Module #0:
Course Overview

A few general slides about the subject matter of this course.
10 slides, ½ lecture
What is Mathematics, really?

- It’s not just about numbers!
- Mathematics is much more than that:

> Mathematics is, most generally, the study of any and all absolutely certain truths about any and all perfectly well-defined concepts.

- But, the concepts can relate to numbers, symbols, visual patterns, or anything!

So, what’s this class about?

What are “discrete structures” anyway?

- **Discrete** (≠ “discreet”!) - Composed of distinct, separable parts. (Opposite of continuous.)

 \[\text{discrete:continuous :: digital:analog} \]

- **Structures** - objects built up from simpler objects according to a definite pattern.

- **Discrete Mathematics** - The study of discrete, mathematical objects and structures.
Discrete structures we’ll study

- Propositions
- Predicates
- Sets
- (Discrete) Functions
- Orders of Growth
- Algorithms
- Integers

- Proofs
- Summations
- Permutations
- Combinations
- Relations
- Graphs
- Trees

Relationships between structures

“\(\rightsquigarrow \) : \(\Rightarrow \) “Can be defined in terms of”

- Groups
- Operators
- Trees
- Programs
- Proofs
- Complex numbers
- Functions
- Graphs
- Propositions
- Real numbers
- Relations
- Strings
- Integers
- Sequences
- Natural numbers
- Matrices
- Natural numbers
- Strings
- Infinite ordinals
- Sets
- Vectors
- Bits
- Sequences
- Operators
Some Notations We’ll Learn

\[\neg p \quad p \land q \quad p \lor q \quad p \implies q \quad p \iff q \quad \forall x \ P(x) \]
\[\exists x \ P(x) \quad \{ a_1, \ldots, a_n \} \quad \mathbb{Z}, \mathbb{N}, \mathbb{R} \quad \because \quad \frac{[x]}{P(x)} \quad x \in S \]
\[\emptyset \quad S \subseteq T \quad |S| \quad A \cup B \quad \overline{A} \quad \bigcap_{i=1}^{n} A_i \]
\[f : A \to B \quad f^{-1}(x) \quad f \circ g \quad \lfloor x \rfloor \quad \sum_{a \in S} a_n \quad \prod_{i=1}^{n} a_i \]
\[O, \Omega, \Theta \quad \min, \max \quad a \nmid b \quad \text{gcd}, \text{lcm} \quad \text{mod} \quad a \equiv b \pmod{m} \]
\[(a_1, \ldots, a_n) \quad [a_n] \quad A^T \quad A \oplus B \quad A^{[n]} \quad \binom{n}{r} \]
\[C(n; n_1, \ldots, n_m) \quad p(E \mid F) \quad R' \quad \Delta \quad [a]_R \quad \deg^*(v) \]

Why Study Discrete Math?

- The basis of all of digital information processing: *Discrete manipulations of discrete structures represented in memory.*
- It’s the basic language and conceptual foundation of all of computer science.
- Discrete concepts are also widely used throughout math, science, engineering, economics, biology, etc., …
- A generally useful tool for rational thought!
Uses for Discrete Math in Computer Science

• Advanced algorithms & data structures
• Programming language compilers & interpreters.
• Computer networks
• Operating systems
• Computer architecture

• Database management systems
• Cryptography
• Error correction codes
• Graphics & animation algorithms, game engines
• Just about everything!

Course Outline (as per Rosen)

1. Logic (§1.1-1.4)
2. Proof methods (§1.5)
3. Set theory (§1.6-1.7)
4. Functions (§1.8)
5. Algorithms (§2.1)
6. Orders of Growth (§2.2)
7. Complexity (§2.3)
8. Number Theory (§2.4-2.6)
9. Matrices (§2.7)
10. Proof strategy (§3.1)
11. Sequences (§3.2)
12. Summations (§3.2)
13. Inductive proofs (§3.3)
14. Recursion (§3.4-3.5)
15. Combinatorics (ch. 4)
16. Probability (ch. 5)
17. Recurrences (§4.1-6.3)
18. Relations (ch. 7)
19. Graph Theory (chs. 8+9)
Topics Not Covered

Other topics we probably won’t get to this term:

21. Boolean circuits (ch. 10)
 - You’ll learn this in a digital logic course.

22. Models of computing (ch. 11)
 - Most of these are obsolete for engineering purposes now anyway

23. Linear algebra (not in Rosen, see Math dept.)
 - Matrix algebra, & general linear algebraic systems

23. Abstract algebra (not in Rosen, see Math dept.)
 - Groups, rings, fields, etc.

Course Objectives

• Upon completion of this course, the student should be able to: Think!
 – Check the validity of simple logical arguments.
 – Check the correctness of simple algorithms.
 – Creatively construct simple valid logical arguments.
 – Creatively construct simple correct algorithms.
 – Describe the definitions and properties of a variety of specific types discrete structures.
 – Correctly read, write and analyze various types of structures using standard notations.