
98 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

An Integer-Linear-Programming-Based Routing
Algorithm for Flip-Chip Designs

Jia-Wei Fang, Student Member, IEEE, Chin-Hsiung Hsu, Student Member, IEEE, and
Yao-Wen Chang, Member, IEEE

Abstract—The flip-chip package provides a high chip-density
solution to the demand for more input–output pads of very large
scale integration designs. In this paper, we present the first routing
algorithm in the literature for the preassignment flip-chip routing
problem with a predefined netlist among pads and wire-width
and signal-skew considerations. Our algorithm is based on integer
linear programming (ILP) and guarantees to find an optimal so-
lution for the addressed problem. It adopts a two-stage technique
of global routing followed by detailed routing. In global routing, it
first uses three reduction techniques to prune redundant solutions
and create a global-routing path for each net. Without loss of the
solution optimality, our reduction techniques can further prune
the ILP variables (constraints) by 85.5% (98.0%) on average over
a recent reduction technique. The detailed routing applies passing-
point assignment, net-ordering determination, and X-based
gridless routing to complete the routing. Experimental results
based on five real industry designs show that our router can
achieve 100% routability and the optimal global-routing wire-
length, and satisfy all signal-skew constraints, under reasonable
central-processing-unit times, whereas recent related work has
resulted in much inferior solution quality.

Index Terms—Detailed routing, global routing, layout, physical
design.

I. INTRODUCTION

THE increasing complexity and the decreasing feature size
of very large scale integration (VLSI) designs make the

demand of more I/O pads a significant problem to package tech-
nologies. An advanced packaging technology, the flip-chip (FC)
package, as shown in Fig. 1(a), is created for higher integration
density, rising power consumption, and larger I/O counts.

FC is not a specific package, or even a package type, e.g., pin
grid array (PGA) or ball grid array (BGA). FC describes the

Manuscript received November 26, 2007; revised July 15, 2008. Current
version published December 17, 2008. This work was supported in part by the
Etron, the SpringSoft, the Taiwan Semiconductor Manufacturing Company, and
the National Science Council of Taiwan under Grant NSC 96-2628-E-002-248-
MY3, Grant NSC 96-2628-E-002-249-MY3, Grant NSC 96-2221-E-002-245,
Grant NSC 96-2752-E-002-008-PAE, and Grant NSC 096-2917-I-002-120. An
earlier version of this paper was nominated for the Best Paper Award at the
ACM/IEEE Design Automation Conference (DAC’07), San Diego, CA, June
2007 [7]. This paper was recommended by Associate Editor L. Scheffer.

J.-W. Fang and C.-H. Hsu are with the Graduate Institute of Electron-
ics Engineering, National Taiwan University, Taipei 106, Taiwan (e-mail:
jiawei@eda.ee.ntu.edu.tw; arious@eda.ee.ntu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and Graduate
Institute of Electronics Engineering, National Taiwan University, Taipei 106,
Taiwan (e-mail: ywchang@cc.ee.ntu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2009151

Fig. 1. (a) FC package. (b) Cross section of the RDL.

method of electrically connecting the die to the package carrier.
FC technology is the choice in high-speed applications be-
cause of the following advantages: reduced signal inductance,
reduced power consumption, reduced package footprint, higher
signal density, etc. However, in recent IC designs, the I/O pads
are still placed along the boundary of a die. This placement does
not suit the FC package well. As a result, the top metal or an
extra metal layer, called a redistribution layer (RDL), as shown
in Fig. 1(b), is used to redistribute the wire-bonding pads to
the bump pads without changing the placement of the I/O pads.
Since the RDL is the top metal layer of a die, the routing in an
RDL cannot be any angle as in the PGA/BGA packages. Bump
balls are placed on the RDL and use the RDL to connect to wire-
bonding pads by bump pads. Therefore, a special router, the
RDL router, is needed to reroute the peripheral wire-bonding
pads to the bump pads (balls) [17]. In addition to the traditional
routing cost metric of total wirelength, the issue of signal skews
is of significant importance because the FC design is typically
for high-speed circuits. Furthermore, multipin nets and variable
wire widths are also significant considerations for an RDL
router.

There are two kinds of the RDL routing problems for the
FC design. The first one is the free-assignment routing problem.
In this problem, a wire-bonding pad is not assigned to any
bump pad before routing. Therefore, a router has the freedom to
assign a wire-bonding pad to the bump pads during routing.
Since the netlist is defined by the router, this routing problem

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 99

is relatively easier and can be solved by a network-flow for-
mulation [6], [8]. The second kind of RDL routing is the
preassignment routing problem, where the mappings among
the wire-bonding pads and the bump pads are defined before
routing and cannot be changed. Since the preassignment of
the netlist imposes more routing constraints, this problem is
much harder than the free-assignment one. Furthermore, the
preassignment problem is, in fact, more popular in practice
since the functions of wire-bonding and bump pads are typi-
cally predefined by IC and packaging designers. To the best
of our knowledge, however, there is no existing work on the
preassignment RDL routing for FC designs in the literature,
and designers are often forced to awkwardly apply existing
routers that are designed for other technologies to handle the
RDL routing [17]. Obviously, this is by no means a right way to
handle this problem. Therefore, it is greatly desired to develop
an effective and efficient algorithm for RDL routing.

A. Previous Work

As just mentioned, there is no previous work in the liter-
ature on the preassignment routing problem for FC designs.
Recently, Fang et al. [6], [8] have addressed the free-assignment
routing problem and presented a network-flow algorithm to
assign wire-bonding pads to bump pads. Since the network-flow
approach cannot guarantee the correct connections between two
designated nodes, it cannot handle the preassignment routing
problem. Other related works include the routing for planar
graphs [1], [2], [12], PGA packages [3], [16], and BGA pack-
ages [4], [11], [15]. For [1], [2], and [12] on the planar routing,
since modules with pins can be placed anywhere in a chip, it
is harder and has been shown to be NP-complete, and, thus,
most likely, there exists no efficient optimal algorithm for the
planar routing. In the FC routing, since wire-bonding pads and
bump pads are placed in arrays, we can take the advantage of
the regular structure to find an efficient algorithm for the RDL
routing. Thus, the FC routing problem is also different from
the planar routing one. References [3] and [16] presented PGA
routers, whereas [4] and [11] provided BGA routers. These
routers are any-angle multilayer routers and do not consider
the single-layer restriction, the signal skews, the variable wire
widths, and the total wirelength minimization. Therefore, they
are not suitable for the RDL routing, typically with a routing
angle of 90◦ or 45◦, and much more stringent performance
constraints. A recent work [15] has provided an any-angle and
single-layer BGA global router. It used an order graph to get
a routing sequence for the nets. Since the relation of the nets
is not all kept in the order graph, the number of legal routing
sequences is typically huge. Furthermore, the graph does not
keep the information of routing resources. As a result, it may
not complete the routing even with a legal routing sequence.
Also, this paper did not consider signal skews, variable wire
widths, U-turn routes, and total wirelength minimization.

B. Our Contributions

In this paper, we present the first algorithm for the preassign-
ment RDL routing problem, considering signal skews, variable

Fig. 2. (a) Four sides in an FC. (b) Cut lines, segments, and a ring area.

wire widths, U-turn routes, and total wirelength minimization.
Our algorithm is based on integer linear programming (ILP)
and guarantees to find an optimal solution for the addressed
problem. It adopts a two-stage technique of global routing
followed by detailed routing. In global routing, it simultane-
ously determines the routing sequence for the nets and cre-
ates global-routing paths among wire-bonding pads and bump
pads. Formulating the global routing as ILP with the routing
resource consideration, we can guarantee 100% detailed routing
completion after global routing. Since ILP is NP-complete [9],
it is computationally expensive. We apply three reduction
techniques to prune redundant solutions and, thus, speed up
the computation. Without loss of the solution optimality, our
reduction techniques can further prune the ILP variables (con-
straints) by 85.5% (98.0%) on average over the order-graph
technique presented in [15]. Due to the significant reductions
and the optimality guarantee, our ILP-based algorithm is able
to find very high quality solutions in reasonable CPU times.
The detailed routing consists of three steps:

1) passing-point assignment to distribute the routing points
between two adjacent wire-bonding (bump) pads accord-
ing to the wire width and the skew constraint of each net;

2) net-ordering determination to identify better routing
sequences;

3) X-based gridless routing to complete the routing with
shorter wirelength (than Manhattan routing).

Experimental results based on five real industry designs show
that our router can achieve 100% detailed-routing comple-
tion and the optimal global-routing wirelength, and satisfy all
signal-skew constraints, under reasonable CPU times, com-
pared to an integrated router (the BGA global router in [15]
followed by the detailed router in [6] and [8]) that results in
only 82.9% routability, all signal-skew violations, and 15.56%
longer wirelength.

The rest of this paper is organized as follows. Section II
gives the formulation of the RDL routing problem. Section III
details our global and detailed routing algorithms. Section IV
reports the experimental results. Finally, our conclusion is given
in Section V.

II. PROBLEM FORMULATION

We introduce the notations used in this paper and formally
define the RDL routing problem for FC packages. Fig. 2(a)

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

Fig. 3. (a) Monotonic routing. (b) Nonmonotonic routing.

shows the modeling of the routing structure of the FC package.
Let P be the set of wire-bonding pads, and let B be the set
of bump pads. For practical applications, the number of bump
pads is larger than or equal to that of wire-bonding pads, i.e.,
|B| ≥ |P |, and each bump pad can be routed to more than
one wire-bonding pad. Let Rb = {rb

1, r
b
2, . . . , r

b
f} be a set of

f bump pad rings in the center of the package, and let Rp =
{rp

1 , rp
2 , . . . , rp

g} be a set of g wire-bonding pad rings at the
boundary of the package. Each bump pad ring rb

i consists of
a set of q bump pads {bi

1, b
i
2, . . . , b

i
q}, and each wire-bonding

pad ring rp
j consists of l wire-bonding pads {pj

1, p
j
2, . . . , p

j
l }.

Let N be the set of nets (could be two-pin or multipin nets)
for routing. Each two-pin (multipin) net n in N is defined by a
wire-bonding pad (a set of wire-bonding pads) and a bump pad
that should be connected. Since the RDL routing for current
technology is typically on a single layer, it does not allow
wire crossings, for which two wires intersect each other in the
routing layer. As shown in Fig. 2(a), based on the four sides of
the FC package, we partition the wire-bonding pads into four
parts: Top, Right, Bottom, and Left sides. As shown in Fig. 2(b),
a ring area is an area between two adjacent pad rings. A segment
denotes a part of a net that connects pads or passing points. Nets
pass through these passing points to connect wire-bonding pads
and bump pads. The spacing rules for all nets are the same. A
cut line is a line in the middle of two adjacent segments.

Let U be a set of intervals. We define an interval u ∈ U
to be the segment between two adjacent bump pads or the
segment between two adjacent wire-bonding pads in the same
ring rp

j . Given an FC routing instance, there are two types of
routing—the monotonic routing and the nonmonotonic routing.
Informally, a monotonic routing is a route with no U-turn path.
As shown in Fig. 3(a), nets n1 (connection between wire-
bonding pad 1 and bump pad 1) and n2 are monotonic routes.
If we reassign the bump pads 1 and 2 as shown in Fig. 3(b),
the routing of n1 becomes nonmonotonic routing. Since the
nonmonotonic routing consumes more routing resource, it may
result in lower routing completion.

Furthermore, the signal skew, i.e., the difference in wire-
length between two nets, should also be considered for the
routing in a high-performance FC design.

We formally define the addressed routing problem as follows.
Problem 1: The single-layer preassignment routing problem

in the FC design is to connect a set P of wire-bonding pads
and a set B of bump pads according to a predefined netlist with
wire width and signal skew constraints, so that no wire crosses
each other, no signal skew constraint is violated, and the total
wirelength is minimized under the 100% routability guarantee.

III. RDL ROUTING ALGORITHM

In this section, we present our routing algorithm. We first
give an overview of our algorithm.

A. Algorithm Overview

In the routing flow, as shown in Fig. 4, our algorithm consists
of two stages: 1) global routing based on ILP and 2) detailed
routing based on passing-point assignment, net-ordering deter-
mination, and X-based gridless routing.

In the first stage of global routing, we construct a routing
network G to formulate the routing of the wire-bonding pads
to the bump pads (two-pin and multipin nets) as ILP. Since we
have only one layer for routing, the ILP must avoid creating
any wire crossings. We also formulate the wire width and signal
skew constraints into the ILP. Since the ILP is NP-complete [9],
it is computationally expensive. We then provide three ILP
reduction techniques to reduce the numbers of variables and
constraints. Furthermore, the nonmonotonic routes are also
considered. Finally, an ILP solver is used to solve the ILP
and find the routes from wire-bonding pads to bump pads. The
routes give the global-routing paths of the nets.

In the second stage of detailed routing, we use passing-point
assignment, net-ordering determination, and X-based gridless
routing to determine the detailed routes. A passing point is the
point for a net to pass through an interval. First, we find the
passing points for all nets passing through the same interval.
For all nets that pass through the same interval, we distribute
these passing points according to their wire widths. We then
apply net-ordering determination to each ring area to route all
nets. Finally, we use an X-based gridless router to route the nets.

B. Global Routing

Here, we first show routing network G and the basic ILP for-
mulation for routing two-pin and multipin nets. Then, we detail
the three ILP reduction techniques for reducing the number of
variables and ILP constraints. Finally, we discuss how to handle
the routing among four sides and route nonmonotonic nets.

1) Basic ILP Formulation: First, we describe how to con-
struct routing network G to perform the concurrent rout-
ing for the Bottom side. The other three sides can be
processed similarly. As shown in Fig. 5(a), we define D =
{d1, d2, . . . , dh} to be a set of h ILP nodes. Each ILP node
represents a candidate node of a net to pass through an interval
(bi

z, b
i
z+1) ((bi

z, b
i+1
z)) between two adjacent bump pads or

an interval (pj
y, pj

y+1) in a wire-bonding pad ring. Let M
be a set of tiles. Each tile m ∈ M represents a rectangle
(pj

y, pj
y+1, p

j+1
y′ , pj+1

y′+1) ((bi
z, b

i
z+1, b

i+1
z′ , bi+1

z′+1)) between two
adjacent wire-bonding (bump) pad rings. We construct a routing
network G = (PB ∪ D ∪ B,E) for the Bottom side. Let E
denote a set of edges that are the candidate segments of the
global-routing paths of nets. There are four types of edges:

1) the directed edge from a wire-bonding pad to a bump pad;
2) the directed edge from a wire-bonding pad to an ILP

node;

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 101

Fig. 4. RDL routing flow.

Fig. 5. (a) Intervals and tiles. (b) Routing network of the bottom side.

3) the directed edge from an ILP node to a bump pad;
4) the directed edge from an ILP node to another ILP node.

Fig. 5(b) shows an example of the routing network for the
Bottom side. The pads and the nodes with the same number
belong to the same net. Since we decompose all multipin nets
into two-pin nets, nets 1 and 2 form a multipin net. We construct
the routing network to contain all monotonic routing solutions
to the RDL routing problem. Thus, in Fig. 5(b), we can find all
global-routing paths of each net, and the solid edges denote the
best solution.

The notations that are used in the ILP formulation are as
follows.

1) xi,j : 0–1 integer variable that denotes if a candidate
segment j is chosen in the global-routing path of net ni.
xi,j = 1 if segment j is chosen; xi,j = 0 otherwise.

2) ei,j : edge that denotes a candidate segment j of the
global-routing path of ni.

3) L(ei,j): function that denotes the length of ei,j .
4) W (ei,j): function that denotes the wire width of net ni.
5) C(ei,j , ep,q): function that denotes the crossing between

ei,j and ep,q . If ei,j crosses ep,q , C(ei,j , ep,q) = 1; other-
wise, C(ei,j , ep,q) = 0.

6) Pi(ei,j): function that denotes the connection of ei,j and
wire-bonding pad pi ∈ P . If ei,j connects pi, Pi(ei,j) =
1; otherwise, Pi(ei,j) = 0.

7) Din
k (ei,j): function that denotes the connection of ei,j and

the input side of ILP node dk ∈ D. If ei,j connects the
input side of dk, Din

k (ei,j) = 1; otherwise, Din
k (ei,j) = 0.

8) Dout
k (ei,j): function that denotes the connection of ei,j

and the output side of ILP node dk ∈ D. If ei,j con-
nects the output side of dk, Dout

k (ei,j) = 1; otherwise,
Dout

k (ei,j) = 0.
9) Tm(ei,j): function that denotes the existence of ei,j in

tile m ∈ M . If ei,j is in tile m, Tm(ei,j) = 1; otherwise,
Tm(ei,j) = 0.

10) tm: constant that denotes the routing resource of tile
m ∈ M .

11) Hu(ei,j): function that denotes the existence of ei,j in
interval u ∈ U . If ei,j is in interval u, Hu(ei,j) = 1;
otherwise, Hu(ei,j) = 0.

12) hu: constant that denotes the routing resource of interval
u ∈ U .

13) si,p: constant that denotes the maximum allowance of
the signal skew between net i and net p. Each si,p is in
constraints F .

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

Fig. 6. (a) Routing network. (b) Constraint graph. (c) Reduced routing network after constraint-graph-based pruning. (d) Reduced routing network after
ILP node merging.

Therefore, the RDL routing problem can be formulated as
follows:

min
∑

ei,j∈E

L(ei,j)xi,j

subject to

C(ei,j , ep,q)(xi,j + xp,q) ≤ 1, ∀ei,j , ep,q ∈ E (1)∑

ei,j∈E

W (ei,j)Tm(ei,j)xi,j ≤ tm, ∀m ∈ M (2)

∑

ei,j∈E

W (ei,j)Hu(ei,j)xi,j ≤ hu, ∀u ∈ U (3)

∣∣∣∣∣∣

∑

j∈ni

L(ei,j)xi,j −
∑

q∈np

L(ep,q)xp,q

∣∣∣∣∣∣
≤ si,p, ∀si,p ∈ F

(4)∑

ei,j∈E

Pi(ei,j)xi,j = 1, ∀pi ∈ P (5)

∑

ei,j∈E

Dout
k (ei,j)xi,j =

∑

ei,q∈E

Din
k (ei,q)xi,q, ∀dk ∈ D.

(6)

The objective function is to minimize the total wirelength
under the 100% routability guarantee. Constraint (1) avoids
the crossing: If two edges cross each other, at most one can
exist. As the example shown in Fig. 5(b), since e1,21 and e3,6

cross each other, we have C(e1,21, e3,6) = 1. To pick at most
one edge between e1,21 and e3,6, we set x1,21 + x3,6 ≤ 1.
Constraint (2) is used to avoid the congestion overflow of a
tile since there may be too many edges passing through the tile
formed by four bump pads. We also must avoid the congestion
overflow of an interval between two pads; therefore, we have
constraint (3) for the edges passing through the same interval.
Since the spacing rules for all nets are the same, we can use
the wire width to simplify constraints (2) and (3). Note that
the congestion avoidance gives the reason why we can han-
dle variable wire widths and guarantee 100% routability after
global routing. Now, we consider the signal-skew constraint.
Constraint (4) formulates the signal-skew constraint between
two nets. The difference in the wirelength between the two nets
must be smaller than the skew constraint. Moreover, since we
want to guarantee 100% routability, constraint (5) guarantees
that at least one edge of the wire-bonding pad pi of net ni be
chosen. Furthermore, as shown in Fig. 5(b), the flow summation
of the output side of ILP node d12 must equal that of the input

side of d12. For example, output flow e1,21 = 1 if and only if
input flow e1,12 = 1. Hence, we have constraint (6) for the flow
conservation.

We have completed the basic formulation. However, this
naive formulation may result in very long running time. As
illustrated in Fig. 5(b), we have so many edges (variables) and
crossings (constraints) for this simple problem with only three
nets. For modern FC designs, there may be hundreds of nets,
which may result in millions of variables and constraints. It is,
thus, desirable to reduce the problem size (i.e., the numbers of
variables and constraints).

2) Optimality-Preserving ILP Reductions: Now, we present
three ILP reduction techniques to reduce the size of routing
network G and, thus, the numbers of variables and constraints
in the ILP. All monotonic RDL routes of a net are possible
monotonic routes of the net. We define a feasible monotonic
RDL route of a net to be the route that will not make other nets
routed nonmonotonically. The three reduction techniques keep
all feasible monotonic RDL routes for each net. In other words,
we only prune redundant monotonic RDL routes, which will
not affect the resulting routability. To maintain the solution op-
timality of the ILP, we shall delete only the redundant solutions.

• Constraint-graph-based pruning. We first consider the
constraint graph for routing associated with one side of
the FC for easier presentation. We will consider the net
interaction handling between two sides in Section III-B3.

Fig. 6(a) shows all the ILP nodes of the routing network.
According to the netlist, we can find relation among pads
to avoid crossings. For example, wire-bonding pads 1 and
2 belong to the same wire-bonding pad ring. To get a
monotonic route, net 1 must be routed at the left side of
net 2. Similar to [15], as shown in Fig. 6(b), we can create
a constraint graph GC(V,E) to record this relation. Each
vertex vi ∈ V corresponds to a net ni ∈ N , and each edge
e ∈ E denotes the relative position constraint of two nets.
If ni must be routed at the left side of nj , we construct an
edge from vi to vj . For example, an edge is constructed
from v1 to v2. Also, we need to construct an edge from
v1 to v3 because bump pads 1 and 3 are placed on the
same horizontal line, and bump pad 1 is at the left side
of bump pad 3. We only need to construct edges among
the adjacent nets whose pins are placed in the same wire-
bonding pad ring or on the same horizontal line defined
by bump pads since we can find the relation between two
nets by searching the constraint graph. Therefore, in this
example, n2 can be routed either at the left side or the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 103

Fig. 7. Algorithm for ILP node merging.

right side of n3 since there is no constraint edge between
v2 and v3. With the constraint graph, the reduced routing
network of the instance in Fig. 6(a) is given in Fig. 6(c). If
there exist cycles in GC(V,E), however, we may not find
a sequence for monotonic routing. We will show how to
handle nonmonotonic routing in Section III-B4.

• ILP node merging. We can merge some ILP nodes without
losing the solution optimality. As an example shown in
Fig. 6(c), at both sides of wire-bonding pad 3, there are
two kinds of repetitions of the ILP nodes, such as 〈2, 2〉
and 〈1, 2, 1, 2〉. We can identify all repetitions and merge
them into a nonrepeated order, such as 〈2〉 and 〈1, 2〉,
respectively. Fig. 6(d) illustrates the routing network after
merging the ILP nodes of Fig. 6(c). It is clear that the
numbers of the ILP nodes and edges are reduced signifi-
cantly. Note that the reduction is often very significant due
to the propagation of the ILP nodes. The ILP nodes are
propagated from the outer ring to the inner one, and so
is the order of nets. It shows that this reduction, such as
〈ni, nj , ni, nj〉 into 〈ni, nj〉, will not destroy the optimal-
ity. For example, if net ni must be routed at the left side of
net nj in the outer ring, this order must be kept in the inner
one for the optimal wirelength. Fig. 7 summarizes the
ILP node merging algorithm; line 4 shows the maximum
length of a repetition; lines 5 and 6 search each length of
repetitions; line 7 finds the repetitions among ILP nodes;
lines 8–11 merge the repeated ILP nodes and remove the
repeated ILP nodes.

• ILP edge bounding. If the outgoing (incoming) edges of an
ILP node between two wire-bonding (bump) pads cross all
edges of the left/right pad, they are bounded by the edges
of the left/right pad. The reason is that we must choose
at least one edge of each wire-bonding (assigned bump)
pad. As shown in Fig. 8(a), the dotted (blue) edges are
deleted because they run out of bound of the solid (red)
edges of wire-bonding pad 2 and bump pad 2. The routing
network in Fig. 8(b) shows the ILP edge reduction result.
Consequently, the number of variables and constraints can
be further reduced.

Fig. 8. (a) Routing network. (b) Reduced routing network after ILP edge
bounding.

We have the following theorem for the complexity reduction
by applying the above techniques.

Theorem 1: Given set P of wire-bonding pads, set B of
bump pads, and set N of nets, the number of edges of the
routing network G = (V,E) can be reduced from O(|N |aa)
to O(|N |a3), where a =

√
|B|, with the constraint-graph-

based pruning and the ILP node merging. Consequently, the
number of ILP variables can be reduced from O(|N |aa) to
O(|N |a3), and the number of ILP constraints can be reduced
from O(|N |2|B|a) to O(|N |2|B|3).

Proof: The complexity of the numbers of variables and
constraints can be further reduced by constraint-graph-based
pruning and ILP node merging. Given set P of wire-bonding
pads and set B of bump pads for netlist N with set F of
ILP constraints, we construct a routing network G = (V,E)
and formulate the routing problem into the ILP. The number
of ILP variables is O(|E|). The number of ILP constraints is
O(|E|2) because it is dominated by constraint (1). Without
loss of generality, we make the tile number of a row equal to
that of a column. Therefore, a net can pass through at most
a − 1 intervals, where a =

√
|B|, i.e., the number of bump

pad rings. Without the reduction, |E| is equal to O(|N |aa)
since there are at most a − 1 bump pad rings passed through
by a net in each side, and, thus, the edge number for a
net is (a + 1)1 + (a + 1)2 + · · · + (a + 1)a−1 = O(aa). Here,
a + 1 is the maximum number of intervals in a bump pad
ring. We represent the routing network after the reduction G′ =
(V ′, E′). We shall discuss only the worst-case scenario for the
constraint-graph-based pruning and the ILP node merging. For
the constraint-graph-based pruning, no edge and node can be
reduced by the pruning when the constraint graph contains no
edge. However, there may exist many repetitions of ILP nodes
in each interval, and, thus, the ILP node merging can reduce
|E| to |E ′| = O(|N |a3). The reason is that each net has only
one ILP node in each interval among a − 1 bump pad rings,
and, thus, the edge number for a net is (a + 1)1 + (a + 1)2 +
· · · + (a + 1)2 = (a + 1) + (a − 2) × (a + 1)2 = O(a3). For
the worst-case scenario of the ILP node merging, no edge and
node can be reduced by the merging when the constraint graph
induces only one net order. However, the constraint-graph-
based pruning changes |E| to |E′| = O(|N |a) because each net
can find only one path. For other cases, the constraint-graph-
based pruning and the ILP node merging can further reduce
the numbers of nodes and edges in the routing network; this is
because when we increase the number of edges in the constraint
graph, some ILP nodes can be further pruned. However, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

Fig. 9. (a) Routing network of parallel sides. (b) Routing network of orthogonal sides.

remaining repetitions of ILP nodes can still be merged. For
example, if nk is pruned from 〈ni, nj , nk, ni, nj , nk〉, the re-
maining repetition 〈ni, nj , ni, nj〉 can be merged into 〈ni, nj〉.
Hence, the reduced number of variables (edges) is O(|N |a3).
Consequently, the number of constraints can be reduced to
O(|N |2a6) = O(|N |2|B|3). �

Note that the reduction is very significant. With the reduc-
tion, the problem size can be reduced from exponential to
polynomial.

3) Constraint-Graph-Based Pruning With Net Interactions
Between Two Sides: We continue our discussion in the pre-
ceding section on the constraint-graph-based pruning for ILP
reduction by considering the net interactions between two sides.
After independently constructing routing network G for each
side, the relation among different sides can be modeled as
follows.

• Parallel sides. The parallel sides refer to the top and bot-
tom sides or the left and right sides. As shown in Fig. 9(a),
we can use the same method to construct constraint graph
GC for the top side and the bottom side. For example,
since bump pad 2 is placed at the left side of bump pad 3
in the same horizontal line, an edge is constructed from
vertex 2 to vertex 3, and then net 2 must be routed at the
left side of net 3. Net 1 also must be routed at the left side
of net 3 by searching the constraint graph. This order must
be kept for routing from the bottom side toward the top
side and vice versa. Thus, we can simultaneously route the
nets of the parallel sides.

• Orthogonal sides. The orthogonal sides refer to the two
sides with a common corner of the FC. Since the relation
of the orthogonal sides is 2-D, we have to modify the
construction method of GC . As shown in Fig. 9(b), for
the left and bottom sides, we can construct edges for the
wire-bonding pads as before. However, for each net of the
left side, we have to additionally consider the relation of
the bump pads in the horizontal direction, such as bump
pads 3, 1, and 4. For example, since bump pad 3 is at
the left side of bump pad 1, an edge is constructed from
vertex 3 to vertex 1. This additional edge denotes that
net 3 must be routed at the left side and the bottom side
of net 1. For each net of the bottom side, the relation of
the bump pads in the vertical direction is also considered.

Fig. 10. (a) Simple nonmonotonic routing network. (b) Simple nonmonotonic
routing result.

Bump pad 2 is at the top side of bump pad 4, so an edge
is constructed from vertex 4 to vertex 2. Now, we can also
simultaneously route the nets of the orthogonal sides. Note
that we do not construct the edge of vertices 5 and 4 since
they belong to the same side, and, thus, their relation is
already constructed as discussed in the preceding section.

We refer to the ILP after applying the aforementioned three
network reduction techniques as the reduced ILP. As discussed
above, the three reduction techniques will prune only redun-
dant solutions with nonmonotonic routes. We, thus, have the
following theorem for the solution optimality (i.e., minimum
wirelength) of the reduced ILP with monotonic RDL routing
during global routing.

Theorem 2: During global routing, the reduced ILP can keep
all feasible monotonic RDL routes of each net.

Proof: For our basic ILP formulation, it enumerates all
possible RDL routes for each net. From the above discussions,
we prune only the redundant solutions with nonmonotonic
routes by the constraint-graph-based pruning in Sections III-B2
and B3. Then, we apply the ILP node merging to merge the
feasible monotonic routes of each net in Section III-B2, which
still keeps all feasible monotonic solutions. Finally, the ILP
edge bounding in Section III-B2 is performed to further prune
redundant solutions, keeping all feasible monotonic solutions
for each net. Therefore, the reduced ILP can keep all feasible
solutions with monotonic RDL routes during global routing. �

Applying an ILP solver, we can find an optimal solution
with the minimum wirelength if such a solution exists since

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 105

Fig. 11. (a) Complicated nonmonotonic routing network. (b) Complicated nonmonotonic routing result.

all feasible monotonic RDL routes of each net are maintained
based on this theorem.

4) Nonmonotonic Net Handling: Here, we show two major
types of nonmonotonic assignments and their ILP formulations.
Other types of nonmonotonic assignments can be handled
similarly. Our underlying idea is to make a nonmonotonic
net monotonically routable by dividing the net into several
monotonic wires. Fig. 10 gives a simple example of two nets.
For the top side shown in Fig. 10(a), there exists a cycle in the
constraint graph. Therefore, nonmonotonic nets may exist, and
we shall search all cycles for each net. For example, the cycle of
net 1 (n1) is 〈v1, v2, v1〉. We then add extra (black) ILP nodes
for each net in the cycle to make the routing monotonic. In this
example, the wire-bonding pads for nonmonotonic routes are in
the order net 1 and net 2. Therefore, we add the extra ILP node
of bump pad 2 at the right side of bump pad 1 to route over the
south of bump pad 1. Then, we add the other extra ILP node
of bump pad 1 at the left side of bump pad 2 to route over the
south of bump pad 2. While adding these extra ILP nodes, we
still follow the net order of the monotonic routing, i.e., 〈n1, n2〉.
Hence, we can also make the ILP for n1 and n2 a monotonic
one. See Fig. 10(b) for the nonmonotonic routing result.

Fig. 11 illustrates an example of three nets. For the top side
shown in Fig. 11(a), there also exists a cycle in the constraint
graph. We then add extra (black) ILP nodes for each net in the
cycle. In this example, the wire-bonding pads for nonmonotonic
routes are in the order 3, 4, and 5. We add the extra ILP node
of bump pad 3 at the left side of bump pad 5 to route over
the south of bump pad 5. Then, we add the other extra ILP
nodes of bump pads 3 and 5 at the bottom side to route over
the south of bump pad 4. Furthermore, the extra ILP node of
bump pad 4 at the top side is inserted between bump pads 3
and 5 to perform nonmonotonic routing between bump pads 3
and 5, as shown in Fig. 11(b). Recall that the net order of
the monotonic routing, i.e., 〈n3, n4, n5〉, has to be followed
while adding the ILP nodes and the extra ILP nodes. Thus, in
Fig. 11(a), the white ILP nodes are inserted among those extra
(black) ILP nodes according to this net order. See Fig. 11(b) for
the nonmonotonic routing result.

Note that the solutions to our ILP formulation with non-
monotonic RDL routing should be near optimal since only the
nets in the cycles of a constraint graph are allowed to be routed
nonmonotonically.

Our ILP formulation guarantees no design-rule violations
or wire crossings. Therefore, after global routing, all global-
routing paths are routable. Based on the above discussions, we
have the following theorem.

Theorem 3: If there exists a feasible global-routing solution
computed by the ILP, the proposed algorithm can guarantee
100% detailed-routing completion.

Proof: In our global-routing model, the ILP formulation
is optimal for monotonic routing and suboptimal for non-
monotonic routing. Since we consider the routing resource in
the global-routing stage and will never route nets to exceed
the capacity of an interval or a tile, it will never violate the
design rules. Furthermore, since we avoid edge crossings in
the ILP formulation, the final routing solution contains no wire
crossings. After solving the ILP, all global-routing paths are
routable in the detailed-routing stage. �

5) Comparison With the Order Graph: Here, we compare
the accuracy between our constraint graph and the order graph
presented in [15]. Fig. 12 shows two examples. For the first
example in Fig. 12(a) and (b), the order graph does not have any
edge from vertex 2 to vertex 1. Therefore, it may not complete
the routing by using the order graph [15]. In our constraint
graph, however, since the bump pad at the right side of bump
pad 2 is not assigned, we can temporarily assign net 2 to the
empty bump pad and then construct this edge. By doing so, we
can prune more ILP variables and, thus, the ILP constraints. In
Fig. 12(c), according to the order graph, we cannot complete the
routing because there exist conflicts among the three nets. As
shown in Fig. 12(d), therefore, we generate the cyclic constraint
graph. Then, we insert ILP nodes for nonmonotonic routing.
Since our nonmonotonic routing network contains monotonic
routing solutions, we can still get the monotonic routing result
by using the ILP. Therefore, it is clear that our constraint graph
captures the relation of nets more accurately than the order
graph.

C. Detailed Routing

The objective in detailed routing is to accomplish the routing
and minimize the number of wire bends after passing-point
assignment and net ordering determination. Therefore, we use
a two-phase technique, as shown in Fig. 13, to perform 45◦

gridless detailed routing with passing points and net order.
In the first phase, a method with Hanan grids [5] is used to

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

Fig. 12. (a) Wrong routing result (top) by using the order graph (bottom). (b) Correct routing result by using the constraint graph. (c) No feasible monotonic
routing result by using the order graph. (d) Monotonic routing result by using the cyclic constraint graph.

Fig. 13. Two-phase detailed routing algorithm.

accomplish detailed routing. In the second phase, bend mini-
mization is performed under the 100% routability guarantee.

1) Passing-Point Assignment: After global routing, the
global-routing paths are free of wire crossings. To utilize the
result of our global routing, we use a method called passing-
point assignment to distribute nets that pass through the same
interval, according to their wire widths and further signal-skew
constraints. Passing points are transformed from ILP nodes. For
example, as shown in Fig. 14, the two nets from wire-bonding

Fig. 14. Passing-point assignment.

pads 2 and 3 pass through the same interval on two ILP nodes.
We assign two passing points according to the wire widths of
the two nets.

2) Net-Ordering Determination: There is no wire crossing
in our global-routing results. Thus, as shown in Fig. 2(b), we
choose a cut line in every ring area and order all segments in the
same ring area clockwise. No matter to which segments the cut
line is adjacent, the net order that is produced by our method
is routable. The reason is that every segment is compacted to
the preceding segment during routing. Therefore, between two
nets, we can connect these cut lines in every ring area and then
determine the net order according to the connected cut lines,
as shown in Fig. 2(a). For example, in Fig. 13, the algorithm
orders all segments and nets in lines 4 and 8 according to the
connected cut lines decided in line 2.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 107

Fig. 15. (a) Routing of phase I. (b) Routing of phase II.

3) X-Based Gridless Routing: The X-based gridless router
uses the result of net-ordering determination to complete de-
tailed routing. It consists of two phases as follows.

• Phase I. In the first phase, we route all nets segment by
segment and realize the compacted routing in order. Our
algorithm first incrementally constructs Hanan grids for a
segment. For example, in Fig. 15(a), the grids of segment
sh are more complicated than those of sc. The reason is
that using fewer grids of sh might violate design rules.
Therefore, our algorithm constructs more complex and
routable grids of sh. Then, we route each segment by
depth-first search (DFS) on the grids from one terminal of
a segment to the other. As shown in Fig. 15(a), dash lines
are grids, and solid lines are paths of the DFS. Each path is
compacted to the preceding segment according to the net
order. Thus, most routing space is reserved for the next net
segment, and it is easier to accomplish routing in the same
ring. In Fig. 13, for instance, the first phase is performed
in lines 3–7. During the DFS in line 7, a node on grids that
is closer to the preceding segment or the cut line is tried
first until the segment routing succeeds.

The first segment is compacted to the cut line in the
same ring area. Then, we route the other net segments
in the same ring area in order (clockwise). By using the
result of global routing, the passing-point assignment, and
the segment compaction, our algorithm can accomplish
detailed routing in the first phase. However, the passing-
point assignment and the segment compaction might in-
cur redundant bends in detailed routing, as shown in
Fig. 15(a). Consequently, we need to perform optimization
in the second phase.

• Phase II. After accomplishing detailed routing in the first
phase, we perform bend minimization net by net and
reduce the total wirelength at the same time. Our method
starts from the connected cut lines and orders all nets
counterclockwise, as shown in line 8. In lines 9–13, our
algorithm routes a whole net from a bump pad to a wire-
bonding pad and considers obstacles, such as adjacent
nets and pads, while constructing Hanan grids. It applies
breadth-first search (BFS) from a bump pad on grids until
reaching a wire-bonding pad. During the BFS in line 11,
a node only records one fan-in node with the fewest

Fig. 16. Overview of the RDL routing algorithm.

wire bends. Once fan-in nodes have the same bends, the
algorithm chooses a node whose back-traced path is closer
to the preceding net, as shown in line 13. In Fig. 15(b),
for example, net c is a path of the BFS with the least wire
bends.

The difference among the grids in the first phase and the
second phase is the passing-point consideration. In other
words, a path of a net produced in the second phase will
not go through the passing points of the net if these pass-
ing points increase the number of bends. Of course, this
optimization is performed to each net without affecting the
100% detailed routing completion in the first phase.

D. Summary

We have proposed an RDL routing algorithm that consists
of ILP, optimality-preserving ILP reduction techniques, and

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

TABLE I
BENCHMARK CIRCUITS FOR RDL ROUTING

TABLE II
EFFECTS OF THE REDUCTION TECHNIQUES

X-based gridless routing to optimize the routability, the total
wirelength, and the signal skew. The whole algorithm is il-
lustrated in Fig. 16. Lines 2–5 formulate the routing network
by the ILP; lines 6–10 use three reduction techniques to find
the global-routing paths; lines 11–17 show how to determine
the net order and then apply the X-based gridless routing to
complete the routing.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming
language on a 2.6-GHz AMD Opteron Linux workstation with
6-GB memory. We used the public lp_solve [10] to solve the
ILP. The benchmark circuits, which are listed in Table I, are real
industry designs with predefined netlists. In Table I, “Circuits”
denotes the names of circuits, “#Nets” denotes the number
of nets, “#Skew pairs” denotes the number of matched nets
with skew constraints, “#Wire widths” denotes the number
of variable wire widths, “#Rp” denotes the number of wire-
bonding pad rings, “#p” denotes the number of wire-bonding
pads, “#Rb” denotes the number of bump pad rings, and “#b”
denotes the number of bump pads.

Two experiments were performed to verify our router. In the
first experiment, we explored the effects of the three reduction
techniques on the problem sizes presented in Section III-B2.
For this experiment, we routed the five circuits with the pre-
defined netlists, including wire-width constraints, signal-skew
constraints, and nonmonotonic nets based on our algorithm
with and without the reductions. The experimental results are
shown in Table II. Since the routability is all 100% for all
circuits, and no skew constraints are violated, we do not list
them in the table. Instead, we focus on the numbers of variables
and constraints of the ILP with and without the reductions. “RR
of CG (%)” denotes the reduction rate (RR) of the variables
(constraints) by using the constraint-graph-based pruning (CG),

Fig. 17. RDL routing result for fc1458.

“RR of NM (%)” denotes the reduction rate over the results
listed in the column “RR of CG (%)” by using the ILP node
merging (NM), “RR of EB (%)” denotes the reduction rate over
the results listed in the column “RR of NM (%)” by using the
ILP edge bounding (EB), and “Total” gives the final resulting
number of variables (constraints). As shown in the table, the
constraint-graph-based pruning can prune more than 99.9% of
the number of variables (constraints) in the basic ILP formula-
tion, the ILP node merging can further reduce the number of
variables (constraints) by an average of 84.0% (97.9%), and the
ILP edge bounding can further reduce the number of variables
(constraints) by an average of 7.0% (9.5%). The experimental
results show the effectiveness of the three reduction techniques.
As a result, our ILP-based routing algorithm can obtain the final
routing results in reasonable CPU times due to the significant
problem-size reduction. Fig. 17 shows the RDL routing result
of fc1458.

In the second experiment, we verify the quality of our algo-
rithm. Since there is no preassignment RDL routing algorithm
for the FC design in the literature, we implemented the related
work presented in [15] (originally for BGA global routing) for

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

FANG et al.: INTEGER-LINEAR-PROGRAMMING-BASED ROUTING ALGORITHM FOR FLIP-CHIP DESIGNS 109

TABLE III
COMPARISON BETWEEN [15] AND OURS

TABLE IV
COMPARISON OF THE REDUCTION TECHNIQUES

the comparative study because the BGA global router is also for
the single-layer routing structure. However, detailed routing is
not considered in [15]. Hence, we can only use [15] as a global
router to compare with ours. Because [15] can only handle
monotonic two-pin routes with the uniform wire width, we used
the free-assignment RDL router presented in [6] and [8] to route
the benchmark circuits and then extract the connections among
wire-bonding pads and bump pads. With the connections, we
obtain the netlist for the preassignment RDL routing. (There-
fore, we added _f to the names of the benchmarks in Table I
to note the difference; see Table III.) Furthermore, [6] and [8]
guarantee the minimal global wirelength and 100% routability
while dividing an FC into four independent sectors. Therefore,
its solution is the lower bound of the global wirelength, which
can be used to verify the solution optimality of each router.
Also, since we know the wirelength of each net, we can
define the difference in wirelength between two nets to be the
maximum allowance of the signal skew of them. We randomly
chose the same number of skew pairs for each circuit, as shown
in Table I. To perform a fair comparison of the routability, we
also used the detailed router in [6] and [8] to complete the
routing for the global route generated in [15]. Note that we do
not compare with the global router in [6] and [8] because it uses
the network-flow algorithm in global routing and cannot handle
the preassignment RDL routing problem.

The experimental results are reported in Table III. In global
routing, the completion rates of the two routers ([15] and ours)
are both 100%. We define the global wirelength to be the total
length of nets after global routing. The routability gives the
completion rate of detailed routing. The total wirelength is

the total length of nets after detailed routing. We also report
the number of skew violations and the CPU time. For each
circuit, we generated 100 monotonic routing patterns for the
routing algorithm in [15] as the authors did and averaged
its experimental results. The experimental results show that
our ILP-based algorithm can achieve 100% routability and
the optimal global-routing wirelength and satisfy all signal-
skew constraints under reasonable CPU times. Compared with
[15], our router reduces the global wirelength by 15.56%.
Furthermore, [15] combined with the detailed router in [6] and
[8] can achieve only 82.9% routability and fails all signal-
skew constraints. These improvements also reveal that finding a
good routing sequence considering the routing resource is very
important and dominates the whole routing results. Note that
since [6] and [8] first divide an FC into four independent sectors
and then generate the netlist, the routing resource between two
adjacent sectors is not utilized. As a result, the free-assignment
netlists may lead to only suboptimal solutions. However, the
predefined netlists in Table II can also consider the routing
resource between two adjacent sectors and, thus, may lead to
better solutions. Because [15] cannot complete detailed routing,
we only report our total wirelengths. Furthermore, according to
the lower bounds, our router can achieve the solution optimality
during global routing. In addition, the assignment of each side
is independent of the others in Table III, and, thus, we can
separately route each side to reduce the complexity of the ILP
formulation. Thus, the CPU time in Table III is shorter than
that in Table II. The results show that our ILP-based RDL
routing algorithm is very effective, robust, and flexible for the
FC design.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 1, JANUARY 2009

We further compare the effectiveness of the reduction tech-
niques used in [15] (the order graph, i.e., the constraint graph
considering only one side of the FC) and ours. The results
are listed in Table IV. As shown in the table, we can further
reduce the number of variables (constraints) by 85.5% (98.0%).
Consequently, with our reduction techniques, our ILP-based
RDL routing consumed only reasonable CPU times; in contrast,
it is not feasible for the ILP-based routing (> 5 days per
circuit), with the reduction technique used in [15].

V. CONCLUSION

We have developed an RDL router for the FC package,
considering signal skews, variable wire widths, nonmonotonic
routes, and total wirelength minimization. Our ILP-based al-
gorithm guarantees to find an optimal solution for the ad-
dressed problem. Experimental results have demonstrated that
our router can achieve 100% routability and the optimal global-
routing wirelength and satisfy all signal-skew constraints under
reasonable CPU times. The ILP-based RDL routing algorithm
is very effective, robust, and flexible for the FC design.

REFERENCES

[1] H. Cai, “Multi-pads, single layer power net routing in VLSI circuits,” in
Proc. ACM/IEEE Des. Autom. Conf., Jun. 1998, pp. 183–188.

[2] D.-S. Chen and M. Sarrafzadeh, “A wire-length minimization algorithm
for single-layer layouts,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., Nov. 1992, pp. 390–393.

[3] S.-S. Chen, J.-J. Chen, S.-J. Chen, and C.-C. Tsai, “An automatic router
for the pin grid array package,” in Proc. ACM/IEEE Asia South Pacific
Des. Autom. Conf., Jan. 1999, pp. 133–136.

[4] S.-S. Chen, J.-J. Chen, C.-C. Tsai, and S.-J. Chen, “An even wiring
approach to the ball grid array package routing,” in Proc. IEEE Int. Conf.
Comput. Des., Oct. 1999, pp. 303–306.

[5] C. Chiang, Q. Su, and C.-S. Chiang, “Wirelength reduction by using
diagonal wire,” in Proc. GLSVLSI, 2003, pp. 104–107.

[6] J.-W. Fang, I.-J. Lin, P.-H. Yuh, Y.-W. Chang, and J.-H. Wang, “A routing
algorithm for flip-chip design,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des., Nov. 2005, pp. 753–758.

[7] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An integer linear programming
based routing algorithm for flip-chip design,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2007, pp. 606–611.

[8] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A network-flow
based RDL routing algorithm for flip-chip design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 8, pp. 1417–1429,
Aug. 2007.

[9] M. R. Garey and D. S. Johnson, A Guide to the Theory of
NP-Completeness. San Francisco, CA: Freeman, 1979.

[10] [Online]. Available: http://lpsolve.sourceforge.net/5.5/
[11] Y. Kubo and A. Takahashi, “A global routing method for 2-layer

ball grid array packages,” in Proc. ACM Int. Symp. Phys. Des., Apr. 2005,
pp. 36–43.

[12] M. Sarrafzadeh, K.-F. Liao, and C. K. Wong, “Single-layer global rout-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13,
no. 1, pp. 38–47, Jan. 1994.

[13] R. Shi and C.-K. Cheng, “Efficient escape routing for hexagonal array
of high density I/Os,” in Proc. ACM/IEEE Des. Autom. Conf., Jul. 2006,
pp. 1003–1008.

[14] A. Titus, B. Jaiswal, T. J. Dishongh, and A. N. Cartwright, “Innovative
circuit board level routing designs for BGA packages,” IEEE Trans. Adv.
Packag., vol. 27, no. 4, pp. 630–639, Nov. 2004.

[15] Y. Tomioka and A. Takahashi, “Monotonic parallel and orthogonal routing
for single-layer ball grid array packages,” in Proc. ACM/IEEE Asia South
Pacific Des. Autom. Conf., Jan. 2006, pp. 642–647.

[16] C.-C. Tsai, C.-M. Wang, and S.-J. Chen, “News: A net-even-wiring sys-
tem for the routing on a multilayer PGA package,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 17, no. 2, pp. 182–189, Feb. 1998.

[17] UMC, 0.13 μm flip-chip layout guideline, p. 6, 2004.

Jia-Wei Fang (S’05) received the B.S. degree in
electrical engineering in 2003 from the National
Cheng Kung University, Tainan, Taiwan, and the
M.S. degree in electronics engineering in 2005
from the National Taiwan University, Taipei, Taiwan,
where he is currently working toward the Ph.D.
degree at the Graduate Institute of Electronics
Engineering.

His current research interests include flip-chip
routing and chip-package-board codesign.

Chin-Hsiung Hsu (S’06) received the B.S. degree
in computer science and information engineering in
2005 from the National Taiwan University, Taipei,
Taiwan, where he is currently working toward the
Ph.D. degree at the Graduate Institute of Electronics
Engineering.

His research interests are in combinatorial opti-
mization with applications to the VLSI design au-
tomation, large-scale global routing, and flip-chip
design.

Yao-Wen Chang (S’94–A’96–M’99) received the
B.S. degree from National Taiwan University, Taipei,
Taiwan, in 1988, and the M.S. and Ph.D. degrees
from the University of Texas at Austin in 1993 and
1996, respectively, all in computer science.

He is a Professor in the Department of Electrical
Engineering and the Graduate Institute of Electronics
Engineering, National Taiwan University. He is cur-
rently also a Visiting Professor at Waseda University,
Kitakyushu, Japan. He was with the IBM T.J. Watson
Research Center, Yorktown Heights, NY, in the sum-

mer of 1994. From 1996 to 2001, he was on the faculty of National Chiao Tung
University, Taiwan. His current research interests lie in VLSI physical design,
design for manufacturability/reliability, and design automation for biochips.
He has been working closely with industry on projects in these areas. He has
coedited one textbook on EDA, coauthored one book on routing, and over 140
ACM/IEEE conference/journal papers in these areas.

Dr. Chang is a winner of both the 2008 ACM ISPD Global Routing Contest
and the 2006 ACM ISPD Placement Contest. He received Best Paper Awards
from ICCD-95 and the 2007 and 2008 VLSI/Design CAD Symposia, and
twelve Best Paper Award Nominations from DAC (four times), ICCAD (twice),
ISPD (three times), ACM TODAES, ASP-DAC, and ICCD in the past eight
years. He has received many awards for research performance, such as the 2007
Outstanding Research Award, the inaugural 2005 First-Class Principal Investi-
gator Award, and the 2004 Dr. Wu Ta You Memorial Award, all from National
Science Council of Taiwan, the 2004 MXIC Young Chair Professorship from
the MXIC Corp, and for excellent teaching from National Taiwan University
(four times) and National Chiao Tung University.

He is currently an Associate Editor of IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(TCAD) and an editor of the Journal of Information Science and Engineering
(JISE) and the Journal of Electrical and Computer Engineering (JECE). He has
served on the ICCAD Executive Committee, the ASPDAC Steering Committee,
the ACM/SIGDA Physical Design Technical Committee, the ACM ISPD and
IEEE ICFPT Organizing Committees, and the technical program committees of
ASP-DAC (topic chair), DAC, DATE, FPL, GLSVLSI, ICCAD, ICCD, ICFPT
(program chair), IECON (topic chair), ISPD, SOCC (topic chair), TENCON,
and VLSI-DAT (topic co-chair). He is currently an independent board director
of Genesys Logic, Inc, a technical consultant of RealTek Semiconductor Corp.,
a member of board of governors of Taiwan IC Design Society, and a member
of the IEEE Circuits and Systems Society, ACM, and ACM/SIGDA.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 07:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

