overheads of about
7.6% and 21.9% on average, respectively. The XStWL model requires
the highest CPU time because of its Steiner-tree construction. For the
analytical placement, the XHPWL model incurs about 15.1% runtime
overhead on average.

Wire-Model Accuracy and Fidelity

To compare the accuracy of the wire models, we show in Fig. 7 the
ratios of MHPWL, TGXWL, and XHPWL to XStWL for nets with
the pin counts ranging from 3 to 23 using the circuit ibm01. Unlike
MHPWL, both TGXWL and XHPWL provide good lower bound
estimations for XStWL; TGXWL and XHPWL are consistently no
larger than XStWL, and their distributions are very similar. However,
XHPWL gives a more accurate estimation to XStWL than TGXWL.

We further compute the correlation between different wire models.
Table III gives the correlations of MHPWL, TGXWL, XHPWL, and
XStWL w.r.t. MStWL and XStWL. Note that XStWL has the highest
correlation because it is the exact XStWL. As shown in the table,
XHPWL has higher correlations to both MStWL and XStWL than
MHPWL and TGXWL. In contrast, the correlations of TGXWL to
both MStWL and XStWL are even lower than those of MHPWL. It
provides insights into why TGXWL does not lead to smaller total
XStWL, as reported in Table II.

658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 4, APRIL 2008

Fig. 7. Comparison of the accuracy of XStWL estimators. (Left lines) MH-
PWL, (middle) TGXWL (Teig and Ganley’s model), and (right) XHPWL for
nets with 3–23 pins in the circuit ibm01.

TABLE III
WIRELENGTH CORRELATION BETWEEN WIRE

MODELS IN THE CIRCUIT IBM01

Fig. 8. Fidelity of MHPWL, TGXWL, and XHPWL for estimating XStWLs
based on nets with different pin counts.

We also evaluate the wire models by their fidelity. If a wire model
f has high fidelity to the XStWL model, it satisfies the following two
conditions.

1) f(P1) > f(P2) if XStWL(P1) > XStWL(P2).
2) f(P1) = f(P2) if XStWL(P1) = XStWL(P2).

In those conditions, P1 and P2 are two sets of net pins with the same
pin count. Fig. 8 shows the fidelity of the three wire models for the
XStWL estimation based on the IBM benchmarks. The fidelity is given
by the percentage of the point sets satisfying the aforesaid conditions.
As shown in the figure, our XHPWL has the highest fidelity for all
pin counts. Note that the fidelity of TGXWL is smaller than that of
MHPWL for most cases; this may again explain why TGXWL does
not lead to shorter XStWLs, as shown in Table II.

Wirelength Using Different Architectures

Without our X-architecture placement, the X-architecture routing
alone reduces the wirelength by only 7.7%–8.0% on average. With our
X-architecture placement, in contrast, the X-architecture routing can
reduce the wirelength by 11.6% and 11.0% on average for min-cut
partitioning and analytical placement algorithms, respectively.

VI. CONCLUSION

We have proposed and studied the XHPWL and the XStWL models
for min-cut partitioning and analytical placement.

Experimental results have shown that using the XHPWL or XStWL
model in placement can lead to shorter XStWLs than traditional
Manhattan placement. The results reveal the effectiveness of the X
architecture on wirelength reduction during placement and, thus, the
importance of the study on the X-placement algorithms.

REFERENCES

[1] T.-C. Chen, Y.-W. Chang, and S.-C. Lin, “IMF: Interconnect-driven mul-
tilevel floorplanning for large-scale building-module designs,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., San Jose, CA, Nov. 2005,
pp. 159–164.

[2] S. Ono, S. Tilak, and P. H. Madden, “Bisection based placement for the X
architecture,” in Proc. IEEE/ACM Asia South Pacific Des. Autom. Conf.,
Yokohama, Japan, Jan. 2007, pp. 153–158.

[3] S. L. Teig, “The X architecture: Not your father’s diagonal wiring,”
in Proc. Syst. Level Interconnect Prediction Workshop, San Diego, CA,
Apr. 2002, pp. 33–38.

[4] C.-K. Koh and P. H. Madden, “Manhattan or non-Manhattan? A study of
alternative VLSI routing architectures,” in Proc. ACM Great Lakes Symp.
VLSI, Chicago, IL, Mar. 2000, pp. 47–52.

[5] T.-Y. Ho, C.-F. Chang, Y.-W. Chang, and S.-J. Chen, “Multilevel full-chip
routing for the X-based architecture,” in Proc. ACM/IEEE Des. Autom.
Conf., Anaheim, CA, Jun. 2005, pp. 597–602.

[6] Z. Cao, T. Jing, Y. Hu, Y. Shi, X. Hong, X. Hu, and G. Yan, “DraXRouter:
Global routing in X-architecture with dynamic resource assignment,” in
Proc. IEEE/ACM Asia South Pacific Des. Autom. Conf., Yokohama, Japan,
Jan. 2006, pp. 618–623.

[7] H. Chen, C.-K. Cheng, A. B. Kahng, I. Mandoiu, and Q. Wang, “Esti-
mation of wirelength reduction for λ-geometry vs. Manhattan placement
and routing,” in Proc. Syst. Level Interconnect Prediction Workshop,
Monterey, CA, Apr. 2003, pp. 71–76.

[8] S. L. Teig and J. L. Ganley, “Partitioning placement method and appara-
tus,” U.S. Patent 6 848 091, Jan. 25, 2005.

[9] S. L. Teig and J. L. Ganley, “Partitioning placement method using diago-
nal cutlines,” U.S. Patent 6 516 455, Feb. 4, 2003.

[10] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh,
“Dragon2006: Blockage-aware congestion-controlling mixed-size
placer,” in Proc. ACM Int. Symp. Phys. Des., San Jose, CA, Apr. 2006,
pp. 209–211.

[11] J. Roy, D. Papa, A. Ng, and I. Markov, “Satisfying whitespace require-
ments in top-down placement,” in Proc. ACM Int. Symp. Phys. Des., San
Jose, CA, Apr. 2006, pp. 206–208.

[12] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace: A
ratio partitioning based placement algorithm for large-scale mixed-size
designs,” in Proc. ACM Int. Symp. Phys. Des., San Francisco, CA,
Apr. 2005, pp. 236–238.

[13] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive bisection place-
ment: Feng Shui 5.0 implementation details,” in Proc. ACM Int. Symp.
Phys. Des., San Francisco, CA, Apr. 2005, pp. 230–232.

[14] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, and Y.-W. Chang, “A high-quality
mixed-size analytical placer considering preplaced blocks and density
constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., San
Jose, CA, Nov. 2006, pp. 187–192.

[15] S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N. Parakh, and
P. H. Madden, “Benchmarking for large-scale placement and beyond,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 4,
pp. 472–487, Apr. 2004.

[16] ISPD 2005 Placement Contest. [Online]. Available: http://www.sigda.
org/ispd2005/contest.htm

[17] ISPD 2006 Placement Contest. [Online]. Available: http://www.sigda.org/
ispd2006/contest.html

[18] C. Chu and Y.-C. Wong, “Fast and accurate rectilinear Steiner minimal
tree algorithm for VLSI design,” in Proc. ACM Int. Symp. Phys. Des.,
2005, pp. 28–35.

[19] A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in Proc.
ACM Int. Symp. Phys. Des., San Jose, CA, Apr. 2006, pp. 218–220.

[20] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie, “mPL6: Enhanced
multilevel mixed-size placement,” in Proc. ACM Int. Symp. Phys. Des.,
San Jose, CA, Apr. 2006, pp. 212–214.

[21] J. A. Roy, J. F. Lu, and I. L. Markov, “Seeing the forest and the trees:
Steiner wirelength optimization in placement,” in Proc. ACM Int. Symp.
Phys. Des., San Francisco, CA, Apr. 2005, pp. 78–85.

