Unit 8: Layout Compaction

- **Course contents**
 - Design rules
 - Symbolic layout
 - Constraint-graph compaction
- **Readings:** Chapter 6

Design Rules

- **Design rules:**
 restrictions on the mask patterns to increase the probability of successful fabrication.

- **Patterns and design rules are often expressed in λ rules.**

- **Most common design rules:**
 - minimum-width rules (valid for a mask pattern of a specific layer): (a).
 - minimum-separation rules (between mask patterns of the same layer or different layers): (b), (c).
 - minimum-overlap rules (mask patterns in different layers): (e).
Symbolic Layout

- **Geometric (mask) layout**: coordinates of the layout patterns (rectangles) are absolute (or in multiples of λ).
- **Symbolic (topological) layout**: only relations between layout elements (below, left to, etc) are known.
 - Single symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
 - The length, width or layer of a wire or another layout element might be left unspecified.
 - Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.
- The symbolic layout can work with a technology file that contains all design rule information for the target technology to produce the geometric layout.
Compaction and Its Applications

A compaction program or compactor generates layout at the mask level. It attempts to make the layout as dense as possible.

Applications of compaction:
- **Area minimization**: remove redundant space in layout at the mask level.
- **Layout compilation**: generate mask-level layout from symbolic layout.
- **Redesign**: automatically remove design-rule violations.
- **Rescaling**: convert mask-level layout from one technology to another.

Aspects of Compaction

Dimension:
- 1-dimensional (1D) compaction: layout elements only are moved or shrunk in one dimension (x or y direction).
 - Is often performed first in the x-dimension and then in the y-dimension (or vice versa).
- 2-dimensional (2D) compaction: layout elements are moved and shrunk simultaneously in two dimensions.

Complexity:
- 1D compaction can be done in polynomial time.
- 2D compaction is NP-hard.
1D Compaction: X Followed By Y

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ.
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the x direction, then the y direction, we have the layout size of $8\lambda \times 11\lambda$.

![Diagram](image1)

1D Compaction: Y Followed By X

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ.
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the y direction, then the x direction, we have the layout size of $11\lambda \times 8\lambda$.

![Diagram](image2)
2D Compaction

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ.
- Initially, the layout is $11\lambda \times 11\lambda$.
- After 2D compaction, the layout size is only $8\lambda \times 8\lambda$.

![Diagram showing 2D compaction]

- Since 2D compaction is NP-complete, most compactors are based on repeated 1D compaction.

Inequalities for Distance Constraints

- Minimum-distance design rules can be expressed as inequalities.

 $x_j - x_i \geq d_{ij}$.

- For example, if the minimum width is a and the minimum separation is b, then

 $x_2 - x_1 \geq a$

 $x_3 - x_2 \geq b$

 $x_3 - x_6 \geq b$
Constraint Graph

- The inequalities can be used to construct a constraint graph $G(V, E)$:
 - There is a vertex v_i for each variable x_i.
 - For each inequality $x_j - x_i \geq d_{ij}$ there is an edge (v_i, v_j) with weight d_{ij}.
 - There is an extra source vertex, v_0; it is located at $x = 0$; all other vertices are at its right.

- If all the inequalities express minimum-distance constraints, the graph is acyclic (DAG).
- The longest path in a constraint graph determines the layout dimension.

Maximum-Distance Constraints

- Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user wants a maximum wire width, maintains a wire connecting to a via, etc.
 - A maximum distance constraint gives an inequality of the form:
 $x_j - x_i \leq c_{ij}$ or $x_i - x_j \geq -c_{ij}$
 - Consequence for the constraint graph: backward edge (v_j, v_i) with weight $d_{ji} = -c_{ij}$; the graph is not acyclic anymore.

- The longest path in a constraint graph determines the layout dimension.
Longest-Path Algorithm for DAGs

\[
\text{longest-path}(G) \\
\{ \\
\text{for } (i \leftarrow 1; i \leq n; i \leftarrow i + 1) \\
\quad \rho_i \leftarrow \text{“in-degree of } v_i \text{”}; \\
\quad Q \leftarrow \{ v_0 \}; \\
\text{while } (Q \neq \emptyset) \{ \\
\quad \quad v_i \leftarrow \text{“any element from } Q \text{”}; \\
\quad \quad Q \leftarrow Q \setminus \{ v_i \}; \\
\quad \quad \text{for each } v_j \text{ “such that” } (v_i, v_j) \in E \{ \\
\quad \quad \quad x_j \leftarrow \max(x_j, x_i + d_{ij}); \\
\quad \quad \quad \rho_j \leftarrow \rho_j - 1; \\
\quad \quad \quad \text{if } (\rho_j \leq 0) \\
\quad \quad \quad \quad Q \leftarrow Q \cup \{ v_j \}; \\
\quad \} \\
\} \\
\text{main }() \\
\{ \\
\text{for } (i \leftarrow 0; i \leq n; i \leftarrow i + 1) \\
\quad x_i \leftarrow 0; \\
\text{longest-path}(G); \\
\} \\
\]

- \(\rho_i \): in-degree of \(v_i \).
- \(x_i \): longest-path length from \(v_0 \) to \(v_i \).

DAG Longest-Path Example

- Runs in a breadth-first search manner.
- \(\rho_i \): in-degree of \(v_i \).
- \(x_i \): longest-path length from \(v_0 \) to \(v_i \).
- Time complexity: \(O(V+E) \).

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>(\rho_3)</th>
<th>(\rho_4)</th>
<th>(\rho_5)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“not initialized”</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>({ v_0 })</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>({ v_1 })</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>({ v_2, v_3 })</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>({ v_3, v_5 })</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>({ v_5 })</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>({ v_4 })</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Longest-Paths In Cyclic Graphs

- Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.
- Two cases are distinguished:
 - There are positive cycles: No feasible solution for longest paths. We shall detect the cycles.
 - All cycles are negative: Polynomial-time algorithms exist.

The Liao-Wong Longest-Path Algorithm

- Split the edge set E of the constraint graph into two subsets:
 - Forward edges E_f: related to minimum-distance constraints.
 - Backward edges E_b: related to maximum-distance constraints.
- The graph $G(V, E_f)$ is acyclic; the longest distance for each vertex can be computed with the procedure “longest-path”.
- Repeat:
 - Update longest distances by processing the edges from E_b.
 - Call “longest-path” for $G(V, E_f)$.
- Worst-case time complexity: $O(E_b \times E_f)$.
Pseudo Code: The Liao-Wong Algorithm

\[
\begin{align*}
\text{count} & \leftarrow 0; \\
\text{for } (i \leftarrow 1; i \leq n; i \leftarrow i + 1) & \\
& \quad x_i \leftarrow -\infty; \\
& \quad x_0 \leftarrow 0; \\
& \quad \text{do } (\text{flag} \leftarrow 0; \\
& \quad \quad \text{longest-path}(G_f); \\
& \quad \quad \text{for each } (v_i, v_j) \in E_b \\
& \quad \quad \quad \text{if } (x_j < x_i + d_{ij}) \{ \\
& \quad \quad \quad \quad x_j \leftarrow x_i + d_{ij}; \\
& \quad \quad \quad \quad \text{flag} \leftarrow 1; \\
& \quad \quad \quad \} \\
& \quad \quad \text{count} \leftarrow \text{count} + 1; \\
& \quad \quad \text{if } (\text{count} > |E_b| \& \& \text{flag}) \} \\
& \quad \quad \text{error("positive cycle")}; \\
& \quad \text{while } (\text{flag}); \\
\end{align*}
\]

Example for the Liao-Wong Algorithm

- Two edge sets: forward edges \(E_f\) and backward edges \(E_b\).
- \(x_i\): longest-path length from \(v_0\) to \(v_i\).
- Call "longest-path" for \(G(V, E_i)\).
- Update longest distances by processing the edges from \(E_b\).
- Time complexity: \(O(E_b \times E_f)\).

<table>
<thead>
<tr>
<th>Step</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>(-\infty)</td>
<td>(-\infty)</td>
<td>(-\infty)</td>
<td>(-\infty)</td>
<td>(-\infty)</td>
</tr>
<tr>
<td>Forward 1</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Backward 1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Forward 2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Backward 2</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Forward 3</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Backward 3</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

\(x_1 < x_2 - 3\)

\(x_3 < x_4 - 1\)

\(x_5 = x_4 - 4\)
The Bellman-Ford Algorithm for Longest Paths

```
for (i ← 1; i ≤ n; i ← i + 1)
x_i ← −∞;  /* n: upper bound of vertex ID */
x_0 ← 0;  /* n+1: total # of vertices */
count ← 0;
S_1 ← {v_0};  /* current wave front */
S_2 ← ∅;  /* next wave front */
while (count ≤ n & S_1 ≠ ∅) {
    for each v_j ∈ S_1
        for each v_j “such that” (v_j, v_j) ∈ E
            if (x_j < x_i + d_{ij}) {
                x_j ← x_i + d_{ij};
                S_2 ← S_2 ∪ {v_j}
            }
    S_1 ← S_2;
    S_2 ← ∅;
    count ← count + 1;
}
if (count > n)
    error(“positive cycle”);
```

Example of Bellman-Ford for Longest Paths

- Repeated “wave front propagation.”
- S_1: the current wave front.
- x_i: longest-path length from v_0 to v_i.
- After k iterations, it computes the longest-path values for paths going through k-1 intermediate vertices.
- Time complexity: O(VE).
Longest and Shortest Paths

- Longest paths become shortest paths and vice versa when edge weights are multiplied by -1.
- Situation in DAGs: both the longest and shortest path problems can be solved in linear time.
- Situation in cyclic directed graphs:
 - All weights are positive: shortest-path problem in P (Dijkstra), no feasible solution for the longest-path problem.
 - All weights are negative: longest-path problem in P (Dijkstra), no feasible solution for the shortest-path problem.
 - No positive cycles: longest-path problem is in P.
 - No negative cycles: shortest-path problem is in P.

Remarks on Constraint-Graph Compaction

- Noncritical layout elements: Every element outside the critical paths has freedom on its best position => may use this freedom to optimize some cost function.
- Automatic jog insertion: The quality of the layout can further be improved by automatic jog insertion.

- Hierarchy: A method to reduce complexity is hierarchical compaction, e.g., consider cells only.
Constraint Generation

- The set of constraints should be irredundant and generated efficiently.
- An edge \((v_i, v_j)\) is redundant if edges \((v_i, v_k)\) and \((v_k, v_j)\) exist and \(w((v_i, v_j)) \leq w((v_i, v_k)) + w((v_k, v_j))\).
 - The minimum-distance constraints for \((A, B)\) and \((B, C)\) make that for \((A, C)\) redundant.
- Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity \(O(n \log n)\).

Appendix: Dijkstra’s Shortest-Path Algorithm

Dijkstra(G, w, s)
1. Initialize-Single-Source(G, s);
2. \(S \leftarrow \emptyset\);
3. \(Q \leftarrow V[G]\);
4. while \(Q \neq \emptyset\)
5. \(u \leftarrow\) Extract-Minimum(Q);
6. \(S \leftarrow S \cup \{u\};\)
7. for each vertex \(v \in Adj[u]\)
8. Relax(u, v, w);

- Combines a greedy and a dynamic-programming schemes.
- Works only when all edge weights are nonnegative.
- Executes essentially the same as Prim’s algorithm.
- Naive analysis: \(O(V^2)\) time by using adjacency lists.
- Can be done in \(O(E \log V)\) time (Q: a binary heap) or \(O(E + V \log V)\) time (Q: a Fibonacci heap)
Relaxation

Initialize-Single-Source(G, s)
1. for each vertex $v \in V(G)$
2. $d[v] \leftarrow \infty$;
 /* upper bound on the weight of a shortest path from s to v */
3. $\pi[v] \leftarrow \text{NIL}$; /* predecessor of v */
4. $d[s] \leftarrow 0$;

Relax(u, v, w)
1. if $d[v] > d[u]+w(u, v)$
2. $d[v] \leftarrow d[u]+w(u, v)$;
3. $\pi[v] \leftarrow u$;

- $d[v] \leq d[u] + w(u, v)$ after calling Relax(u, v, w).
- $d[v] \geq \delta(s, v)$ during the relaxation steps; once $d[v]$ achieves its lower bound $\delta(s, v)$, it never changes. ($\delta(s, v)$; shortest path distance from the source s to v.)
- Let $s \leadsto u \rightarrow v$ be a shortest path. If $d[u] = \delta(s, u)$ prior to the call Relax(u, v, w), then $d[v] = \delta(s, v)$ after the call.

Example: Dijkstra's Shortest-Path Algorithm

- $d[s]=0$ $\pi[s]=\text{NIL}$
- $d[u]=10$ $\pi[u]=s$
- $d[x]=5$ $\pi[x]=s$
- $d[y]=7$ $\pi[y]=x$
- $d[u]=8$ $\pi[u]=x$
- $d[v]=14$ $\pi[v]=x$
Shortest Path for Directed Acyclic Graphs (DAGs)

DAG-Shortest-Paths(G, w, s)
1. topologically sort the vertices of G;
2. Initialize-Single-Source(G, s);
3. for each vertex u taken in topologically sorted order
4. for each vertex v ∈ Adj[u]
5. Relax(u, v, w);

- Time complexity: $O(V+E)$ (adjacency-list representation).

Representations of Graphs: Adjacency List

- **Adjacency list**: An array Adj of $|V|$ lists, one for each vertex in V. For each $u \in V$, Adj[u] pointers to all the vertices adjacent to u.
- Advantage: $O(V+E)$ storage, good for **sparse** graph.
- Drawback: Need to traverse list to find an edge.
Topological Sort

- A topological sort of a directed acyclic graph (DAG) $G = (V, E)$ is a linear ordering of V s.t. $(u, v) \in E \Rightarrow u$ appears before v.

Topological-Sort(G)
1. call DFS(G) to compute finishing times $f[v]$ for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time complexity: $O(V+E)$ (adjacency list).

![Topological Sort Diagram]

Vertices are arranged from left to right in order of decreasing finishing times.

Depth-First Search (DFS)

DFS(G)
1. for each vertex $u \in V[G]$
2. $color[u] \leftarrow$ WHITE;
3. $\pi [u] \leftarrow$ NIL;
4. $time \leftarrow 0$;
5. for each vertex $u \in V[G]$
6. if $color[u] = WHITE$
7. DFS-Visit(u).

DFS-Visit(u)
1. $color[u] \leftarrow$ GRAY;
 /* white vertex u has just been discovered. */
2. $d[u] \leftarrow time \leftarrow time + 1$;
3. for each vertex $v \in Ad[u]$
 /* Explore edge (u,v).
4. if $color[v] = WHITE$
5. $\pi [v] \leftarrow u$;
6. DFS-Visit(v);
7. $color[u] \leftarrow$ BLACK;
 /* Blacken u; it is finished. */
8. $f[u] \leftarrow time \leftarrow time + 1$.

- $color[u]$: white (undiscovered) → gray (discovered) → black (explored: out edges are all discovered)
- $d[u]$: discovery time (gray);
- $f[u]$: finishing time (black);
- $\pi [u]$: predecessor.

Time complexity: $O(V+E)$ (adjacency list).
DFS Example

- *color*[u]: white \rightarrow gray \rightarrow black.
- Depth-first forest: $G_\pi = (V, E_\pi)$, $E_\pi = \{ (\pi[v], v) \in E \mid v \in V, \pi[v] \neq NIL \}$.

The Bellman-Ford Algorithm for Shortest Paths

Bellman-Ford(G, w, s)
1. Initialize-Single-Source(G, s);
2. for $i \leftarrow 1$ to $|V[G]|-1$
3. for each edge $(u, v) \in E[G]$
4. Relax(u, v, w);
5. for each edge $(u, v) \in E[G]$
6. if $d[v] > d[u] + w(u, v)$
7. return FALSE;
8. return TRUE

- Solves the case where *edge weights can be negative*.
- Returns FALSE if there exists a *negative-weight cycle* reachable from the source; TRUE otherwise.
- Time complexity: $O(VE)$.
Example for Bellman-Ford for \textbf{Shortest Paths}

relax edges in lexicographic order: \((u, v), (u, x), (u, y), \ldots, (z, u), (z, x)\)

(a) \hspace{1cm} (b) \hspace{1cm} (c)

(d) \hspace{1cm} (e)