Module #14: Recursion

Rosen 5th ed., §3.4-3.5
~18 slides, ~1 lecture
3.4: Recursive Definitions

- In induction, we prove all members of an infinite set have some property P by proving the truth for larger members in terms of that of smaller members.
- In recursive definitions, we similarly define a function, a predicate or a set over an infinite number of elements by defining the function or predicate value or set-membership of larger elements in terms of that of smaller ones.

Recursion

- *Recursion* is a general term for the practice of defining an object in terms of itself (or of part of itself).
- An inductive proof establishes the truth of $P(n+1)$ recursively in terms of $P(n)$.
- There are also recursive algorithms, definitions, functions, sequences, and sets.
Module #14 - Recursion

Recursively Defined Functions

- **Simplest case:** One way to define a function \(f : \mathbb{N} \to S \) (for any set \(S \)) or series \(a_n = f(n) \) is to:
 - Define \(f(0) \).
 - For \(n > 0 \), define \(f(n) \) in terms of \(f(0), \ldots, f(n-1) \).
- **E.g.:** Define the series \(a_n \): \(2^n \) recursively:
 - Let \(a_0 = 1 \).
 - For \(n > 0 \), let \(a_n = 2a_{n-1} \).

Another Example

- Suppose we define \(f(n) \) for all \(n \in \mathbb{N} \) recursively by:
 - Let \(f(0) = 3 \)
 - For all \(n \in \mathbb{N} \), let \(f(n+1) = 2f(n) + 3 \)
- **What are the values of the following?**
 - \(f(1) = 9 \) \(f(2) = 21 \) \(f(3) = 45 \) \(f(4) = 93 \)
Module #14 - Recursion

Recursive definition of Factorial

• Give an inductive definition of the factorial function \(F(n) : n! = 2 \cdot 3 \cdot \ldots \cdot n \).
 – Base case: \(F(0) = 1 \)
 – Recursive part: \(F(n) = n \cdot F(n-1) \).
 • \(F(1) = 1 \)
 • \(F(2) = 2 \)
 • \(F(3) = 6 \)

The Fibonacci Series

• The Fibonacci series \(f_{n=0} \) is a famous series defined by:
 \[
 f_0 : 0, \quad f_1 : 1, \quad f_{n=2} : f_{n-1} + f_{n-2}
 \]

Leonardo Fibonacci
1170-1250
Module #14 - Recursion

Inductive Proof about Fib. series

• **Theorem:** \(f_n < 2^n \). —— Implicitly for all \(n \in \mathbb{N} \)

• **Proof:** By induction.

Base cases:

\[
\begin{align*}
 f_0 &= 0 < 2^0 = 1 \\
 f_1 &= 1 < 2^1 = 2
\end{align*}
\]

Inductive step: Use 2nd principle of induction (strong induction). Assume \(\forall k < n, \ f_k < 2^k \).

Then \(f_n = f_{n-1} + f_{n-2} \) is

\[
< 2^{n-1} + 2^{n-2} < 2^{n-1} + 2^{n-1} = 2^n. \quad \square
\]

Module #14 - Recursion

Recursively Defined Sets

• An infinite set \(S \) may be defined recursively, by giving:
 – A small finite set of *base* elements of \(S \).
 – A rule for constructing new elements of \(S \) from previously-established elements.
 – Implicitly, \(S \) has no other elements but these.

• **Example:** Let \(3 \in S \), and let \(x + y \in S \) if \(x, y \in S \).
 What is \(S' \)?
Module #14 - Recursion

The Set of All Strings

- Given an alphabet S, the set S^* of all strings over S can be recursively defined as:
 - $e \in S^*$ (e: “”, the empty string)
 - $w \in S^* \land x \in S \implies wx \in S^*$

- Exercise: Prove that this definition is equivalent to our old one: $\Sigma^* \equiv \bigcup_{n \in \mathbb{N}} \Sigma^n$

Recursive Algorithms (§3.5)

- Recursive definitions can be used to describe algorithms as well as functions and sets.
- Example: A procedure to compute a^n.

```plaintext
procedure power(a ≠ 0: real, n ∈ N)
  if n = 0 then return 1
  else return a · power(a, n - 1)
```

(c)2001-2002, Michael P. Frank
Module #14 - Recursion

Efficiency of Recursive Algorithms

- The time complexity of a recursive algorithm may depend critically on the number of recursive calls it makes.
- Example: Modular exponentiation to a power \(n \) can take \(\log(n) \) time if done right, but linear time if done slightly differently.
 - Task: Compute \(b^n \mod m \), where \(m=2 \), \(n=0 \), and \(1=b<m \).

Module #14 - Recursion

Modular Exponentiation Alg. #1

Uses the fact that \(b^n = b \cdot b^{n-1} \) and that
\[x \cdot y \mod m = x \cdot (y \mod m) \mod m. \]
(Prove the latter theorem at home.)

procedure mpower(b=1,n=0,m>b \in \mathbb{N})
{Returns \(b^n \mod m. \})
if n=0 then return 1 else
return \((b \cdot mpower(b,n-1,m)) \mod m \)

Note this algorithm takes \(T(n) \) steps!
Module #14 - Recursion

Modular Exponentiation Alg. #2

- Uses the fact that $b^{2k} = b^{k \cdot 2} = (b^k)^2$.

procedure mpower(b,n,m) {same signature}
 if $n=0$ then return 1
 else if $2 | n$ then
 return mpower(b,n/2,m) $^2 \mod m$
 else return $(mpower(b,n-1,m) \cdot b) \mod m$

What is its time complexity? T($\log_2 n$) steps

A Slight Variation

Nearly identical but takes $T(n)$ time instead!

procedure mpower(b,n,m) {same signature}
 if $n=0$ then return 1
 else if $2 | n$ then
 return $(mpower(b,n/2,m) \cdot mpower(b,n/2,m)) \mod m$
 else return $(mpower(b,n-1,m) \cdot b) \mod m$

The number of recursive calls made is critical.
Module #14 - Recursion

Recursive Euclid’s Algorithm

```plaintext
procedure gcd(a,b∈N)
  if a = 0 then return b
  else return gcd(b mod a, a)
```

- Note recursive algorithms are often simpler to code than iterative ones…
- However, they can consume more stack space, if your compiler is not smart enough.

Merge Sort

```plaintext
procedure sort(L = ℓ₁,…, ℓₙ)
  if n>1 then
    m := ⌊n/2⌋ {this is rough ½-way point}
    L := merge(sort(ℓ₁,…, ℓₘ), sort(ℓₘ₊₁,…, ℓₙ))
  return L
```

- The merge takes $T(n)$ steps, and merge-sort takes $T(n \log n)$.
Module #14 - Recursion

Merge Routine

procedure merge(A, B: sorted lists)
 L = empty list
 i:=0, j:=0, k:=0
 while i<|A| ∧ j<|B| { |A| is length of A}
 if i=|A| then L_k := B_j; j := j + 1
 else if j=|B| then L_k := A_i; i := i + 1
 else if A_i < B_j then L_k := A_i; i := i + 1
 else L_k := B_j; j := j + 1
 k := k+1
 return L Takes T(|A|+|B|) time