Module #12 - Summations

University of Florida
Dept. of Computer & Information Science & Engineering

COT 3100
Applications of Discrete Structures
Dr. Michael P. Frank

Slides for a Course Based on the Text
Discrete Mathematics & Its Applications
(5th Edition)
by Kenneth H. Rosen

Module #12: Summations

Rosen 5th ed., §3.2
~19 slides, ~1 lecture
Module #12 - Summations

Summation Notation

- Given a series \(\{a_n\} \), an integer lower bound (or limit) \(j \geq 0 \), and an integer upper bound \(k \geq j \), then the summation of \(\{a_n\} \) from \(j \) to \(k \) is written and defined as follows:

\[
\sum_{i=j}^{k} a_i \equiv a_j + a_{j+1} + \ldots + a_k
\]

- Here, \(i \) is called the index of summation.

Generalized Summations

- For an infinite series, we may write:

\[
\sum_{i=j}^{\infty} a_i \equiv a_j + a_{j+1} + \ldots
\]

- To sum a function over all members of a set \(X = \{x_1, x_2, \ldots\} \):

\[
\sum_{x \in X} f(x) \equiv f(x_1) + f(x_2) + \ldots
\]

- Or, if \(X = \{x \mid P(x)\} \), we may just write:

\[
\sum_{P(x)} f(x) \equiv f(x_1) + f(x_2) + \ldots
\]
Module #12 - Summations

Simple Summation Example

\[\sum_{i=2}^{4} i^2 + 1 = (2^2 + 1) + (3^2 + 1) + (4^2 + 1) \]
\[= (4 + 1) + (9 + 1) + (16 + 1) \]
\[= 5 + 10 + 17 \]
\[= 32 \]

More Summation Examples

• An infinite series with a finite sum:
 \[\sum_{i=0}^{\infty} 2^{-i} = 2^0 + 2^{-1} + \ldots = 1 + \frac{1}{2} + \frac{1}{4} + \ldots = 2 \]

• Using a predicate to define a set of elements to sum over:
 \[\sum x^2 = 2^2 + 3^2 + 5^2 + 7^2 = 4 + 9 + 25 + 49 = 87 \]

 \(x \text{ is prime} \land x < 10 \)
Module #12 - Summations

Summation Manipulations

- Some handy identities for summations:

 \[\sum_x cf(x) = c \sum_x f(x) \]
 (Distributive law.)

 \[\sum_x f(x) + g(x) = \left(\sum_x f(x) \right) + \sum_x g(x) \]
 (Application of commutativity.)

 \[\sum_{i=j}^k f(i) = \sum_{i=j+n}^{k+n} f(i-n) \]
 (Index shifting.)

More Summation Manipulations

- Other identities that are sometimes useful:

 \[\sum_{i=j}^k f(i) = \left(\sum_{i=j}^m f(i) \right) + \sum_{i=m+1}^k f(i) \]
 if \(j \leq m < k \)
 (Series splitting.)

 \[\sum_{i=j}^k f(i) = \sum_{i=0}^{k-j} f(k-i) \]
 (Order reversal.)

 \[\sum_{i=0}^{2k} f(i) = \sum_{i=0}^k f(2i) + f(2i+1) \]
 (Grouping.)
Module #12 - Summations

Example: Impress Your Friends

- Boast, “I’m so smart; give me any 2-digit number \(n \), and I’ll add all the numbers from 1 to \(n \) in my head in just a few seconds.”
- \(I.e. \), Evaluate the summation: \[\sum_{i=1}^{n} i \]
- There is a simple closed-form formula for the result, discovered by Euler at age 12!

Leonhard Euler (1707-1783)

Module #12 - Summations

Euler’s Trick, Illustrated

- Consider the sum: \[1 + 2 + \ldots + \frac{n}{2} + \frac{(n/2)+1}{2} + \ldots + \frac{n-1}{2} + n \]
- \(n/2 \) pairs of elements, each pair summing to \(n+1 \), for a total of \((n/2)(n+1) \).
Symbolic Derivation of Trick

\[\sum_{i=1}^{k} \left(\sum_{r=0}^{i-1} r \right) = \sum_{i=1}^{k} i + \sum_{r=0}^{n-(k+1)} \left((n+(k+1)-i)\right) = \sum_{i=1}^{k} i + \sum_{r=0}^{n-k-1} \left((n-i)\right) = \sum_{i=1}^{k} i + \sum_{r=1}^{n+1-i} i + \sum_{r=1}^{n} i = \sum_{i=1}^{k} i + \sum_{i=1}^{n+1} i = \left(\sum_{i=1}^{k} i \right) + \left(\sum_{i=1}^{n+1} i \right) = \frac{k(k+1)}{2} + \frac{(n+1)(n+2)}{2} = \frac{k(k+1)}{2} + \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \]

Concluding Euler’s Derivation

\[\sum_{i=1}^{n} i = \left(\sum_{i=1}^{k} i \right) + \sum_{i=k+1}^{n} \left(\frac{n+1-i}{2} \right) = \left(\sum_{i=1}^{k} i \right) + \sum_{i=1}^{n-k} \left(i \right) = \frac{k(k+1)}{2} + \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \]

- So, you only have to do 1 easy multiplication in your head, then cut in half.
- Also works for odd \(n \) (prove this at home).
Example: Geometric Progression

- A geometric progression is a series of the form \(a, ar, ar^2, ar^3, \ldots, ar^k \), where \(a, r \in \mathbb{R} \).
- The sum of such a series is given by:
 \[
 S = \sum_{i=0}^{k} ar^i
 \]
- We can reduce this to closed form via clever manipulation of summations...

Geometric Sum Derivation

- Here we go...

\[
S = \sum_{i=0}^{n} ar^i
\]

\[
S = \sum_{i=0}^{n+1} ar^i - \sum_{i=0}^{n} ar^i = \sum_{i=0}^{n} ar^i = \sum_{i=0}^{n} ar^{i+1} + ar^{n+1} = \ldots
\]
Module #12 - Summations

Derivation example cont...

\[rS = \left(\sum_{i=1}^{n} ar^i \right) + ar^{n+1} = (ar^1 - ar^0) + \left(\sum_{i=1}^{n} ar^i \right) + ar^{n+1} \]

\[= ar^1 + \sum_{i=1}^{n} ar^i + ar^{n+1} - ar^0 \]

\[= \left(\sum_{i=0}^{n} ar^i \right) + \left(\sum_{i=1}^{n} ar^i \right) + ar^{n+1} - a \]

\[= \sum_{i=0}^{n} ar^i + a(r^{n+1} - 1) = S + a(r^{n+1} - 1) \]

Module #12 - Summations

Concluding long derivation...

\[rS = S + a(r^{n+1} - 1) \]

\[rS - S = a(r^{n+1} - 1) \]

\[S(r-1) = a(r^{n+1} - 1) \]

\[S = a \left(\frac{r^{n+1} - 1}{r-1} \right) \quad \text{when } r \neq 1 \]

When \(r = 1 \), \(S = \sum_{i=0}^{n} ar^i = \sum_{i=0}^{n} a^i = \sum_{i=0}^{n} a \cdot 1 = (n+1)a \)
Module #12 - Summations

Nested Summations

- These have the meaning you’d expect.
 \[
 \sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} \left(\sum_{j=1}^{3} ij \right) = \sum_{i=1}^{4} i \left(\sum_{j=1}^{3} j \right) = \sum_{i=1}^{4} i(1 + 2 + 3)
 \]
 \[
 = \sum_{i=1}^{4} 6i = 6 \sum_{i=1}^{4} i = 6(1 + 2 + 3 + 4)
 \]
 \[
 = 6 \cdot 10 = 60
 \]
- Note issues of free vs. bound variables, just like in quantified expressions, integrals, etc.

Module #12 - Summations

Some Shortcut Expressions

- Geometric series:
 \[
 \sum_{k=0}^{n} ar^k = a(r^{n+1} - 1)/(r - 1), r \neq 1
 \]
- Euler’s trick:
 \[
 \sum_{k=1}^{n} k = n(n+1)/2
 \]
- Quadratic series:
 \[
 \sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6
 \]
- Cubic series:
 \[
 \sum_{k=1}^{n} k^3 = n^2(n+1)^2/4
 \]
Module #12 - Summations

Using the Shortcuts

- Example: Evaluate \(\sum_{k=50}^{100} k^2 \).
 - Use series splitting.
 - Solve for desired summation.
 - Apply quadratic series rule.
 - Evaluate.

\[
\sum_{k=50}^{100} k^2 = \left(\sum_{k=1}^{49} k^2 \right) + \sum_{k=50}^{100} k^2
\]

\[
= \frac{100\cdot101\cdot201}{6} - \frac{49\cdot50\cdot99}{6}
\]

\[
= 338,350 - 40,425
\]

\[
= 297,925.
\]

Module #12 - Summations

Summations: Conclusion

- You need to know:
 - How to read, write & evaluate summation expressions like:
 \[
 \sum_{i=j}^{k} a_i \quad \sum_{i=j}^{\infty} a_i \quad \sum_{x \in X} f(x) \quad \sum_{P(x)} f(x)
 \]
 - Summation manipulation laws we covered.
 - Shortcut closed-form formulas, & how to use them.