Analysis of FPGA/FPIC Switch Modules

YAO-WEN CHANG

National Taiwan University

KAl ZHU

Q Design Automation

GUANG-MING WU

Nan-Hua University

D. F WONG

University of lllinois at Urbana-Champaign
and

C. K. WONG

The Chinese University of Hong Kong

Switch modules are the most important component of the routing resources in FPGAs/FPICs.
Previous works have shown that switch modules with higher routability result in better area per-
formance for practical applications. We consider in this paper an FPGA/FPIC switch-module anal-
ysis problem: the inputs consist of a switch-module description and the number of nets required
to be routed through the switch module; the question is to determine if there exists a feasible
routing for the routing requirements on the switch module. As a fundamental problem for the
analysis of switch modules, this problem is applicable to the design and routability evaluation of
FPGA/FPIC switch modules and FPGA/FPIC routing. We present a network-flow-based approxi-
mation algorithm for this problem. Based on mathematical analyses, we show that this algorithm
has provably good performance with the bounds 5 and 5/4 away from the optima for two types of
switch modules, respectively. Extensive experiments show that this algorithm is highly accurate
and runs very efficiently.

Categories and Subject Descriptors: B7.1 [Integrated Circuits]: Types and Design Styles—Gate
arrays; B7.2 [Integrated Circuits]: Design Aids—Placement and routing; J.6 [Computer Appli-
cations|: Computer-Aided Engineering

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

The work of Y.-W. Chang was partially supported by the National Science Council of Taiwan ROC
under grant NSC 88-2215-E-009-064.

Authors’ addresses: Y.-W. Chang, Graduate Institute of Electronics Engineering and Department
of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan; email: ywchang@
ee.ntu.edu.tw; K. Zhu, Q Design Automation; email: kaizhu@yahoo.com; G.-M. Wu, Department of
Information Management, Nan-Hua University, Chiayi, Taiwan; email: gmwu@mail.nhu.edu.tw;
D. F. Wong, Department of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801; email: mdfwong@uiuc.edu; C. K. Wong, Department of Com-
puter Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; email:
wongck@cse.cuhk.edu.hk.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.

© 2003 ACM 1084-4309/03/0100-0011 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003, Pages 11-37.

12 . Chang et al.

Additional Key Words and Phrases: Computer-aided design of VLSI, layout, FPGA, FPIC,
synthesis

1. INTRODUCTION

With their user-programmability, field-programmable gate arrays (FPGAs), the
fastest growing segment in semiconductor industry during the past decade,
have emerged as an unparalleled solution to the cost and time-to-market chal-
lenges by providing short turnaround time of designs with low risk/cost, al-
lowing easy design changes. In general, an FPGA architecture consists of an
array of logic modules which can be connected by general routing resources
[Brown et al. 1992a]. Figures 1(a) and 1(b) illustrate two major FPGA architec-
tures: symmetric-array-based and row-based FPGAs. The logic modules con-
tain combinational and sequential circuits that implement logic functions. In a
symmetric-array-based FPGA (see Figure 1(a)), the routing resources consist of
horizontal and vertical channel and their intersection areas. The intersection
area of a horizontal and a vertical channel is referred to as a switch module.
In a row-based FPGA (see Figure 1(b)), an intersection area of a routing chan-
nel and a set of vertical segments can be viewed as a switch module. A net
can change its routing direction via a switch module; this requires using at
least one programmable switch inside the switch module. (See Figure 2 for a
routing example.) A logic circuit is implemented in an FPGA by partitioning
logic into individual logic modules and then interconnecting the modules by
programming switches. A large circuit that cannot be accommodated into a
single FPGA is divided into several parts; each part is realized by an FPGA,
and these FPGAs are then interconnected by a field-programmable interconnect
chip (FPIC) [Actel Corp. 1992; Aptix, Inc. 1992; Guo et al. 1992]. The routing
architecture of an FPIC is similar to that of a symmetric-array-based FPGA,
whereas the logic modules are replaced by pins (see Figure 3).

Previous works by Bhat and Hill [1992] and Trimberger and Chene [1992]
have shown that the feasibility of FPGA design is constrained more by routing
resources than by logic resources, and often routing delays, rather than logic-
module delays, dominate the performance of FPGAs. Therefore it is desirable
to facilitate routing in the design of FPGAs and FPICs. Switch modules are the
most important component of the routing resources in FPGAs/FPICs. Studies
by Brown et al. [1993], Chang et al. [1996a, 1996b], Rose and Brown [1991],
Wu and Chang [1998, 1999], and Shvu et al. [2000] have shown that that the
higher the routability of a switch module, the smaller the track count is needed
to achieve 100% routing completion. The following crucial factors contribute to
this phenomenon:

— Switch modules with higher routability increase the connectivity of routing
components, and thus improve the overall routability of an FPGA.

— For practical applications, most connections are short; for example, about
60% (90%) of connections in the CGE [Brown et al. 1992b] and the
SEGA [Lemieux and Brown 1993] benchmark circuits are routed through
no more than two (five) switch modules, independent of FPGA sizes. (See

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

vertical channels

horizontal
channels

(@

Analysis of FPGA/FPIC Switch Modules

switch

modules

/l
N

vertical

N\

rows of
logic modules

/

e modul segments
switch modules
/ \ = s
pann N paEnn
I i 1 f i
T p— | | 1
| T 1 | |
e === ===
=h . A
T T T 1 T i
T —1 | T I
I T | T | T
===} === ===}

(®)

Fig. 1. Two major FPGA architectures. (a) Symmetric-array-based architecture. (b) Row-based

architecture.

switch

Logic 1
module

module‘\\/,‘/\
\
2
3

Fig. 2.

horizontal
channels

N

pin

(a)

(a) A routing example. (b) Switch-module routing.

vertical channels

= N
¢ . .
/. ® ¢

Fig. 3. The FPIC architecture.

(b)

switch
modules

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

14 . Chang et al.

Net-Length Distributions

% Nets (Cumulative)

100.00 wix

95.00 —

90.00 —

85.00 —

80.00

75.00 -

70.00 —

65.00 —

60.00 —

55.00

50.00

45.00 —

40.00 —

35.00 —

30.00 -

| | | | # Switch Modules
0.00 5.00 10.00 15.00 20.00

Fig. 4. Cumulative percentage of connections in the CGE benchmark circuits is plotted as a func-
tion of the number of switch modules passed. The FPGA sizes (number of logic modules) range from
12 x 13 (BUSC) to 26 x 27 (Z03).

Figure 4 for the distributions of net length for the CGE benchmark circuits,
measured by the number of switch modules passed by a net.) Further, the
switch modules used in current commercial FPGAs are homogeneous. Thus
the routability of a single switch module plays an important role in overall
FPGA routing.

— Most logic-module pins are logically equivalent [Trimberger 1994]!; pin per-
mutations combined with highly routable switch modules pave the way for
optimizing routing.

Hence, increasing the routability of a switch module also improves the area
performance of a router. Therefore, it is of significant importance to consider
the analysis of switch modules.

The FPGA/FPIC programmable switches usually have high series resistance
and parasitic capacitance, and consume a large amount of area. Due to the area
and delay constraints, the number of switches that can be placed in a switch

1For example, the lookup-table and control inputs in a logic module are logically equivalent.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 15

module is usually limited, implying limited routability. Therefore, there is a
basic trade-off between routability and area/performance for switch-module
architectures.

The effects of switch-module architectures on routing for the symmetric-
array-based FPGAs with unit-length segments (i.e., every segment spans only
one switch module) were first studied experimentally by Rose and Brown [1991].
A theoretical study of flexibility and routability was later presented based on
a stochastic model [Brown et al. 1993]. The primary conclusion in both of the
studies [Brown et al. 1993; Rose and Brown 1991] is that high pin-to-track
connectivity together with relatively low switch-module connectivity is a better
solution to the routability and area/performance trade-off. More recent studies
based on FPGAs with segments of different lengths show that lower pin-to-track
connectivity (e.g., one-quarter to one-half of the connectivity) combined with a
high-quality switch-module architecture is sufficient for good area and routabil-
ity trade-off [Betz et al. 1999; Betz and Rose 2000; Wilton 1997]. Therefore, the
architecture of a switch module is of particular importance, due to a relatively
small switch population in a switch module. Chang et al. [1996a, 1996b], ana-
lyzed three types of well-known switch modules; they showed theoretically and
experimentally that switch modules with higher routing capacities? usually
lead to better area performance, which confirms the findings by Brown et al.
[1993] and Rose and Brown [1991]. Recent studies by Wu and Chang [1998,
1999] and Shyu et al. [2000] have shown that the routability of a single switch
matrix plays a more important role when (1) the net density on a chip gets
denser, and (2) the switch matrices become larger. Since denser applications and
larger chips are trends of the commercial applications and products, the switch-
matrix architectures would have even greater impact on FPGA/FPIC chip-level
routability than they do now. Unlike the works by Brown et al. [1993], Chang
et al. [1996a, 1996b], Rose and Brown [1991], and Wu and Chang [1998, 1999],
which are based on real circuit designs and stochastic/analytical analyses, Wu
et al. [1996] explored the routing behavior on the symmetric-array-based ar-
chitecture using the worst-case scenario—they showed that it is NP-complete
to determine whether a given global route can be mapped to a feasible de-
tailed route in polynomial time; the worst cases occur when most nets are very
long and are routed in some specially designed topologies, which rarely happen
in practical applications [Lemieux et al. 1997]. Nevertheless, the work by Wu
et al. [1996] still provides an important insight to the worst-case performance
by using that routing architecture.

In this paper, we give more general switch-module models than that con-
sidered in Brown et al. [1993], Chang et al. [1996a, 1996b], Rose and Brown
[1991], Shyu et al. [2000], Wu and Chang [1998, 1999], and Wu et al. [1996])
and study a routing-capacity analysis problem for switch modules. This prob-
lem is informally described as follows. The input consists of a switch-module
description and the number of nets required to be routed through the switch
module. The question is to determine if there exists a feasible routing for the

2Informally, the number of routable instance on a switch module. A formal definition is given in
Section 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

16 . Chang et al.

routing requirements on the switch module. A precise definition of the prob-
lem will be given in Section 2. As a fundamental problem to the analysis of
FPGA/FPIC switch modules, this problem is applicable to the routability eval-
uation of FPGA/FPIC switch modules and thus the switch-module design for
FPGASs/FPICs. Further, the analysis can also be used to compute the routing
capacity of a switch module for developing a congestion metric defined on switch
modules and thus help guide the global routing for FPGAs/FPICs [Chang et al.
1994, 1995a; Thakur et al. 1997].

To solve this analysis problem, Thakur et al. [1997] proposed an exact al-
gorithm based on integer linear programming (ILP). However, since ILP is
NP-complete [Garey and Johnson 1979], this ILP-based algorithm in the worst
case is computationally expensive. Instead of resorting to the ILP, the works
by Chang et al. [1996a, 1996b] and Wu and Chang [1998, 1999] solved the
analysis problem on some special switch-module architectures.? Whether the
general analysis problem can be solved in polynomial time is still open.

In this paper, we present an efficient network-flow-based approximation al-
gorithm for analyzing the routing capacity of a single switch module. We show
that the algorithm has provably good performance with the bounds 5 and 5/4
away from the optima for two types of switch modules, respectively. Extensive
experiments show that the algorithm is highly accurate and runs very much
faster than the ILP-based algorithm.

The remainder of this paper is organized as follows. Section 2 gives the for-
mal problem formulation. Section 3 proposes an approximation algorithm for
switch-module analysis. Section 4 presents the techniques for analyzing the per-
formance of the approximation algorithm. Section 5 generalizes our approach
to the cases where different net distributions and a more general routing model
are considered. Experimental results are reported in Section 6.

2. PROBLEM FORMULATION

A switch module is a W x W square block with W terminals on each side of the
block. There are two types of switch modules, switch blocks and switch matri-
ces (see Figure 5). In a switch block (see Figure 5(a)), some pairs of terminals
on different sides may be connected by programmable switches. In particular,
connecting two terminals requires one and only one switch, and the switches
are electrically noninteracting, unless they share a terminal. Switch blocks
are used in symmetric-array FPGAs for connections between single-length
lines or between double-length lines [Xilinx, Inc. 1996]. A switch matrix (see
Figure 5(b)) consists of a grid of horizontal and vertical tracks. There are two
types of switches in a switch matrix, crossing switches and separating switches.
If a crossing switch at the intersection of a horizontal and a vertical tracks is
“ON,” the two tracks are connected; if it is “OFF,” the tracks are not connected
and thus are electrically noninteracting. If a separating switch on a track is

3More precisely, they solved the analysis problem on some switch blocks such as those used in
the Lucent Technologies and Xilinx FPGAs [Lucent Technologies 1996; Xilinx, Inc. 1996] and the
diagonal switch matrices [Wu and Chang 1998, 1999]. See Section 2 for the formulation of switch
blocks and matrices.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 17

terminals separating switch

/\\
» crossing
itch —==b— V41 !
swie 7 \[)‘\7{4| switch

(@ (b)
Fig. 5. (a) A switch block. (b) A switch matrix.

<7 | N
] < =

Yvy

Fig. 6. Six types of connections.

“OFF,” the track is split into two electrically noninteracting routing segments
so that the terminals on opposite sides can be used independently; if it is “ON,”
the track becomes a single electrical track. In Figure 5(b), the crossing switches
are represented by solid circles and the separating switches by hollow circles.
Switch matrices are used in various symmetric-array FPGAs [Lucent Technolo-
gies 1996; Xilinx, Inc. 1996], row-based FPGAs [Actel Corp. 1996; Gamal et al.
1989; Marple and Cooke 1992], and FPICs [Actel Corp. 1992].

A switch-module connection is an electrical path between two terminals on
different sides of a switch module. Switch-module connections can be of six
types, each of which is characterized by two sides of a module, as shown in
Figure 6. For example, type-6 connections connect terminals on the left and the
bottom sides of a module. Type-1 and type-2 connections are straight connec-
tions whereas the others are bent connections. We first assume that at most one
switch can be used—programmed to be “ON”—by a connection on a switch mod-
ule (i.e., a net can use at most n switches if it passes through n switch modules);
this restriction represents a suitable balance between routability and perfor-
mance for a switch module, and is thus a reasonable assumption for the purpose
of switch-module analysis. Extension to the case for using multiple switches for
a switch-module connection is simple and will be discussed in Section 5.

A routing requirement vector (RRV for short) is a vector 7z = (n1, no, ..., ng),
where n; is the number of type-i connections required to be routed through a
switch module, 0 <n; <W,i=1,2,...,6. A switch module M is ni-routable if
n; connections of type i, 1 < i < 6, can be routed through M simultaneously,
and each connection uses at most one switch. In this case, the RRV 7 is said to
be routable on M . For example, the RRVs (0,0,1,1,1,0)and (1,1, 1,0, 1, 0) are
routable on the switch matrix shown in Figure 2, and their routing solutions

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

18 . Chang et al.

are shown in Figure 2(a) and Figure 2(b), respectively. We refer to the routing
capacity of a switch module M as the number of distinct routable RRVs on M ;
that is, the routing capacity of M is the cardinality |{|n is routable on M}|.
The routability of a switch module M is referred to as the probability that an
RRYV is routable on M.

In this paper, we consider the switch-module analysis problem (SMAP):

Input: A switch module M (could be a switch matrix or a switch block) and
an RRV 7.

Question: Is 7 routable on M?

Note that connections in a switch block interfere with each other if and only
if they share a terminal. In a switch matrix, however, they can also interfere
with each other if they share a part of a track. Thus the feasibility conditions
for switch blocks are “simpler” than those for switch matrices, and so is the
SMAP associated with switch blocks.

3. THE NETWORK-FLOW ANALYZER

In this section, we first present a network-flow-based algorithm to solve a class
of special SMAP’s on the two types of switch modules, and then show how to ap-
ply the algorithm as a subroutine to approximate the general SMAP’s. We will,
in Section 4, mathematically analyze the performance of the approximation
algorithm.

Consider the category of SMAPs with generic #’s in which the components
corresponding to any three types of connections which share one side of the
switch module are nonzero and the remaining components are zero; for exam-
ple, the SMAP with 7 = (nl, 0, ns, O, 0, ne), (O, ng, N3, Ny, 0, 0), (l’Ll, O, 0, N4, N5, 0),
or (0, ng, 0, 0, n5, ng). For each of these special SMAPSs, we can reduce it to com-
puting the maximum flow in a network. Given a switch module and an RRV
n, a network is constructed as follows. (Figure 7(d) shows the network for the
switch matrix shown in Figure 7(a).) Pick one side of the switch module as
the sink side and make the others source sides; in Figure 7(d), for instance, the
right side is chosen as the sink side. Construct a sink vertex ¢ for the sink side,
three source vertices s;’s for the source sides, where i denotes the corresponding
type of connections, and a supersource vertex s. Connect s to s; by an edge (s, s;)
with a capacity equal to the corresponding routing requirement n;. Label the
terminals 1, 2, ..., 4W, starting from the bottom-most terminal on the left side
and proceeding clockwise (see Figure 7(a)). For a terminal labeled j, create a
vertex vj. Connect each source vertex s; to the v;’s with respect to the same
source side by a unit-capacity edge (s;, v;). Similarly, connect each v; with re-
spect to the sink side to ¢ by a unit-capacity edge (v;, ¢). For switch blocks, if
there is a switch between two terminals £ and [/, one on a source side and the
other on the sink side, construct a unit-capacity edge between v; and v;. For
switch matrices, we need to consider the following cases for the construction of
the edges between v;, and v;:

(1) If one of terminals £ and [is on a source side and the other on the sink side
and they are on opposite sides of the same track (e.g., terminals 2 and 5 in

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Fig

Analysis of FPGA/FPIC Switch Modules o 19

3 4 4 . 3
v vy v3 v
2 ——5 — ; ; 5 e t
1 —0 —— 6 6 0—>:>'
v8 v6
V7 vé
8 7 7 8
() (b) ©)
v3

nl
f=nl+nd+n5?

@

. 7. Examples of network-flow construction. (a) A switch matrix instance. (b), (c) Network

construction. (d) A complete network.

(2)

Figure 7(a)), construct a unit-capacity edge between vz and v;. The reason
is that a connection between the two terminals can be established by pro-
gramming the separating switch, if any, to be “ON,” or can be immediately
established if there is no separating switch on the track. In either case, the
crossing switches on the track, if any, remain “OFF.”

If terminals £ and [are both on source sides and are located on opposite
sides of the same track (e.g., terminals 4 and 7 in Figure 7(a)), connect v,
and v; as shown in Figure 7(b) if there is no separating switch on the track,
or connect them as illustrated in Figure 7(c) if there is a separating switch
on the track. Note that terminals 4 and 7 in Figure 7(a) electrically interfere
with each other. Hence, we shall connect v4 and v to a unit-capacity edge
before connecting them to other vertices. (See Figure 7(b).) Also, there is
a separating switch on the bent connection between terminals 3 and 5.
We need not to construct an edge between vs and vs because such a bent
connection requires to use at least two switches, one crossing switch and
one separating switch. (See Figure 7(c).) Note that, as mentioned earlier, at
most one switch can be used for routing through a switch module.

The network-flow analyzer proceeds as follows. Pick one side of the switch

module as the sink side and construct a flow network. Given such a flow net-
work, we ask if there is a feasible flow where, for each i, s; supplies a flow n; and ¢
receives a flow of) _; n;. This problem can be solved by a network-flow algorithm

in

time O(W(N + W)log W), where N is the number of switches [Sleator and

Tarjan 1983]. (Note that the number of vertices [edges] in the network is O(W)

(O

(N + W)].) If the answer is “NO,” the switch module is not 7i-routable; other-

wise, pick another side of the switch module as the sink and repeat the above

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

20 . Chang et al.

Algorithm: Switch-Module_Analysis(M, 7))
Input: M: A given switch module;
= (ni,n2,...,n6): A routing requirement vector.
Output: routable.
/* Flag routable = TRUE if 7i is routable on M; FALSE, otherwise. */

begin

1 for sinkside € {left,top,right,bottom} /* four sides of a switch module */

2 Pick sinkside as the sink side and the others as source sides, construct the flow
network N for the corresponding three types, 11,7%,73, of connections;

3 Apply the maximum network-flow algorithm to compute the max flow f on N;

4 if [<Y ien

5 return routable + FALSE;

6 return routable <~ TRUE

end
Fig. 8. Algorithm for switch-module analysis.
L1 | A
] B n3 n4
| switch | | n3 | nd nl
module Bt
- - Ty 2 s(T Y17

[1] ¥

Fig. 9. The four networks used to analyze the six types of connections for a switch module.

procedure. Since there are four candidates for the sink, at most four networks
need to be constructed to analyze all six types of connections. (See Figure 9.) If
¢t can receive a flow of Y, n; in each of the four flow networks, the switch mod-
ule is reported to be n-routable. Figure 8 summarizes the network-flow-based
algorithm for switch-module analysis.

Note that every vertex in the flow network, except s and ¢, has either in-
degree or out-degree one, and every edge, except {(s, s;)|i is a type of connections
considered in the network}, has a unit capacity. Hence the routing paths from
s; to t computed by a maximum network-flow algorithm are vertex-disjoint and
represent legal routing paths. Since for each sink side, its corresponding flow
network considers only three out of six types of connections simultaneously, the
network-flow analyzer may fail to detect some unroutable RRVs. However, if an
RRV #iis routable on a switch module, the analyzer will always report the switch
module to be 7i-routable. Therefore, the analyzer will never underestimate the
routability of the switch module.

For convenience, we refer to the network-flow-based approximation algo-
rithm as the flow analyzer and an exact algorithm such as the ILP solver as an
exact analyzer.

4. PERFORMANCE ANALYSIS

In this section, we analyze the performance bounds of the flow analyzer—a ratio
of the sizes of two feasible sets obtained by the flow analyzer and by an exact

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 21

El : feasible set of the flow analyzer and an exact analyzer

: feasible set of the flow analyzer

bounding constraints

Fig. 10. The feasible sets with respect to the flow analyzer and an exact analyzer. (a) Two different
feasible sets and their corresponding constraints. (b) An extreme instance. (c) The situation after
scaling along the x; axis for the instance in (b). (d) Intersection with the set {X|x; < W'}.

analyzer. The analysis procedure is described as follows. We first characterize
the maximum feasible set for the flow analyzer and the minimum one for an
exact analyzer for the case where there are W connections of each type. We
then compute the sizes of these two sets by combinatorial counting techniques.
It will be clear later that the ratio of the two sets is an increasing function of W.
Hence, the ratio is upper bounded by the value computed from the case where
W — oo. Then, we will generalize the bound to arbitrary cases. Our proofs
show that the flow analyzer has the performance bounds 5 for switch matrices
and 5/4 for switch blocks.

As mentioned earlier, the feasibility conditions for switch blocks are “simpler”
than those for switch matrices. The routability-analysis techniques for switch
matrices readily extend to switch blocks. We hence will focus on switch matrices
and give only brief remarks on switch blocks.

4.1 Preliminaries

Let Sw and Sj; be the feasible sets for those RRVs on a switch module M of
size W with respect to the flow analyzer and an exact analyzer, respectively, in
which the corresponding analyzer reports that M is ni-routable. We can think of
an RRV as a nonnegative lattice point in an orthogonal six-dimensional (6-D)
space with axes x;, 1 < i < 6. Because each component, n;, 1 <i < 6, of
satisfies the constraint 0 < n; < W, it is possible to bound Sw and Sj; by a
set of linear inequalities. Figure 10 illustrates a 2-D analogy. Each lattice point
inside a feasible set, Sw or Sj,, which is constrained by a set of inequalities,
corresponds to a feasible solution with respect to the flow analyzer or the exact
analyzer. For convenience, we will use n = (ny,...,ng) to represent both a
generic routing requirement vector and the corresponding 6-D lattice point. Its
exact meaning will be clear from the context.

Let i = (nq,...,ng) and n* = (n3,...,n§) be respective feasible lattice
points with respect to the flow analyzer and an exact analyzer in analyzing

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

22 . Chang et al.

the routglbility of a switch module. Let 7; = max{n;|n € Sy} and n; =
max{n’n* € S{y}, 1 <i <86.

LEmMa 1. The following properties hold:

(1) S}y < Sw;
(2) V1<i <6, n; =n}
(8) for switch matrices, i; =n; = W, i =1or 2.

Proor.

(1) Since the flow analyzer considers only three out of six types of nets at a
time, underestimation is impossible and thus Sw must contain Sj;.

(2) Consider one component n;, 1 <i < 6, at a time by setting the other com-
ponents equal to zero. The SMAP with a 7 that has only one nonzero com-
ponent for an arbitrary switch module M is merely a special case of those
discussed in the previous section; therefore, it can be solved by the flow
analyzer. This implies that, for the SMAPs with the special #’s on M, if the
flow analyzer reports that M is ri-routable, so does an exact analyzer, and
vice versa. Hence, 711; = n~;-k, V1<i<6.

(3) It is obvious that type-1 and type-2 connections are noninteracting. Since
there are W horizontal tracks and W vertical tracks, both 73; and n} can be
aslargeas W. O

4.2 Performance Bound

As mentioned earlier, we may evaluate the flow analyzer based on its perfor-
mance bound; that is, we compute |Sw|/|S{;|. Let

Iy = {nln1+n3s+ne <W, ng+ng+ns <W, ny+ns+ns < W,
ng +ns+ng < Wi,
6
Iy = {rﬂmax{nl,nz} + Zni < W}
i=3
We have the following lemma.

LEMMA 2 (CoONTAINMENT PROPERTIES). The following properties hold:

(1) Sw < Iw;
(2) for switch matrices, Sty 2 I3y, when; =W, 1<i <6.

Proor.

(1) As mentioned earlier, the flow analyzer analyzes a switch module one side
at a time. The total number of connections routed through each side must
be bounded by the size of the switch module, W. Hence, if n € Sy, the
constraints nqy + ng + ng < W, no+ng+ng <W, ni+ng+ns < W,

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

(2)

Analysis of FPGA/FPIC Switch Modules o 23

and ng + n5 + ng < W for the four sides must be satisfied. This means
i€ Sw = n € Iy, and hence Sy C Iy.

When r7; = W, 1 < i < 6, n~§* = n; = W, by Lemma 1; that is, there
exist W paths for each of the six types. We first consider the case where
n1 = ng = 0. Since there are W paths for each of the six types, it is easy to
see that there always exist W — n; paths available for each of other types
of bent connections after n; type-i connections are routed, i € {3,4,5, 6}.
Thus, if n1 = ne = 0 and Z?=3 n; < W, there must exist at least one
feasible routing. For the case where n; # 0 or ng # 0, we observe that
the number of tracks available for type-1 (type-2) connections is decreased
by one after routing a bent connection. Thus there are W — 2?23 n; hori-
zontal and W — "% . n; vertical tracks remaining after 37 ,n; bent con-
nections are routed. Therefore, if max{ni,no} < W — Z?=3 n;, there must
exist at least one feasible routing, that is, n € Ij; = n € S;j;. Hence
Iy cSy. O

By Lemma 2, we have |Sw|/|S¥| < Iwl|/|I}| for switch matrices when
n; = W, 1 <i < 6. To compute the bound, we can compute |Iw|/|[j;| instead.
We have the monotone property of |Iw|/|I; .

LemMa 3 (MoNOTONE PrOPERTY). |Iw|/|Iy;| is @ strictly increasing function
of W, when W > 0.

Proor. Since

6
L = {ﬁ|max{n1,n2} +Y) i< W},

i=3

we have

6

Zni < W — max{ni, ns}.
i=3

Consider the following two sets:

*

Iy 11 = {(n1,ne)| max{ni, ng} =k, 0 <k < W},

6
Lo = {(n3,n4,n5,n6)lzni <W-k, 0<k=< W}
i=3

We have

and

Lypal = 2k+1,0<k<W,

6
Ly ol = |{(n3,n4,n5,n6)|zni <W-%k, 0<k< WH

i=3
7
= |{(n3,n4,n5,ns,n7)lzni =W -k, 0<k,n; < W}|
i=3

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

24 . Chang et al.

This is equivalent to counting the number of selections, with repetition, of
size W — k from a collection of size 5. Thus we have

. W—-k+4
Ly g2l = < 4)

As a result,
6
Iy | = ‘{ﬁlmax{nl,n2}+zni < W}’
i=3
W
= > Ly pallliy s
k=0
W
W+4—
= Z(2k+1)(* k)
k=0
W41 w
W+5—-k W+4—Fk
-2+ >+Zk< Y
k=1
2k W+5 B\ O W+4 k
=> 1 +
k=0 £=0
(W +6 W—|—5
B 6
1.
where
A* = (2, 36,260, 960, 1898, 1884, 720),
o = (W8 W5 W W3, w2 w,1).
Note that the identity
I
Z(l_k>(q+k> - <l+q+1>, n=q=0,1,mnqeZ U0},
o\ m n m+n+1

is an extension of Vandermonde’s convolution [Graham at al. 1989]. Also,
ZW+5(W . 5=")is derived from ZZV kY +f ~*) by adding several zero terms

such as (1)(W4+5).

Similar to techniques used for computing |I};|, to compute |Iw|, we can con-
sider the values of n; and ng first and simplify the system of linear inequalities.
This process continues for ng and ns (or ny and ng) until all “basic” terms are
found. (Alternatively, we can assume that [Iyy| = aW® + bW? + cW* +d W3 +
eW?2+ fW + g since the number of the lattice points in a six-dimensional space
bounded by the size W in each axis is in the order of W6. Since we have seven
unknown variables, a, b,c, ..., g, we only need to find |Iw|’s for seven W’s to
obtain a system of seven equations to solve all the seven variables. [It is easy
to write a program to compute |Iw|’s for small W’s.] The assumed polynomial

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 25

function can then be verified by mathematical induction.) For conciseness, we
just give the results as follows:
Tyl = LA &, W=2k,keZtU{0}
v W =2k+1,keZ" U0,

where
A; = (10, 120, 595, 1560, 2320, 1920, 720),
A, = (10, 120, 595, 1560, 2320, 1920, 675).
Since |Iw| is an integer, we have
1.
Tl = | g 3],

where A = A}.
To show that |Iw|/|I};| is strictly increasing as W grows, observe that

w1l Iw] 1
" — = = 3 —(Iw Iy | = [Tw | Iy 1)
Ll Tl Tyl W W1

- (| Eaal(2aa) - |tia| (La s
Ly, 1Ty \ L6 6! 6! 6!

> 1 ((lA.c;/_1) (lg*.g))
Ly 15 \\ 6! 6!

1 A2 1 _>>k =
~(a4-9) (a4))
_ 10B-w"
(61213 1 1 Ty |
> 0,

where

B = (12, 342,4311, 31608, 148806, 467172, 980034, 1332072, 4416957,
R 446526, 55080),
o = (W+D5 (W + 1% (W + D (W + 13, (W + D% (W + 1), 1),
o = (W W W8 W', W W° W* W3, W2, W, 1).
Since [Iw|/| L | < Uw1l/ Lyl when W > 0, |Iw|/| I} | is a strictly increasing
function of W. 0O

Table I in Section 4.4 lists the cardinalities of Iw and I3;, computed by the
closed forms shown above. The reader may check with the table for the monotone

property of |Iw|/| 13|
THEOREM 1 (PERFORMANCE BOUND). For switch matrices, |Sw|/|S{| < 5.
Proor.

(i) Nondegenerate cases where 77, = W, V1 <1 <6:
By Lemma 1(2), nf =n; = W,1 <i < 6, and by Lemma 2, Sy € Iw and

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

26 . Chang et al.

Sy 2 Iy Since |Iw|/|I};| is monotonically increasing (Lemma 3), we have

ISwl _ Hwl
ISiwl = Iyl
[T |
W—oo | Iy |
. AD
< lim —

where
A* = (2,36, 260, 960, 1898, 1884, 720),
A = (10, 120, 595, 1560, 2320, 1920, 720),
o = (WS, W5, W4, W3, W2, W, 1).

(i1) Degenerate cases where there is some 17; = W/, W’ < W:
Consider the following continuous sets. Let

6
Py {fclmax{xl,xg}—i-in <W,x; e?)‘ﬁU{O}},
i=3
Py = {(X|lx14+x3+x6 < W, xo+x3+x4 <W, x1 +x4+x5 < W,
xo+x5+x6 < W, x; € Rt uU {0}}.

Pj; and Pw form two 6-D bounding polytopes for I3, and Iw, and are referred
to as an exact polytope and a flow polytope, respectively; let their respective
volumes be Vp: and Vp,.

As W — oo, |Swl/|Sjy| converges to Vp, /Vp: . Similarly to the claim
given in Lemma 2 (Containment Properties) with the domain of nonneg-
ative integers (Iw and Ij;), we have the the following inequality with the
domain of nonnegative real numbers:

|Sw| - Vpy, '

ISw! — Vb
Vp, and Vp; can be interpreted as the sizes of the respective sets Iy and
Iy, as W — oo. Therefore, Vp; and Vp, are given by the leading terms of
|Iiy| and |Iw|; we thus have Vp; = 2W°/6! and Vp, = 10W¢/6! = W6/72.
(Note that both Vp. and Vp, can also be calculated by multiple integration

as follows:
/ d7
XePy

6 1 1—x6 l—JC5 —Xe6 l—JC4—JC5—x6
0.J0 0 0

x (1 — x5 — x4 — x5 — x6)° dxs dxs dxs dxg
2W6

6!
ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

\ 4

Analysis of FPGA/FPIC Switch Modules o 27

and
Vi, = / di
.’;CEPW

6 1 l—xG I—X5 min(l—x4,1—x6) min(l—x3 —x4,1—x5—x6)
0J0 0 0 0

f (%) dxg dxs dxs dxs dxg
W6
727

where f(X) = min(1 — x3 — xg, 1 — x4 — x5).)

Since 1; = W/, W < W, by Lemma 1(2), we have 17; = nl’»‘ = W’. Both the
flow polytope and the exact polytope are scaled by W'/ W along the x; axis
or cut by the plane x; = W’; see Figures 10(c) and 10(d). In both cases, it
is easy to see that |Sw|/|Sjy| is still bounded by the bound obtained in the
nondegenerate case, that is, |Sw|/|Sj;| < 5. For conciseness, we show only
the case where both polytopes are scaled by W//W, W’ > 0, along some
axis.

Let Vp, and V}’)V*V be degenerate volumes for the flow polytope and the

exact polytope, respectively. We have

ISwl _ Vo,

ISwl — Vp

(W /W)Vp,
(W/W)Vp.
wé/72
2W6/6!

= 5.

Note that if there are no feasible type-i connections for somei,3 <i < 6, nei-
ther Sw nor S}, contains a solution with n; > 0, 3 <i < 6, by Lemma 1(2);
that is, there exists some W', W = 0. Since, for switch matrices, by
Lemma 1(3), n1(n}) and ng(nj) can be as large as W, they can at most
degenerate to two 2-D polytopes. For example, when there are no crossing
switches in a switch matrix, n; and n}, 3 < i < 6, must be zero. This is a
trivial best case that |Sw|/|Siy| = (W + D?/(W +1)2=1. O

The theoretical performance bound 5 in Theorem 1 for switch matrices occurs

when a switch matrix of size W, W — oo, contains no separating switches and
has a set of W crossing switches on all vertical and horizontal tracks in the
switch matrix (one of the W crossing switches on each vertical track or each
horizontal track).

In current commercially available FPGAs, the sizes of switch modules are

usually small, say W < 30. We can compute the performance bounds by the

two closed forms A* - w and I_A - w] shown in the proof of Lemma 3. Our results

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

28 . Chang et al.

show that the bounds for W = 10, 20, and 30 are about 3.177, 3.862, and 4.174,
respectively, which are better than the theoretical bound 5 for the case W — oc.
See Table I in Section 4.4 for details. This is the worst-case performance of the
flow analyzer. It will be seen in Section 6 that the flow analyzer has the empirical
performance bounds 1.062 and 1.111 away from the optima for W = 10 and 20,
respectively.

4.3 Remarks on the Results for Switch Blocks

As mentioned earlier, the techniques for the analyses associated with switch
blocks are similar to those for switch matrices. We give the results in the fol-
lowing. Let
Iy = {njn1+n3s+ne <W, ng+ng+ns <W, ni+ns+ns < W,
ng +ns +ng < Wi,
{n| max{n1, ne} + max{ns, ns} + max{ns, ne} < W,
ni + ne + max{ns + ns, ng +ng} < 2W — 1)}
U{(w,w,0,0,0,0), (0,0,W,0,W,0), (0,0,0, W, 0, W)}.

Similar to Lemmas 2(2), we have the following:

*/
IW

LEmMMA 2’ (CONTAINMENT PROPERTY). For switch blocks, S§y 2 Iy, when
n=W,1<i<6.

The closed form for the cardinality of I}y, W > 0, can be obtained by similar
techniques as those used in the proof for Lemma 3:

|| = |{n|max{ny, no} + max{ns, ns} + max{ny, ne} < W}|
W-1 w-1
U1Gi,0,W —4,0,W —)}| — | | J{G,i, W —4,0,W —i,0)}

i=1 i=1

W+6 W+5 W+4 W +3
= (6 >—+3(6 >-+2(6)—F(6)——%W’—l)

where
A¥ = (8,96,500, 1440, 2372, 624, 2160),
o= (W8 W5 W W3 W2 W, 1).
Note that |Ijy| = 1if W = 0. We have

|I>k/ > W= O’
wi= éz&*’~c7),W>0.
By Lemma 3, we have

1. .

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules

Table I. Cardinalities and Performance Bounds for Specified W’s

Switch matrix Switch block

w [Iw| | [y [wl/| L] [y | UHwl/IL]
1 10 8 1.250 10 1.000
2 56 35 1.600 50 1.120
3 214 112 1.911 186 1.151
4 641 294 2.181 547 1.172
5 1,620 672 2.411 1,364 1.188
6 3,616 1,386 2.609 3,014 1.200
7 7,340 2,640 2.781 6,072 1.209
8 13,825 4,719 2.930 11,371 1.216
9 24,510 8,008 3.061 20,070 1.222
10 41,336 13,013 3.177 33,730 1.226
15 334,680 93,024 3.598 270,476 1.238
20 1,573,121 407,330 3.863 1,266,227 1.243
25 5,377,190 1,330,056 4.043 4,319,358 1.245
30 14,905,856 3,570,952 4.175 11,959,494 1.247
35 | 35,622,150 8,334,768 4.274 28,560,010 1.248
40 | 76,215,041 17,511,879 4.353 61,075,531 1.248

29

where A = (10, 120, 595, 1560, 2320, 1920, 720). The following lemma and the-
orems can be proved easily by the closed forms |Iw| and |37].

LEMmmA 3’ (MONOTONE PROPERTY).
W, when W > 0.

[Iwl/|Iy | is a strictly increasing function of

TuEOREM 1’ (PERFORMANCE BOUND). For switch blocks, |Sw|/|Si| < 5/4.

4.4 Summary of Performance Analysis

Table I lists the cardinalities and performance bounds associated with Iw, Iy,
and Iy .

5. EXTENSIONS

Section 4 assumed that routing requirements are uniformly distributed, and at
most one switch can be used for a connection. In this section, we give the per-
formance bounds for the cases with different distributions and extend the flow-
network construction for the relaxed routing model which allows more than one
switch to be used for a connection. Note that the distributions may be obtained
either from circuit designs or routability specifications.

5.1 Nonuniform Distribution

The distribution of RRVs is given by p(#1), the probability that the RRV is 7.
The means of a probability density function (or a probability mass function in
discrete cases) over Sw and Sy are m ;) and m;‘,(ﬁ), respectively. For continuous
cases, if Vp,, # 0 and Vp: # 0, we have

/ p()dn
;LEPW
Vp,

Mpi) =

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

30 . Chang et al.
and
[plidi
My = 7%1)“{;% :

Similarly, for discrete cases, if [Sw| # 0 and |S3;| # 0,

M) = Zﬁesw p(ﬁ)
i) = T a1
|Sw|
and
a2

Let |Tw| and |Ty | be the number of occurrences that the RRVs are in Sy and

Siy, respectively, and ' = m@)/m),;). We have the following theorem.

THEOREM 2. Given an arbitrary distribution of RRVs, for switch matrices,
| Twl/|Ty | < 5T if my,, # 0.

Proor. We show only the continuous case below:

(n)dn

|Tw| _ /ﬁePWp

Ty / PR
JnePy,

m pGiy V Py

My, VP
Vpy r
va*v

5T,

IA

where Vp, /Vp; =5, by Theorem 1. O

Similarly, we have the following theorem.

THEOREM 2'. Given an arbitrary distribution of RRVs, for switch blocks,
|Tw|/|Tw| < 5'/4 if my,;) # 0.

Note that I' = 1 for uniform distributions and thus the corresponding perfor-
mance bounds are 5 and 5/4 for switch matrices and switch blocks, respectively.
For geometric distributions (discrete cases), exponential distributions (contin-
uous cases) I' < 1, and hence the respective bounds are less than 5 and 5/4 for
switch matrices and switch blocks.

5.2 Relaxed Routing Model

In this subsection, we extend the network-flow analyzer to a more general
switch-module routing model. Specifically, each net can use at most one switch

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 31

4
3 3 v3 v3
\:/] 2 —— 5 5 !
- nl t
m 1 —6 6 f
v8 v6
s 7 8
(@) (b) (©

Fig. 11. Examples of network-flow construction based on the relaxed routing model. (a) Types of
nets being considered. (b) A switch matrix instance. (¢) Network construction for terminals 3 and 8.

for routing through a switch matrix (i.e., I-switch routing) in the previous dis-
cussion whereas a connection is considered feasible in the relaxed model as
long as the connection contains no dogleg (jog). (In fact, jogs in a switch mod-
ule rarely happen in practical FPGA/FPIC routing.) Hence, under the relaxed
switch-matrix routing model, a connection can use up to three switches, one
crossing and two separating switches. (Note that it is not allowed to use two
crossing switches for a connection, since such a connection will introduce a jog
inside a switch matrix.)

To analyze switch-module routability under the relaxed model, we need to
modify the construction for the flow network shown in Figure 7 because the
connections between terminals 3 and 6 or between terminals 8 and 5 become
feasible now. Figure 11(c) illustrates the modification for the case where termi-
nals k£ and [are both on source sides and are located on opposite sides of the
same track with a separating switch between the terminals. (For other cases,
the network construction remains the same and is thus not shown in Figure 11.)
With the modification for the flow network construction, the network-flow-based
analyzer described in Section 3 readily applies to the switch-module analysis
under the relaxed routing model.

6. EXPERIMENTAL RESULTS

We did the following experiments:

(1) empirical performance of the flow analyzer on switch matrices;

(2) correlation between switch-matrix and chip-level routability, and the accu-
racy of the flow analyzer in evaluating the chip-level routability;

(3) Running times for computing all routable RRV’s for a switch matrix (useful
for routing [Chang et al. 1994]) by the flow analyzer and an exact analyzer.

The flow analyzer was implemented in C on a SUN SPARC 5 workstation.
In Experiment (1), we measured the performance of the flow analyzer. We first
applied the switch-matrix design algorithm in Zhu et al. [1993] to generate
switch matrices. The sizes of the switch matrices are W = 5, 10, 15, and 20.
For each W, we generated 5W switch matrices with the number of crossing
switches N ranging from 2W to 7W — 1, except the case for W = 5 where
N ranges from 2W to 5W (since there are at most W2 crossing switches in a
switch matrix). (Figures 12, 13, and 14 show three switch matrices with W = 20
and N = 80 designed by a random generation, [Zhu et al. 1993; Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

32 . Chang et al.

Fig. 12. A random switch matrix with W = 20 and N = 80.

Fig. 13. A switch matrix with W = 20 and N = 80 designed by Zhu et al. [1993].

1995b], respectively.) For each switch matrix designed by Zhu et al. [1993],
we analyzed its routability by the flow analyzer and the ILP analyzer used
in Thakur et al. [1997] based on 100 randomly generated RRVs in Iy (see
Section 4.2 for the definition of Iy); that is, trivially infeasible RRVs for both
analyzers were not considered. The results are shown in Table I and Figure 15.
Table II gives the average-, best-, and worst-case performance bounds for each
W. In Figure 15, the percentage of routable 7’s, represented by the vertical

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 33

Fig. 14. A switch matrix with W = 20 and N = 80 designed by Chang et al. [1995b].

Table II. The Average-, Best-, and Worst-Case
Performance Bounds of the Flow Analyzer

Experimental performance bounds

W | Average case | Best case | Worst case
5 1.024 1.000 1.091
10 1.062 1.000 1.139
15 1.091 1.000 1.184
20 1.111 1.000 1.216

axis, is plotted as a function of N, denoted by the horizontal axis, for the case
where W = 20. They show that the flow analyzer has the respective average-,
best-, and worst-case (N = 57) performance bounds 1.111, 1.000 (optimal),
and 1.216 away from the optima. Note that they are much better than the
theoretical bound, 3.863, for W = 20 (and the bound 5 for arbitrary W’s). More
significantly, as shown in Table III (and Figure 15), the flow analyzer ranked
the routability of the switch matrices in very close to the same order as the ILP
analyzer; the high fidelity makes the flow analyzer a reliable approximation
analyzer.

In Experiment (2), we explored the correlation between switch-matrix and
chip-level routability, and the accuracy of the flow analyzer in evaluating the
chip-level routability. We first randomly generated connections on a 15 x 15
(number of logic modules) FPGA. For this purpose, we assumed that the num-
ber of pins on each logic module is unlimited (so that we could test denser
circuits). We then used the detailed router developed by Wu and Chang [1998]
toroute the connections on the FPGA using the three types of 20 x 20 (number of
terminals) switch matrices of various numbers of switches designed by the ran-
dom generation [Zhu et al. 1993; Chang et al. 1995b]. As shown in Table IV, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

34 . Chang et al.

Flow Performance
%Report

100.00 |- ! I l I] Flow-analyzer

i -
98.00] Exact-analyzer

96.00 |-
94.00 |-
92.00 |-
90.00 |-
88.00 |
86.00 |-
84.00 |-
82.00 |-
80.00 |-
78.00 |-
76.00 |-
74.00 |-
72.00 |
70.00 |-
68.00 |-
66.00 |-
64.00 | i
62.00 |
60.00 |- § i
58.00 |- -

56.00 L1 I I ' l L #Crossing Switches
40.00 60.00 80.00 100.00 120.00 140.00

Fig. 15. Results for Experiment (1): performance of the flow analyzer.

Table III. Correlation Between the Results Reported
by the ILP and the Flow Analyzers

Crossing Percentage of routable RRVs
switches Exact analyzer Flow analyzer
40 58 65
50 64 70
60 72 81
70 82 93
80 82 94
90 84 95
100 86 99

switch matrices with higher routing capacity evaluated by the ILP analyzer and
the flow analyzer typically result in better chip-level routability. Further, the
ranking for the chip-level routability is typically the same as that reported by
the flow and the ILP analyzers for the associated switch matrices (see Table III;
the numbers reported by the flow analyzer are larger than those reported by an

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 35

Table IV. Percentage of Routable Connections on a 15 x 15 FPGA Using Three Types of 20 x 20
Switch Matrices with Various Numbers of Switches

Crossing Switch % of routable RRVs Number of connections
switches architecture ILP analyzer [Flow analyzer | 200 [300 [400 [600 [800

Random 39 46 85.0% | 69.3% | 63.5% | 43.7% | 32.6%

40 Zhu et al. [1993] 58 65 98.0% | 92.0% | 70.0% | 50.2% | 38.5%
Chang et al. [1995b] 76 79 99.5% | 91.0% | 72.3% | 56.8% | 44.4%

Random 57 65 86.0% | 72.0% | 65.3% | 45.5% | 35.8%

60 Zhu et al. [1993] 72 81 98.5% | 94.0% | 72.3% | 51.3% | 39.1%
Chang et al. [1995b] 85 94 100.0% | 98.3% | 79.8% | 61.2% | 49.8%

Random 74 81 90.0% | 79.7% | 66.5% | 47.8% | 36.9%

80 Zhu et al. [1993] 82 94 100.0% | 96.3% | 73.0% | 51.7% | 40.6%
Chang et al. [1995b] 93 99 100.0% | 100.0% | 83.5% | 66.0% | 50.3%

Random 77 82 97.0% | 88.0% | 71.0% | 48.7% | 39.6%

100 Zhu et al. [1993] 86 99 100.0% | 98.0% | 73.8% | 52.3% | 42.4%
Chang et al. [1995b] 94 100 100.0% | 100.0% | 84.5% | 66.3% | 50.9%

Table V. Running Times Required for Computing All Routable 7’s on a Corresponding

Switch Matrix
Running time Running-time ratio
Switch matrix | W N ILP analyzer | Flow analyzer | time(ILP)/time(flow)
Module5-25 5 25 15 min 1 min 15
Module10-50 10 50 161 min 7 min 23
Modulel5-75 15 75 2088 min 28 min 75
Module20-100 | 20 | 100 >28000 min 97 min >288

exact analyzer because the flow analyzer overestimated the routability). This
result reveals that switch-module routability is highly correlated to that of the
chip-level routability, and the flow analyzer has the high fidelity in evaluating
the FPGA chip-level routability.

In Experiment (3), we measured the run time required to compute the rout-
ing capacity of a designed switch matrix. This is applicable to FPGA routing
[Chang et al. 1994]. The number of crossing switches N in each switch matrix
was 5W. We used the algorithm presented in Chang et al. [1994] to obtain all
routable RRVs on a switch matrix; it computed O(W®) SMAPs with various
RRVs. Table V lists the run times for the ILP and the flow analyzers. It shows
that the flow analyzer runs much more efficiently than the ILP analyzer.

7. CONCLUDING REMARKS

We have shown that the network-flow-based routability analyzer is efficient and
highly accurate. It has provably good performance with constant bounds away
from the optima for two types of switch modules. However, whether the anal-
ysis problem SMAP is NP-complete is still open, and future research involves
further investigation of the SMAP.

To explore the routability of an FPGA/FPIC chip, we adopted in this paper the
bottom-up approach by considering a single switch module first. The method-
ology is mainly motivated by the golden rule “optimize the common cases”
[Hennessy and Patterson 1996], which is the key to contemporary computer de-
signs. As mentioned in the introduction, for real applications, most connections

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

36 . Chang et al.

are short (i.e., the common cases), independent of the sizes of FPGAs/FPICs.
Therefore, it is of particular importance to consider the architecture of a single
switch module. Future work lies in the exploration of the routing capacity for
multiple switch modules in series and the interaction of switch modules and
pin-to-track connection ones [Betz and Rose 2000].

ACKNOWLEDGMENTS

The authors would like to thank Dr. Glenn Lai for many helpful suggestions,
Shashidhar Thakur for providing the ILP analyzer, and anonymous reviewers
for very constructive comments.

REFERENCES

ActeL Corr. 1996. FPGA Data Book and Design Guide. Actel Corp., Sunnyvale, CA.

ApTix, INc. 1992. FPIC AX1024D. Preliminary Data Sheet, Aptix, Inc., San Jose, CA.

Betz, V., RosE, J., AND A. MARQUARDT 1999. Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, Boston, MA.

Betz, V. AND RosE, J. 2000. Automatic generation of FPGA rotuing architectures from high-level
descriptions. In Proceedings of ACM /SIGDA International Symposium on Field Programmable
Gate Arrays (Monterey, CA, Feb.) 175-184.

Buat, N.anp Hinr, D. 1992. Routable technology mapping for LUT FPGAs. In Proceedings of IEEE
International Conference on Computer Design, VLSI in Computers and Processors (Cambridge,
MA, Oct.). 95-98.

Brown, S. D., Francrs, R. J., RosE, J., AND VRANESIC, Z. 1992a. Field-Programmable Gate Arrays.
Kluwer Academic Publishers, Boston, MA.

Brown, S. D., Rosg, J., AND VRANESIC, Z. 1992b. A detailed router for field-programmable gate
arrays. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 11, 5 (May), 620-627.

Brown, S. D., RosE, J., AND VRANESIC, Z. G. 1993. A stochastic model to predict the routabil-
ity of field-programmable gate arrays. IEEE Trans. Comput.-Aided Des. 12, 12 (Dec.), 1827—
1838.

CHaNG, Y.-W., THAKUR, S., ZHyu, K., AND Wong, D. F. 1994. A new global routing algorithm for
FPGAs. In Proceedings of IEEE /| ACM International Conference on Computer-Aided Design (San
Jose, CA, Nov.). 356-361.

CHANG, Y.-W., Wong, D. F., anp Wong, C. K. 1995a. FPGA global routing based on a new congestion
metric. In Proceedings of IEEE International Conference on Computer Design (Austin, TX, Oct.).
372-378.

CHang, Y.-W., Wong, D. F., anpD Wong, C. K. 1995b. Design and analysis of FPGA/FPIC switch
modules. In Proceedings of IEEE International Conference on Computer Design, VLSI in Com-
puters and Processors (Austin, TX, Oct.). 394-401.

CHANG, Y.-W., Wong, D. F., anp Wong, C. K. 1996a. Universal switch modules for FPGA design.
ACM Trans. Des. Automat. Electron. Syst. 1, 1 (Jan.), 80-101.

CHANG, Y.-W., Wong, D. F., anp Wong, C. K. 1996b. Universal switch-module design for symmetric-
array FPGAs. In Proceedings of ACM / SIGDA International Symposium on Field Programmable
Gate Arrays (Monterey, CA, Feb.). 80-86.

GamAL, A. E., GREENE, J., REYNERI, J., Rogoyski, E., ELAvAT, K. A., AND MoHSEN, A. 1989. An archi-
tecture for electrically configurable gate arrays. IEEE oJ. Solid-State Circ. 24, 2, 394-398.

GaAREY, M. aAND Jonnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco, CA.

GraaaMm, R. L., KnutH, D. E., aND Patasunik, O. 1989. Concrete Mathematics. Addison-Wesley,
Reading, MA.

Guo ET AL. 1992. A 1024 pin universal interconnect array with routing architecture. In Proceed-
ings of IEEE Custom Integrated Circuits Conference (San Diego, CA, April). pp. 4.5.1-4.5.4.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Computer Architecture: A Quantitative Approach, 2nd
ed. Morgan Kaufmann, San Mateo, CA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Analysis of FPGA/FPIC Switch Modules o 37

Lemieux, G. anD Brown, S. D. 1993. A detailed router for allocating wire segments in field-
programmable gate arrays. In Proceedings of ACM /SIGDA Physical Design Workshop (Lake
Arrow, CA, April). 215-226.

LEMIEUX, G., BRowN, S. D., AND VRANESIC, D. 1997. On two-step routing for FPGAs. In Proceedings
of ACM International Symposium on Physical Design (Napa Valley, CA, April 14-16). 60-66.
LucenT TECHNOLOGIES 1996. Field-Programmable Gate Arrays Data Book. Lucent Technologies,

Murray Hill, NJ.

MarpLE, D. AND CookE, L. 1992. An MPGA compatible FPGA architecture. In Proceedings of ACM
International Symposium on Field-Programmable Gate Arrays (Monterey, CA, Feb.). 39-44.

Rosg, J. aND Brown, S. 1991. Flexibility of interconnection structures for field-programmable
gate arrays. IEEE J. Solid-State Circ. 26, 3, 277-282.

Suyu, M., CHANG, Y.-D., Wu, G.-M. aND CHANG, Y.-W. 2000. Generic universal switch blocks. IEEE
Trans. Comput. 49, 4 (April), 348-359.

SLEATOR, D. D. aND TArJAN, R. E. 1983. A data structure for dynamic trees. J Comput. Syst.
Seci. 24, 362-391.

THAKUR, S., CHANG, Y.-W., Wong, D. F., AND MUTHUKRISHNAN, S. 1997. Algorithms for an FPGA
switch module routing problem with application to global routing. IEEE Trans. Comput.-Aided
Des. Integr. Circ. Syst. 16, 1 (Jan.), 32—46.

TRIMBERGER, S. 1994. Field-Programmable Gate Array Technologies. Kluwer Academic Publish-
ers, Boston, MA.

TRIMBERGER, S. aAND CHENE, M. 1992. Placement-based partitioning for lookup-table-based
FPGA’s. In Proceedings of IEEE International Conference Computer Design, VLSI in Computers
and Processors (Cambridge, MA, Oct.). pp. 91-94.

Wirton, S. 1997. Architecture and Algorithms for Field-Programmable Gate Arrays with embed-
ded Memories. Ph.D. dissertation, University of Toronto, Toronto, Ont. Canada.

Wu, G.-M. anD CHANG, Y.-W. 1998. Switch-matrix architecture and routing for FPDs. In Proceed-
ings of ACM International Symposium on Physical Design (Monterey, CA, April 14-16). 158-163.

Wu, G.-M. aND CHANG, Y.-W. 1999. Quasi-universal switch matrices for FPD design. IEEE Trans.
Comput. 48, 10 (Oct.). 1107-1122.

Wu, Y.-L., Tsukivama, S., AND MAREK-SADOWSKA, M. 1996. Graph based analysis of 2-D FPGA
routing. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 15,1 (Jan.), 33—44.

XiLing, INnc. 1996. The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA.

Znu, K., Wong, D. F., anp CHaNG, Y.-W. 1993. Switch module design with application to two-
dimensional segmentation design. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (San Jose, CA, Nov. 7-11). pp. 481-486.

Received August 2000; revised April 2002; accepted September 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

