IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003 1

Timing Modeling and Optimization Under
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Abstract— As the operating frequency increases to Giga
Hertz and the rise time of a signal is less than or compa-
rable to the time-of-flight delay of a wire, it is necessary to
consider the transmission line behavior for delay computa-
tion. We present in this paper an analytical formula for the
delay computation under the transmission line model. Ex-
tensive simulations with SPICE show the high fidelity of the
formula. Compared with previous works, our model leads
to smaller average errors in delay estimation. Based on this
formula, we show the property that the minimum delay for
a transmission line with reflection occurs when the num-
ber of round trips is minimized (i.e., equals one). Besides,
we show that the delay of a circuit path is a posynomial
function in wire and buffer sizes, implying that a local op-
timum is equal to the global optimum. Thus, we can apply
any efficient search algorithm such as the well-known gradi-
ent search procedure to compute the globally optimal solu-
tion. Experimental results show that simultaneous wire and
buffer sizing is very effective for performance optimization
under the transmission line model.

I. INTRODUCTION

As the operating frequency increases to Giga Hertz, the
rise time of a signal is less than or comparable to the time-
of-flight delay of a wire. Also, the die size is getting larger,
resulting in longer global interconnection lines. The trends
make it important to consider the transmission line be-
havior for delay computation [1]. Transmission line effects
become significant when ¢, < 2 ty, where ¢, is the rise
time and ¢ is the time of flight determined by the wire
length [ divided by the velocity v [1]. There are two kinds
of transmission lines. A wire with negligible resistance is
called a lossless transmission line. However, on-chip in-
terconnections have significant resistance, and they should
be treated as lossy transmission lines [1], [6], [19]. Ob-
viously, it is more accurate and desirable to consider line
resistance for timing estimation and optimization. In this
paper, therefore, we shall focus on lossy transmission lines.

When two transmission lines on a chip are connected and
these two wires have different characteristic impedance,
such mismatches of wire impedance can cause reflections
at the junction point [1], [13]. Since reflections may
cause logic failure or increase delay, the discontinuities of
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impedance at junction points must be controlled in order
to minimize the side effect of reflections. On one hand, if
the driving resistance is larger than the wire impedance, it
requires multiple trips (a trip is a signal travels from one
end of a line to the other end) to switch on the load; on
the other hand, if the driving resistance is smaller than the
wire impedance, the load may be falsely triggered. We can
eliminate the reflections by matching the driving resistance
and the wire impedance. The driving resistance of a gate
and the impedance of a wire are approximately in inverse
proportion to its size and width, respectively. Hence, wire
and gate sizing can affect the delay, implying that sizing
circuit components (wires and buffers) is applicable to de-
lay optimization.

A. Previous Work

Timing is a crucial concern in high-performance circuits.
Many techniques such as wire sizing and gate sizing have
been proposed to optimize timing (e.g., [3], [4], [5], [12],
etc); however, most of the techniques are based on the El-
more delay model [8]. Modeling and analysis techniques for
simulation and timing optimization under the lossy trans-
mission line model have been studied extensively in the
literature [9], [10], [11], [14], [17], [18], [21], [24], [26], [27],
[28], [29], [30]. Previous work in [17] and [21] proposed
precise methods for simulating waveform, but they did not
present any delay estimator. The work in [18] and [28§]
modeled the transmission line effect; they, however, did
not consider delay optimization. Several works in the liter-
ature consider the minimization of delay under the trans-
mission line model. Gao and Wong in [9] and [10] applied
continuous wire-sizing to minimize delay under the lossy
transmission line model; however, they focused on expo-
nentially tapered wires. Ismail and Friedman in [11] com-
puted a uniform buffer size and the number of buffers to
optimize the delay of a circuit path under the lossy trans-
mission line model; however, their formula does not handle
wire sizing. Lin and Pileggi in [14] proposed a wire sizing
formulation with second order central moments, but their
wire sizing formulation under the transmission line model
is not always a posynomial program, and thus there is no
optimality guarantee. The work in [26] and [30] adopted
the S-parameter macro delay model to minimize delay and
skew, but the sensitivities were computed at each step us-
ing finite difference approximation which requires expen-
sive computation. The work in [24], [27], and [29] adopted
higher order moments to minimize delay, but their delay
models were computationally expensive.
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B. Our Contribution

In this paper, we focus on delay modeling and timing op-
timization under the transmission line model. Unlike most
previous works that are based on relatively complicated
models (e.g., [17], [18], [27], and [28]) or incur larger errors
(e.g., [8] and [11]), we present a simple, yet accurate for-
mula for the delay computation under the lossy transmis-
sion line model. Extensive simulations with SPICE show
that the formula has high fidelity, with an average error of
within 5.93% for lossy transmission lines. Based on this
formula, we show the property that the minimum delay for
a lossy transmission line with reflection occurs when the
number of round trips is minimized (i.e., equals one). Be-
sides, we show that the delay of a circuit path is a posyno-
mial function in wire and buffer sizes, implying that a local
optimum is equal to the global optimum. Thus we can ap-
ply any efficient search algorithm, such as the well-known
gradient search procedure, to compute the optimal wire
and buffer sizes for timing optimization for a circuit path.
For a routing tree (a routing tree is a tree that intercon-
nects all signal terminals of a net), we propose a two-stage
algorithm to optimize the delay. In the first stage, we tra-
verse the tree to determine its critical path and delay. In
the second stage, we control the reflections at all branch-
ing points to prevent from falsely triggering receivers and
minimize the critical path delay. We repeat the two stages
until no further improvements in the delay of the tree. Ex-
perimental results show that simultaneous wire and buffer
sizing is very effective in minimizing the delays of circuit
paths under the transmission line model.

The remainder of this paper is organized as follows. Sec-
tion II introduces some notation. Section III gives the gate
and the transmission line models. Section IV formulates
the problem. Section V considers the simultaneous wire
and buffer sizing for delay optimization. Section VI extends
the cases on a general routing tree. Section VII shows the
experimental results, and finally concluding remarks are
given in Section VIII.

II. NOTATION

We use the following notation in this paper.
the resistance of a gate with unit size.
the resistance of gate 1.

the capacitance of a gate with unit size.
the capacitance of gate 1.

the size of gate 1.

the capacitance of a wire with unit size.
the inductance of a wire with unit size.
the sheet resistance of a wire.

e w;: the width of wire 3.

e [;: the length of wire .

e Z;: the characteristic impedance of wire i.

o v;: the propagation velocity of wire i.

e R;: the driver resistance.

o (Cp: the load capacitance.

e Vpp: the high voltage of power supply.

o Vig: the minimum voltage at the input of a logic gate
required so that gate switches.

. ﬁ,:
b

o Tl

] éb:
b

e C;:

e (;:
. éwi
. ﬂwi

. 'Fw:

e oy ;: the transmission coefficient at point ¢ if a signal is
transmitted from point ¢ to point j.

e Bi;: the reflection coefficient at point ¢ if a reflection
travels from point 4 to point j.

e 7;: the voltage attenuation coefficient on wire 7 if a signal
is transmitted from its source to sink.

III. TRANSMISSION LINE MODEL

In this section, we give the wire and gate models, and
discuss the transmission line effects which is importance
when t, < 2 ty, where t, is the rise time and 7 is the time
of flight determined by the wire length [ divided by the
velocity v [1].

A. Gate and Wire Modeling

Figure 1 illustrates the gate and the lossy transmission
line models used in this paper. For a gate i with size g;,
the gate resistance r? is 7,/g; and the gate capacitance c?
is ¢pg;, where 7, and ¢, are the unit-sized resistance and
unit-sized capacitance of a gate, respectively.

A uniform lossy transmission line i of width w; can be
represented by a serial sections of unit-length resistance,
T /w;, unit-length inductance, i,,/w;, and unit-length ca-
pacitance, ¢,w;, where 7., Uy, and ¢, are the sheet re-
sistance, the unit-sized inductance, and the unit-sized ca-
pacitance of a wire, respectively. The effect of induc-
tance and capacitance can be represented by a charac-
teristic impedance, Z;, which equals +/(t., /w;)/(¢pw;) =
Vi /(wiv/éy). The propagation velocity of a wire i, v;,
equals 1/v/t,¢, [1]. If the length of a wire is [;, its to-
tal resistance, total inductance, and total capacitance are
Fuli Jwi, Gyl; /w;, and é,w;l;, respectively.

gate i . wire i
b \
1ok - ey T3
Fig. 1. A gate is the loading of its upstream, but is the driver of

its downstream. A lossy transmission line is represented by a
serial sections of its resistance, inductance, and capacitance, or
we can merge each section of inductance and capacitance into a
characteristic impedance.

Therefore, with the gate and the lossy transmission line
models, we can represent a circuit path by resistors, capaci-
tors, and characteristic impedance. Figure 2 illustrates the
resulting circuit modeling for a circuit path with n buffers,
where Rg and Cp are the driver resistance and the load
capacitance, respectively.
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Fig. 2. A circuit path (with lossy transmission lines) is a combination
of resistors, capacitors, and characteristic impedances.
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B. Reflections on a Wire

Due to the inductive and capacitive discontinuities, the
resulting reflections may cause logic failure or excessively
longer delay [1], [13]. As shown in Figure 3, gate i —1
drives lossy transmission line ¢ and gate i. Inductive and
capacitive discontinuities may occur at the points A and B.
The initial voltage at the point B is the sum of the signal
sent out from the point A and the reflection generated at
the point B. When the reflection generated at the point
B travels backward to the point A, a new reflection gener-
ated at the point A is transmitted toward to the point B.
The new voltage at the point B is the sum of the incom-
ing reflection, the new outgoing reflection, and the initial
voltage.

On one hand, as shown in Figure 4(a), if the resistance
of the gate i — 1, r?_,, is larger than the impedance of the
wire i, Z;, the initial voltage at point B might not reach
the threshold voltage. Thus, multiple round trips along the
wire may be required to correctly transmit a signal. On the
other hand, as shown in Figure 4(b), if 7 , is smaller than
Z;, a reflection generated at point A is negative since the
reflection coefficient 8;_1,; = (r? | —Z;)/(r} | + Z;) is neg-
ative. Therefore, the voltage may oscillate at the point
B, causing overshoot or undershoot. This oscillating pat-
tern is called ringing. If r® | matches with Z;, the source
reflection coefficient 5;_;; = 0. Thus, no reflections are
generated at the source end A.

| b e |Gy T |G, | ™

} Vo aiBA T W W B \
Lo e el R

E”'// Z; Z; L—V[”-//

Fig. 3.  The resistor with resistance ri’_l drives a lossy transmis-

sion line with characteristic impedance Z; and a capacitor with
capacitance c’i’.

Voltage rit_’ 1>

\ First

undershoot

time

(@) (b)

Fig. 4. (a) Multiple round trips are required to correctly transmit a
signal. (b) Ringing may cause logic failures.

C. Voltage Attenuation on a Wire

In a lossy transmission line, the resistance of a wire
causes voltage attenuation, and the voltage attenuation co-
efficient ~y; along a lossy transmission line ¢ is derived in [1]
as follows:

(1)

Therefore, in Figure 3, the voltage at the point B before
reflection is given by

VB = 7iVa. (2)

D. When to Use Transmission Line Analysis

According to [1], [15], and [22], the transmission line
behavior is significant when

t, < 2ty,

(3)
and

Rl < 27, (4)
where t, = 2.2 r? | (é,w;l; + cb) is the rise time of wire i,
t; = l;/v; is the time-of-flight delay, Rl = 7,,1; /w; is the to-
tal resistance, and Zy = Z; is the characteristic impedance.
As illustrated in Figure 3, we can rewrite Inequalities (3)
and (4) as Inequalities (5) and (6) as follows:

l;

2.2 1 (épwil; + ) < 2, (5)
and
Puli g g (6)
w; v

Besides, to make the voltage at the point B correctly
drive the gate i, the voltage at the point B after infinite
reflections should be greater than or equal to Vig. In other
words, the following inequality must be satisfied.

Ve = 20171+ Bic1,i + 7B i+ )Vop
_ 2 a;—1,;7VpD
1 —~2Bi-1,i
> Vim, (7)
where
Z;
P
i—1,1 T?_1+Zz
b
N
Bz—l,z — 7"?,1+Zz
Pl Vew
i = e Wiw

Therefore, we should model a wire as a lossy transmission
line if Inequalities (5)—(7) are satisfied; it should be mod-
eled as a distributed RC line, otherwise.

Note that, Inequality (5) can be reduced as follows by
discarding c?:

2
2.26wwivi
< 7.

7"5»’_1 <
(8)
b

Since r;_, < Z;, ringing occurs (see Figure 4(b)). If ringing
occurs, we may need to model a wire as a transmission line;
it should be modeled as a distributed RC line, otherwise.
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E. Delay Model

In this subsection, we introduce our delay model. Our
delay model is based on the RC model. However, since the
resistive loss causes voltage attenuation on a wire and the
discontinuity of impedance at a junction point incurs reflec-
tion, we need to modify the original RC model. First, as
given in Equation (1), the voltage attenuation coefficient ~;
along a lossy transmission line is less than 1 because the ex-
ponent of e is negative. Therefore, the effective resistance
is not equal to the total resistance of the wire, implying
that the pull-up resistance needs to be modified. Second,
due to voltage attenuation and reflection, the final voltage
may not equal Vpp, implying that we need to use an ap-
proximate method to correct the delay model. Third, due
to reflection, multiple round trips may be required to cor-
rectly transmit a signal, implying that the number of round
trips be considered in delay model. We describe in detail
how to modify the original RC model in the following.

The time for charging the capacitive load (defined at 50%
of the final value) of the lumped network equals In 2R,C’,
where R, is the pull-up resistance and Cf, is the total ca-
pacitive load [19], [20], [25]. According to [1], the current
that a lossless transmission line can supply is limited by
its characteristic impedance. As a result, looking from the
receiving end, the line behaves like a resistor with a value
Zy. In a lossy transmission line, not only its characteris-
tic impedance, but also its effective resistance supplies the
current. If the total resistance of a wire causes voltage at-
tenuation, the voltage at the receiving end becomes zero
and the effective resistance equals the total resistance. In
Section ITI-C, we know that the voltage at the receiving end
VB equals v; V4. This implies that there is only (1—+;) per-
centage of the total resistance for the line between nodes A
and B, 7,,1; /w;, causing voltage attenuation and supplying
current.

Consequently, the pull-up resistance R, for the transmis-
sion line is equal to the sum of the characteristic impedance
of the line, and partial resistance of the wire which causes
voltage attenuation. We have the pull-up resistance R, for
the line as follows:

rwli

Ry = Zi+(1-m)

9)

w;

Hence, the time t. for charging the capacitive load (at 50%
of the voltage of the first overshoot) of a transmission line
is given by

te. =

In2 <Zi +(1 =) W”) b (10)

w;
_Fwl; Vew
With o1, = Zi/(r?_l—l—Zi), v; =e Vv and the effect
of reflection, the voltage of the first overshoot, V},p, at the
receiving end after reflection equals 2v;Z;Vpp /(rt_, + Z;),
which may not equal Vpp. Thus, we can use an approxi-
mate method that divides ¢, by V},, to obtain the charging
time, tlc, for which the voltage equals 0.5Vpp. Therefore,

we have
£ = In2 (Zi+ (- by 2NiZi
c n ( +( '7) w; >Cz (T?_1+Zi>
b ﬁw b
= i (rt Y 4 11
n <Tz 1 + wz\/@) Cz ( )
where

In2 (691' + 20; (eei - 1))
2

ni =
fw lz \ éw

2v/ Ty
Since transmission line analysis always gives the correct

answer independent of the rise time of the driver, delay
is the sum of the time-of-flight ¢; along the wire and the
time ¢, for charging the capacitive load [1], [19]. Thus, the
propagation delay A(g;—1,g;) from the gate g;—1 to the
next gate g; in Figure 3 is given by

0, =

Yoo ) o)

where n is the number of required round trips to correctly
transmit a signal.

l;
A(gi—1,9:) = (2n—1) > + (7”?_1 +

F. Accuracy

We used SPICE to verify the accuracy of our delay
model. The experiments were performed on a signal wire
with no buffers. The parameters we used are listed in Ta-
ble I, where ¢y, ty, Tw, Cb, s, Ap, Rs, and Cr, are the unit
capacitance of a wire, the unit inductance of a wire, the
sheet resistance of a wire, the unit capacitance and resis-
tance of a gate, the area of minimum-size buffer, the driver
resistance, and the load capacitance, respectively. This set
of parameters is based on the 0.13 pm technology of the
SIA’99 roadmap [23].

In the first and second experiments, we used fixed wire
lengths (2.5 mm & 5 mm) with a variety of wire widths.
The wire widths for all experiments satisfy Inequalities (5)—
(7). Therefore, the wire widths ranged from 130 nm to 480
nm for the first experiment, and ranged from 130 nm to
530 nm for the second experiment. In Figure 5, the de-
lays are plotted as functions of the wire widths for SPICE,
Elmore, I&F, and our delay models, where I&F denotes
the delay model presented in [11]. Tables II and III show
the experimental results, where Width denotes the wire
width, SPICE denotes the delay calculated by SPICE,
Elmore denotes the delay calculated by the Elmore delay
model, E_Err denotes the percentage of the error between
SPICE and the Elmore delay model, I&F' denotes the de-
lay calculated by the I&F delay model, I&F_Err denotes
the percentage of the error between SPICE and the I&F
delay models, Ours denotes the delay calculated by our
delay model, and O_Err denotes the percentage of the er-
ror between SPICE and our delay models. The percentage
of the error is calculated by £z3EICE  100%, where X

SPICE
denotes Elmore, I&F, or Ours. Compared to SPICE and
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éw aw fw éb 'Fb Ab Rs C’L
(fF/pm?) | (pH/D) | (/D) | (fF/pm) | (kQ-pm) | (um?) | (@) | (fF)
0.06 1.667 0.043 1.17 3.6 6.76 | 250 | 234
TABLE I
RC PARAMETERS OF THE 0.13 pm TECHNOLOGY IN SIA’99.
based on the lossy transmission line of 2.5 mm (5 mm) gglay (ps) — sPicE lzg'ay (ps) —— spicE
long, the maximum error calculated by the Elmore delay - - Elmore 2 |-~ Eimore
model is -36.13% (-19.58%) and the average error is 26.86% ' CSws | o L8R
(12.05%), the maximum error calculated by the I&F delay 50
model is -6.23% (11.34%) and the average error is 2.98% 39 50
(4.70%), and the maximum error calculated by our delay "
model is 6.58% (12.38%) and the average error is 3.80% wire Length 0L Wire Length
4 5 6 (mm) 1 3 5 7 (mm)

(6-22%) . (a) 500 nm (b) 130 nm

In the third and fourth experiments, we used fixed wire
widths (500 nm & 130 nm) with a variety of wire lengths.
As mentioned earlier, the wire lengths for all experiments
satisfy Inequalities (5)—(7). Therefore, the wire lengths
ranged from 3.7 mm to 6.2 mm for the third experiment,
and ranged from 0.82 mm to 7 mm for the fourth experi-
ment. In Figure 6, the delays are plotted as functions of the
wire lengths for SPICE, Elmore, I&F, and our delay mod-
els. Tables IV and V show the experimental results, where
Length denotes the wire length. Compared to SPICE and
based on the lossy transmission line of 500 nm (130 nm)
wide, the maximum error calculated by the Elmore delay
model is -10.01% (-51.74%) and the average error is 4.11%
(30.55%), the maximum error calculated by the I&F delay
model is 10.99% (-14.19%) and the average error is 9.52%
(5.95%), and the maximum error calculated by our delay
model is 1.99% (20.31%) and the average error is 1.49%
(10.94%).

Delay (ps) Delay (ps)
a5 - — SPICE| 90f — SPICE

3 - - Elmore ! - - Elmore
g5 ThNR=e e I&F 700 T Zizima e 1&F

-- Ours -- Ours
25| 50
15 30
° Wire Width 10 Wire Width
150 250 350 450  (nm) 100 200 300 400 500  (nm)
(@) 2.5 mm (b) 5 mm

Fig. 5. Comparison of the delays calculated by SPICE, Elmore, I&F,
and our delay models for lossy transmission lines; (a) wire length
= 2.5 mm; (b) wire length = 5 mm.

According to the above four experiments, the average er-
ror of our delay model is 5.61%. Besides, based on the ob-
servation from the simulations, the delays computed from
our model are upper bounds of those obtained by SPICE,
which makes our model a reliable delay estimator under the
lossy transmission line model. The Elmore delay model,
however, has a significant negative percentage of errors.
Therefore, the Elmore delay model is not a suitable delay
estimator for the lossy transmission line model. Also, the
I&F delay model incurs positive as well as negative errors

Fig. 6. Comparison of the delays calculated by SPICE, Elmore, I&F,
and our delay models for lossy transmission lines; (a) wire width
= 500 nm; (b) wire width = 130 nm.

for different wire widths of the same length. Hence, al-
though the I&F delay model may be more accurate in some
corner cases, it is less suitable for delay estimation under
the lossy transmission line model when we apply wire sizing
to optimize a circuit. Often circuit designers prefer overes-
timating delay to underestimate, since an over-optimistic
estimation of delay may lead to timing violations. There-
fore, our delay model should be more suitable than the
Elmore and I&F delay models for practical applications.
Notice that the maximum inaccuracy of our delay model
occurs at the minimum wire size and the maximum wire
length. The reason for this phenomenon is that the total
resistance is comparable to the impedance. According to
Section III-D, the transmission line behavior is insignificant
for this situation.

IV. PROBLEM FORMULATION

This paper targets at minimizing delay by sizing circuit
components. We formulate this problem as follows:
e Input: A circuit path and the lower and upper bounds
for wire and buffer sizes.
e Objective: Determine the optimal wire and buffer sizes
for each segment in a circuit path, so that delay is mini-
mized.

We will reformulate this problem for a routing tree in
Section VI.

V. OpTiMAL WIRE AND BUFFER SIZING FOR A PATH
A. Reflection Considerations

In practice, designers typically desire to optimize per-
formance without generating undesirable reflections and
transmit a signal correctly within a limited number of
round trips. As the VLSI technology advances, the wire
length is increasing and the capacitance of a gate is de-
creasing, making the time-of-flight delay dominate the de-
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Width (nm) ]| SPICE (ps) | Elmore (ps) | E_Err (%) | I&F (ps) | I&F_Err (%) | Ours (ps) | O-Err (%)
130 42.23 26.97 -36.13 39.60 -6.23 45.20 6.58
180 38.20 24.55 -35.74 36.35 -4.85 40.51 5.69
230 36.02 23.74 -34.09 34.63 -3.86 37.85 4.84
280 34.69 23.69 -31.72 33.68 -2.92 36.15 4.03
330 33.81 24.04 -28.89 33.18 -1.86 34.96 3.28
380 33.19 24.65 -25.74 33.00 -0.58 34.08 2.61
430 32.74 25.41 -22.38 33.04 0.93 33.41 2.00
480 32.42 26.29 -18.90 33.27 2.61 32.88 1.39
[ Average || | | 26.86 ]| | 2.98 | | 3.80 [
TABLE II

EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE, I&IF7 AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE LENGTH =

2.5 mm.

Width (nm) || SPICE (ps) | Elmore (ps) | E_Err (%) | I&F (ps) | I&F_Err (%) | Ours (ps) | O-Err (%)
130 77.28 62.15 -19.58 75.18 -2.72 88.20 12.38
180 71.12 57.30 -19.44 70.14 -1.38 79.32 10.34
230 67.89 55.68 -17.98 67.93 0.06 74.30 8.63
280 65.98 55.58 -15.77 67.07 1.65 71.08 7.17
330 64.78 56.29 -13.11 66.98 3.40 68.83 5.88
380 64.03 57.50 -10.20 67.40 5.27 67.17 4.68
430 63.59 59.03 -7.17 68.19 7.23 65.90 3.50
480 63.38 60.78 -4.10 69.26 9.28 64.89 2.33
530 63.37 62.70 -1.06 70.56 11.34 64.08 1.10
[ Average | | [ 1205 | | 4.70 | [ 622
TABLE III

EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE LENGTH = 5

mm.

Length (mm) || SPICE (ps) | Elmore (ps) | E_Err (%) | I&F (ps) | I&F_Err (%) | Ours (ps) | O_Err (%)
3.7 46.53 41.87 -10.01 49.75 6.92 47.39 1.84
4.2 52.77 49.04 -7.06 57.14 8.29 53.82 1.99
4.7 59.28 56.70 -4.35 64.91 9.49 60.46 1.98
5.2 66.16 64.85 -1.98 73.07 10.44 67.32 1.75
5.7 73.55 73.49 -0.08 81.63 10.99 74.42 1.19
6.2 81.65 82.62 1.19 90.63 10.99 81.80 0.18
[ Average | | [ 411 ] | 9.52 | [ 149
TABLE IV

EXPERIMENTAL RESULTS FOR THE ACCURACY OF SPICE, ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE
WIDTH = 500 nm.

Length (mm) [| SPICE (ps) | Elmore (ps) | E_Err (%) | I&F (ps) | I&F_Err (%) | Ours (ps) | O_Err (%)
0.82 21.18 10.22 -51.74 18.17 -14.19 22.30 5.31
1 23.37 11.75 -49.71 20.58 -11.96 24.58 5.16
2 35.81 21.41 -40.21 33.25 -7.16 37.97 6.03
3 48.81 33.03 -32.33 46.13 -5.50 52.84 8.26
4 62.56 46.61 -25.50 59.98 -4.13 69.47 11.05
5 77.28 62.15 -19.58 75.18 -2.72 88.20 14.13
6 93.30 79.65 -14.63 91.95 -1.45 109.41 17.27
7 111.02 99.11 -10.73 110.46 -0.50 133.57 20.31
[ Average | | [ 3055 | 5.95 | [ 1094
TABLE V

EXPERIMENTAL RESULTS FOR THE ACCURACY OF SPICE, ELMORE, I&F, AND OUR DELAY MODELS FOR LOSSY TRANSMISSION LINES; WIRE
WIDTH = 130 nm.

lay. Therefore, we have the following theorem for the opti- Theorem 1: Considering reflections, the minimum delay
mal number of round trips for delay optimization. based on our model for a circuit section occurs when the
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number of round trips equals one.

Proof: With the gate and the wire models described
in Section ITI-A, we can divide a circuit path into sections,
and the sections can be handled one by one. Consider a
section shown in Figure 3. Suppose on the contrary that
the minimum delay for a circuit section occurs when the
number of round trips is larger than one. Let r?_l and Z;
be the values that result in a (local) minimal delay for the
circuit section when the number of round trips equals one,
and r%*, and Z; be the values that result in the globally
minimum delay (the number of round trips is larger than
one). According to Equation (12), we have the following:

L.
D1 = v—l + ;i (’I"?_l + Zz) Cf, (13)
and
l;
D, = (2k—1);+m(l 2l (14)
(3
where
In2 (69i + 26; (69 — 1))
ni = B
FwliVCw
0; —_—

Wiy

D; is the (local) minimal delay when the number of round
trips equals one, Dy, is the globally minimum delay, and &
is the number of round trips. Here, £ > 1. Since £ > 1 and
a wire may need to be modeled as a transmission line if
ringing occurs (see Section III-D), the first undershoot for
Dy, is smaller than Vg, implying that the first undershoot
for Dy, is smaller that for D;. The first undershoot can be
calculated as follows:

2z 11—z
Vi = e (1 )

where © = z; or x}, ; = Z;/rl |, and =} = ZF/rl*,
On one hand, if V,! (z) increases as x increases, z; > 7,
implying that r’*,Z; > r? ;Z*. On the other hand, if
V. (z) decreases as z increases, z; < z}, implying that
rb* Z; < rb_,Z*. To show that Dy > D;, we need to
discuss the following two cases:

Case 1. %%, Z; > rb | Z*:

Case 1.1 r¥* | >rb | and Z} = Z;:

The first and second terms of Equation (14) are always
larger than those of Equation (13). Thus, Dy > D;.

Case 1.2 ZF < Z; and r?*, =71} :

Subtracting Equation (14) from Equation (13), we have

(15)

l:

Dy—Dy = (2k-— 2)U—’ +ni(Zr = Z) b (16)
By Equation (7), we have
1—~2
r < ZZ (17)
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When v; = 1/e (~ 0.37), z can be as larger as 46672%1&

(= 2.57). By Inequalities (8) and (17), we have the range
of = as follows:

e? -1

1 _
<$<46—1—e2

(18)

Therefore, by Inequality (18), Inequality (16) can be rewrit-
ten as follows:

l; b e2—-1 b
D,—-D, > (2k7 — 2)1} +n; _ mri_l c;
(3
l;
> (2k — 2); +m; (rty =3 )
(3
l; .
> (2k— 2)1;_ — Qnir?_l(cf + Cpw;il;)
l; 2
2k —2)— — —n;— 1
> k-2 - o (19)

According to Inequality (6), the minimum of the right-hand
side of Inequality (19) occurs when 6; = 1, resulting in the
minimum value 0. 12 l;/v;. Thus, we have Dy > D;.
Case 1.3 r*, > b | and Z; < Z;:

According to Case 1.1 and Case 1.2, Dy > D;.

C’asel4 rb*1<r _, and ZF < Z;:

Let rb_, = yirt*, and Z; = y2 Z}F, where y;, y2 > 1. Since
r* Zi > 1, Z*, y1 < yo. The first undershoot caused
by ¥, and Z; is the same as that caused by r? | and Z;,
where ¥ | = ! | /yy and Z, = Z;/y:. Substituting r’
for r? | and Z, for Z;, the second term of Equation (13)
becomes smaller. Therefore, when the number of round
trips equals one, 2 | and Z, lead to a (local) minimal
delay for the circuit section, contradicting the assumption
that r’_, and Z; give a (local) minimal delay for the circuit
section. Thus, the case that r?*; < 7! | and Z} < Z; will
never happen.

Case 1.5 r’-’*l >rb and ZF > Z;:

Let r%* 1 = ysr? , and Z} = ysZ;, where y3, ys > 1.
Since rt* “1 7 > r’ ,Z¥, y3 > ya. Similar to Case 1.4,

Z*l and Z lead to the globally minimum delay, where
2 = b Jys and ZF = ZF/ya, contradicting the as-

sumptlon that rb ’1 and Z; + glve the globally minimum
delay. Thus, the case that r’*, > rf_ | and Z} > Z; will
never happen.

Case 2. rf*lZ <rl 127

Case 2.1 r¥*, <rb | and Z} = Z;:

Subtracting Equation (14) from Equation (13), we have

l;
Dy—Dy = (2k—2)= +n; (r¥" =10 ;)
(3
l;
> (2k—-2)— — 771'7“?_10?
U
l; .
> (2k-2)— — miri—y (Gwwili + ¢})
l; 1
2% —2)L — —p 2
> (2 )Ui 1.17711), (20)

According to Inequality (6), the minimum of the right-hand
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side of Inequality (20) occurs when 6; = 1, resulting in the
minimum value 2.06 [; /v, Thus, we have Dy > D;.

Case 2.2 Z; > Z; and r?* l—rf 1

The first and second terms of Equation (14) are always
larger than those of Equation (13). Thus, Dy > D;.

Case 2.8 r2* | <rb_, and Z; > Z;:

According to Case 2.1 and Case 2.2, Dy, > D;.

Case 2.4. rfil < r?_l and Z7F < Z;:

Let r? | = ysr?*, and Z; = ysZ}, where ys, ys > 1. Since
P Zs <1 7%, ys > ye. Similar to Case 1.4, 7 | and Z,
lead to a (local) minimum delay, where 2 | = r? | /yg and
Z; = Z,/ys, contradicting the assumption that r?_, and Z;
give a (local) minimal delay for the circuit section. Thus,
the case that r?*, <r?_, and Z; < Z; will never happen.

Case 2.5. r?*, >t | and Z} > Z;:

Let rf*l =yl and Z} = ysZ;, where y7, ys > 1.
Since r?*,Z; < rt_,Z*, yr < ys. Similar to Case 1.4,
rb*l and Z;‘ lead to the globally minimum delay, where

i = riy fyr and Z7
sumption that 72*, and Z* give the globally minimum
delay. Thus, the case that r’*, > rf_; and Z} > Z; will
never happen.

Therefore, the globally minimum delay occurs when the

number of round trips equals one. |
According to Theorem 1, we can rewrite Equation (12)
as follows:

= Z}/y7, contradicting the as-

A(gi-1,9i) = lin/Gwéw +ni <T?_1 + w@ > e, (21)
where
In2 (69i + 26, (69 — 1))
i =
2
0. _ TAwlz V éw

2Vl
B. Optimal Wire Sizing

In this section, we minimize the delay of a circuit path
by wire sizing. If all buffer sizes and locations are fixed, the

delay function of a circuit path from the source s to sink ¢
with n 4+ 1 segments (wy, ..., w,41) can be calculated as

follows:
n+1 T~
A(s,t) = Z Li/ twCoy + M1 <R5+ \/_> b
w1
Vi ) b
+ (3 z + i
iz:;n < ! wzvcw
Vi )
+ Mg D+ Cr, 22
1 < wn+1\/c_w g ( )
where
In2 (69i + 26; (69 — 1))
ni = B

Fuwliv/Cw
2w

Notice that Equation (22) is a posynomial function in
Wi, ..., Wpt1, implying that the wire-sizing problem has
a unique global minimum [2], [7]. Thus, we can apply any
efficient search algorithm, such as the well-known gradient
search procedure, to find a locally optimal solution and
thus the globally optimal solution.

Theorem 2: With fixed buffer sizes and locations, the
delay of a circuit path based on our model is a posynomial
function in wire sizes.

C. Optimal Buffer Sizing

In this section, we minimize the delay of a circuit path
by buffer sizing. If all wire sizes and buffer locations are
fixed, the delay function of a circuit path from the source
s to sink ¢ with n segments (g1, ..., gn) can be calculated

as follows:
n+1 /—
A(Sat) = Z l V uwcw + m <RS + ) Cbgl
wyy/¢
Vi > .
+ i = Cp3i
22;77 <gz 1 Wi Cw v9
fb V'aw >
+ —+—1Cp, 23
It (gn wn—i—l\/a r ( )
where
In2 (eai + 26; (ee — 1))
ni =
2
0, — Fwliv/Cw
;= wevow

Wiy

Notice that Equation (23) is also a posynomial function in
g1, -- - gn, implying that the buffer-sizing problem has a
unique global minimum [2], [7]. Thus, we can apply any
efficient search algorithm, such as the well-known gradient
search procedure, to find a locally optimal solution and
thus the globally optimal solution.

Theorem 3: With fixed wire sizes and buffer locations,
the delay of a circuit path based on our model is a posyn-
omial function in buffer sizes.

D. Optimal Simultaneous Wire and Buffer Sizing

In this section, we minimize the delay of a circuit path by
simultaneous wire and buffer sizing. If all buffer locations
are fixed, the delay function of a circuit path from the
source s to sink ¢ with 2n + 1 segments (w1, ..., Wpt1, g1,

-+, gn) is the same as Equation (23).

Notice that Equation (23) is also a posynomial function
in w1, ..., Wnt1, 91, ---, gn, implying that the simulta-
neous wire- and buffer-sizing problem has a unique global
minimum [2], [7]. Thus, we can apply any efficient search
algorithm, such as the well-known gradient search proce-
dure, to find a locally optimal solution and thus the globally
optimal solution.

Theorem 4: With fixed buffer locations, the delay of a
circuit path based on our model is a posynomial function
in wire and buffer sizes.
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VI. EXTENSIONS TO WIRE AND BUFFER SIZING FOR A
RoOUTING TREE

Given a routing tree, our objective is to minimize the
critical path delay under the constraints that the first un-
dershoot at each branching point is within the same signal
level, and the number of round trips required for correctly
transmitting a signal from the root to each load is at most
one. We formulate this problem as follows:

o Input: A routing tree and the lower and upper bounds
for wire and buffer sizes.

e Output: Determine the optimal wire and buffer sizes of
the tree, so that the critical path delay is minimized under
the constraints that the first undershoot is within the same
signal level, and the number of round trips is at most one.
We shall first discuss the problem on binary routing trees,
and then apply the technique to general routing trees.

A. Reflection Constraints

As shown in Figure 7, when a signal is sent out from the
source Rg and passes through the point 1 to the point 2,
a reflection may be generated at the point 2 and travels
backward to the point 1. When the reflection reaches the
point 1, the voltage at the point 1 will be interfered. Fur-
ther, if a reflection propagated down to one load is large
enough, it could cause logic failure at the load. To prevent

@ branching point
m load

Fig. 7. A signal is sent out from the point 0 and then passes through
the point 1 to the point 2.

from falsely triggering the load, the reflection coefficient at
each node must be large enough. For the example shown
in Figure 7, if the reflection coefficient 3 ¢ at the point 1
is larger, the reflections generated at the points 2 and 3
have smaller impact on the point 1. According to [1], the
reflection coefficient 3 o is given by

_ ZsZy— Z1 7 — 71 Zs
T 71 Zo+ 2125 + ZoZ3

Bio (24)
By Equation (24), p1,0 becomes larger when Z;Z, and
Z1Z3 are smaller. If (1 becomes larger, the transmis-
sion coefficient as; = %ZZ:JFM is smaller. When
a reflection generated at the point 2 travels backward to
the point 1, the impact of the reflection may be negligible
if as; is small enough. Similarly, the impact of the re-
flections generated at the point 3 on other points can also
be negligible. For each point ¢ of a routing tree, if the re-
flections generated at the point i have little interference at
other points, a signal can be correctly transmitted from the

i+1

Fig. 8. A signal is sent from the point ¢ — 1 to the point ¢, and then
i+ 1 and 7 + 2. The impact of the reflections generated at the
points 2 + 1 and 7 4+ 2 on the point ¢ may be negligible if o;41,;
and a;42,; are small enough.

source to the loads. In order to correctly transmit a signal
from the source of a routing tree to each load, the voltage
at each branching point must be larger than or equal to the
threshold voltage Vig within one round trip. As shown in
Figure 8, the following constraint must be satisfied for the
point ¢:

Qi 1,i%; (1 + Bii-1) > Vim.

Based on Inequality (25), the initial voltage at the point i
will be greater than or equal to the threshold voltage when
a signaf; from the point ¢ — 1 arrives at the point i. Let
e;,; denote the edge between the points ¢ and j, and 7 ;
represent the length of €i,j- Since Ti—1,i> Tii+1> and Tii+2
in Figure 8 could be different, the reflections generated at
those points will arrive at the point 7 at different times.
Without loss of generality, assume that 7 ;11 < 7440 <
Ti—1,i- The first reflection arrives at the point ¢ is sent out
from the point ¢ 4+ 1, next is from the point 7 + 2, and the
last is generated from the point ¢ — 1. In order to prevent
the reflections from changing the signal level at the point
i, we have the following constraints:

(25)

@i 1,i%e;_q; (1 + Bii—1+ Oéi,i+1’732i‘i+1ﬁi+1,i0¢i,i—l) >Via (26)

left-hand
side of (26)

left-hand
side of (27)

+ aifl,wei_l_iai,i+273i_i+2ﬁi+2,iai,i—1 >Viag (27)
toaio1,iv8,_y Bii-1Bi1,i(L+ Biio1) > V. (28)

If all constraints are satisfied, the reflection coefficient at

each point will be large enough, implying that the reflec-
tions generated at the point ¢ have little interference at
other points. As a result, a signal can be correctly trans-
mitted from the source to the loads in a tree.

B. Delay Calculation

Given a routing tree, we number its nodes level by level,
and from left to right on each level (see Figure 7). Let
m, L, and P denote the number of edges in the tree, the
set of loads, and the critical path, respectively. Similar to
Equtaion (12), the critical path delay of a routing tree from
the source s to a load t is given by

Als,) = Y (2niy— 1)%
e; ;EP b
+ > Gi(Ra+ Zij)e;,  (29)
ei,jEP,jE L

where

In2 (eﬂivﬂ' + 29 5 (e’gi’f - 1))
&Gj = 5
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9 _ fw'ri,j\/éw
S
w

c; denotes the capacitance of node i, v; ; and Z;; denote
the propagation velocity and the impedance of edge e; j,
respectively.

We used SPICE to verify the accuracy of our delay
model. The experiments were performed on a binary rout-
ing tree with no buffers (as shown in Figure 9). Table VI
shows the parameters and the experimental results, where
Rg denotes the driver resistance, Length and Width de-
note the length and width of each segment, Load denotes
the load capacitance of segments 2 and 3, SPICFE denotes
the delay calculated by SPICE, Elmore denotes the delay
calculated by the Elmore delay model, E_Err denotes the
percentage of the error between SPICE and the Elmore de-
lay model, Ours denotes the delay calculated by our delay
model, and O_Err denotes the percentage of the error be-
tween SPICE and our delay model. The percentage of the
error is calculated by % x 100%, where X denotes
Elmore or Ours.

Fig. 9. A binary routing tree without buffers.

We propose Algorithm Find-Critical-Path (summarized
in Figure 10) to find the critical path of a routing tree
T. First, we determine the number of round trips n;;
along edge e; ; required to correctly transmit a signal (Line
2). The number of round trips is the minimum n; ; that
satisfies the following constraint:

ni,j

2t—1 pt—1 §pt
Yol B B = Vi
t=1

After determining the number of round trips on each edge,
we label each edge with the weight n; ;7; ; (Line 3). The
critical path delay is the sum of edge weights along the
longest path. We then apply the depth first traversal to
compute the longest path in O(p) time, where p is the
number of nodes (Line 4).

C. General Routing Tree

We extend the technique discussed in previous subsec-
tions to general routing trees. As shown in Figure 11, as-
sume that the point ¢ has k children, and a signal is sent
out from the point ¢ — 1 and then propagates down to the
children of the point ¢. Without loss of generality, assume
that 741 < Tiip2 < o0 < Tiipk < Ti—1- To prevent
the reflections generated at the children from changing the

Algorithm: Find-Critical-Path(T')

Input: T-a routing tree

Output: the critical path

begin

1 for each edgee;;in T

2 Determine the number of round trips n; ; on e; ;.
3 Label €i,j with the weight N iTi,j-

4 Call a depth-first traversal to find the longest path.
5 return the longest path

end

Fig. 10. The Algorithm for determining the critical path of a tree.

i+1 i+2
Fig. 11. The point ¢ has k children, and the signal is sent from the
point ¢ — 1 to other points.

signal level at the point ¢, we have the following constraints:

Qi—1,i%e;_q (L4 Biji—1 + ai,i+17§i i+1Bi+1,i0<i,i—1 > Vi
left-hand side of

2
the preceding row tai1iVe; g Qe o Pit2iii-1 2 Vin

left-hand side of

the preceding row
left-hand side of
the preceding row

2
toQio1iYe; itk Bitk,i%,i—1 > Via

iitk
+ Oéi—l,i’Y::i_l Bii—1Bi—1,i(1+ Biyi—1) > Vin.

If all constraints are satisfied, the reflection coefficient at
each point will be large enough; thus, a signal can be cor-
rectly transmitted from the source to the loads in a general
routing tree.

D. Our Algorithm

Our objective is to minimize the critical path delay of
a routing tree under the constraints that a signal can be
correctly transmitted within one round trip and the re-
flection is sufficiently small to prevent from falsely trigger-
ing loads. Since the delay of a tree is dominated by the
critical path delay, our problem is to find the wire sizes
W = (wy,ws,---,w,) that minimize the critical path de-
lay A(s,t) of a tree subject to the constraints listed in
Inequalities (25)—(28). We can apply any search algorithm
such as the well-known gradient search procedure to find
a solution. Algorithm Minimize-Tree-Delay computes the
minimum delay of a routing tree (see Figure 12). It consists
of two stages. The first stage applies the procedure Find-
Crritical-Path to compute the critical path of a routing tree.
The second stage applies the gradient search procedure to
determine the wire sizes that minimize the critical path
delay. We repeat the two stages until no improvements on
the delay of the tree.
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Parameter Experimental Result
Experimental Segment | Rg | Length | Width | Load SPICE | Elmore | E_Err | Ours | O_Err
ID ID Q@ | mm) | (@m) | (fF) (ps) (ps) (%) | (ps) | (%)
1 10 1 1 - - - - - -
1 2 - 1 1 23.4 22.80 13.03 -42.87 | 21.68 -4.91
3 - 1 1 23.4 22.80 13.03 -42.87 | 21.68 -4.91
i 10 i 1 E E E E E E
2 2 - 0.9 1 23.4 21.80 11.41 -47.67 | 20.65 -5.27
3 - 0.7 1 23.4 19.70 10.79 -45.20 | 18.59 -5.62
1 10 1 1 = = = = = =
3 2 - 0.9 1.2 23.4 21.30 11.39 -46.55 | 20.39 -4.27
3 - 0.7 0.8 23.4 20.40 11.10 -45.60 | 18.97 -7.02
1 10 1.5 1 - - - - - -
4 2 - 1.3 1.2 23.4 30.80 21.11 -31.47 | 29.50 -4.21
3 - 1 0.8 23.4 29.00 20.39 -29.70 | 27.08 -6.63
1 10 2 1 = = = = = =
5 2 - 1.7 1.2 23.4 41.10 33.75 -17.89 | 38.63 -6.00
3 - 1.3 0.8 23.4 36.70 32.41 -11.69 | 35.20 -4.08
[ Average | | | | I | [ 36.15 ] [ 529 ]
TABLE VI
PARAMETERS AND EXPERIMENTAL RESULTS FOR THE ACCURACY OF ELMORE AND OUR DELAY MODELS ON A BINARY ROUTING TREE WITH NO
BUFFERS.
Delay (ps) Delay (ps)
Algorithm: Minimize-Tree-Delay(T') 60 90
Input: T-a routing tree.
Output: wire sizes W = (w1, w2, "+, wy) 50l o~ 80
begin 20
1 repeat 40
2 critical-path < Find-Critical-Path(T) 60
3 w < Gradient-Search-Procedure( critical-path) 30 # buffers > = # bufers
. . 2 4 6 8 4
4 until no improvement on the delay of T’ (8) 2.5 mm (b) 5 mm
end Delay (ps) Delay (ps)
160 — D1 27 :
- D2
Fig. 12. The Alogrithm for minimizing the delay of a tree. kY e D3
g grithm for minimizing y T 145 RS D4 | 240
x- D5
130 210
E. Simultaneous Wire and Buffer Sizing for a Routing Tree 180
115
. . # buffers # buffers
Based on the gate and wire models presented in Sec- 2 4 6 8 2 4 6 8

tion III, we can divide a buffered routing tree into subtrees.
In Figure 13, the routing tree is divided into three subtrees.
We can treat each subtree as a routing tree with no buffers,
and then obtain the reflection constraints for each subtree.
Thus, we can minimize the delay of a buffered routing tree
under the constraints that a signal can be correctly trans-
mitted within one round trip, and the first undershoot is
controlled to prevent from changing the signal level if the
reflection constraints for each subtree are satisfied.

2 /iK?}X

Fig. 13. A routing tree with buffers.

(c) 10 mm (d) 15 mm
14. Comparison of different optimization techniques; D1: simul-
taneous wire and buffer sizing; D2 & D3: wire sizing alone, and
the gate resistances are 90 Q and 60 €2, respectively; D4 & D5:
buffer sizing alone, and the wire widths are 0.3 um and 0.13 um,
respectively.

Fig.

VII. EXPERIMENTAL RESULTS

We used the nonlinear programming solver, the LINGO
6.0 system, on an Intel Pentium IT 400 MHz PC to compute
the optimal wire and buffer sizes in a circuit path. All
computations are less than 1 sec. The parameters used are
listed in Table I.

Given four lines of the lengths 2.5 mm, 5 mm, 10 mm,
and 15 mm, we inserted a specified number of buffers at
equidistance. Then, we applied wire and/or buffer sizing
to minimize delay. Listed in Tables VII, VIII, IX, and X,
Column D1 gives the delays and areas by sizing wires and



12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003
D1 D2 D3 D4 D5
# buffers || Delay Area Delay Area Delay Area Delay Area Delay Area
(ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?)
1 31.00 4.48 33.30 8.52 36.54 8.66 38.15 0.81 48.29 0.37
2 32.00 7.76 34.81 10.31 38.04 10.58 40.77 0.84 51.20 0.39
3 33.63 8.36 36.59 11.31 39.97 11.71 43.06 0.86 53.60 0.39
4 35.32 8.76 38.47 12.00 42.06 12.54 45.12 0.87 55.69 0.40
5 37.03 9.05 40.40 12.54 44.21 13.22 47.03 0.87 57.60 0.40
6 38.75 9.29 42.34 13.01 46.40 13.82 48.91 0.89 59.41 0.40
7 40.48 9.50 44.31 13.42 48.61 14.37 50.80 0.90 61.24 0.41
8 42.21 9.69 46.28 13.80 50.83 14.89 52.71 0.92 63.10 0.42
TABLE VII

EXPERIMENTAL RESULTS; D1: SIMULTANEOUS WIRE AND BUFFER SIZING; D2 & D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 (2

AND 60 2, RESPECTIVELY; D4 & D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 um AND 0.13 um, RESPECTIVELY; PATH LENGTH

= 2.5 mm.
D1 D2 D3 D4 D5
# bulffers Delay Area, Delay Area, Delay Area, Delay Area, Delay Area,
(ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kum?) | (ps) | (Kum?)
1 57.57 11.98 61.69 15.94 66.33 16.07 67.37 1.56 80.76 0.70
2 58.39 14.64 61.92 19.68 65.90 19.95 68.62 1.59 80.93 0.71
3 59.76 15.95 63.23 21.56 67.13 21.97 70.27 1.61 82.09 0.72
4 61.31 16.75 64.86 22.76 68.85 23.30 71.96 1.62 83.49 0.72
5 62.94 17.30 66.64 23.62 70.79 24.30 73.63 1.63 84.96 0.73
6 64.61 17.73 68.48 24.31 72.83 25.12 75.38 1.64 86.49 0.73
7 66.29 18.07 70.37 24.89 74.93 25.84 77.18 1.66 88.13 0.74
8 68.00 18.34 72.29 25.39 77.09 26.48 79.02 1.67 89.85 0.74
TABLE VIII

EXPERIMENTAL RESULTS; D1: SIMULTANEOUS WIRE AND BUFFER SIZING; D2 & D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 2

AND 60 €2, RESPECTIVELY; D4 & D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 um AND 0.13 pum, RESPECTIVELY; PATH LENGTH

=5 mm.
D1 D2 D3 D4 D5
# buffers Delay Area Delay Area Delay Area Delay Area Delay Area
(ps) | (Kpum?) | (ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kpm?)
1 116.01 19.33 126.88 28.94 138.03 29.07 132.84 3.06 158.16 1.35
2 112.97 26.38 119.17 37.43 125.81 37.70 127.72 3.09 146.04 1.36
3 113.14 29.77 118.20 41.48 123.71 41.88 126.76 3.11 142.37 1.37
4 114.10 31.76 118.78 43.88 123.93 44.42 127.07 3.12 141.28 1.37
5 115.39 33.01 119.98 45.49 125.05 46.17 127.97 3.14 141.27 1.38
6 116.83 33.93 121.45 46.70 126.57 47.51 129.23 3.15 141.90 1.38
7 118.36 34.63 123.08 47.65 128.31 48.59 130.69 3.17 142.92 1.39
8 119.94 35.19 124.81 48.43 130.20 49.52 132.28 3.18 144.19 1.40
TABLE IX

EXPERIMENTAL RESULTS; D1: SIMULTANEOUS WIRE AND BUFFER SIZING; D2 & D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 (2

AND 60 2, RESPECTIVELY; D4 & D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 um AND 0.13 um, RESPECTIVELY; PATH LENGTH

= 10 mm.

buffers simultaneously (denoted by SWBS); Column D2
(D3) gives the delays and areas by sizing wires alone (de-
noted by WS), with the resistance of each gate equal to 90
2 (60 Q); and Column D4 (D5) lists the delays and areas
by sizing buffers alone (denoted by BS) with the fixed wire
width of 0.3 pum (0.13 um), where the area is the sum of
wire area (the product of width and length) and buffer area
(the product of buffer size and the area of minimum-size
buffer). In Figures 14(a), (b), (c), and (d), the path delays
are plotted as functions of the number of buffers for the

five optimization techniques D1, D2, D3, D4, and D5.

As shown in Figure 7?7, the ranking of those techniques
for optimizing circuit performance, from the most effective
to the least, is given by SWBS >~ WS > BS. These phe-
nomena show the effectiveness of simultaneous wire and
buffer sizing under the transmission line model. Further,
the number of buffers required for performance optimiza-
tion is quite small for simultaneous wire and buffer sizing.
Since the delay is inversely proportional to the voltage at
the receiving end, and voltage attenuation increases as wire
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D1 D2 D3 D4 D5
# buffers Delay Area Delay Area Delay Area Delay Area Delay Area
(ps) | (Kpm?) | (ps) | (Kpm?) | (ps) | (Kum?) | (ps) | (Kpm?) | (ps) | (Kpm?)
1 189.68 19.98 233.42 39.94 270.83 40.07 215.65 4.60 259.48 2.00
2 171.05 35.27 183.03 54.21 195.01 54.48 192.62 4.59 220.81 2.01
3 168.41 41.63 176.29 60.73 184.54 61.13 186.61 4.61 207.95 2.02
4 168.17 45.28 174.66 64.52 181.60 65.06 184.54 4.63 202.47 2.02
5 168.79 47.61 174.70 67.02 181.10 67.69 184.09 4.65 200.05 2.03
6 169.81 49.23 175.48 68.81 181.66 69.63 184.49 4.66 199.21 2.04
7 171.05 50.45 176.65 70.19 182.77 71.14 185.35 4.68 199.24 2.05
8 172.43 51.39 178.04 71.30 184.20 72.38 186.50 4.69 199.79 2.05
TABLE X

EXPERIMENTAL RESULTS; D1: SIMULTANEOUS WIRE AND BUFFER SIZING; D2 & D3: WIRE SIZING ALONE, AND THE GATE RESISTANCES ARE 90 2
AND 60 2, RESPECTIVELY; D4 & D5: BUFFER SIZING ALONE, AND THE WIRE WIDTHS ARE 0.3 um AND 0.13 um, RESPECTIVELY; PATH LENGTH

= 15 mm.

length increases, inserting buffers can partition a wire into
sections of smaller length, which decreases the voltage at-
tenuation and also the path delay.

VIII. CONCLUSIONS

In this paper, we have presented an analytical model for
computing the delay of a wire under the transmission line
model. Extensive simulations have shown the high fidelity
of our model. Compared with previous works [8], [11], our
model leads to smaller average errors in delay estimation.
Based on our model, we have shown the property that the
minimum delay for a transmission line with reflection oc-
curs when the number of round trips is minimized (i.e.,
equals one). Besides, we have shown that the delay of a
circuit path is a posynomial function in wire and buffer
sizes under the transmission line model, implying that a
local optimum is equal to the global optimum. Thus, we
can determine the optimal wire and buffer sizes for per-
formance optimization by applying an efficient algorithm,
such as the gradient search procedure. Experimental re-
sults have shown the effectiveness of simultaneous wire and
buffer sizing in performance optimization under the trans-
mission line model.
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