Module #17 - Recurrences

University of Florida
Dept. of Computer & Information Science & Engineering
COT 3100
Applications of Discrete Structures
Dr. Michael P. Frank

Slides for a Course Based on the Text
Discrete Mathematics & Its Applications
(5th Edition)
by Kenneth H. Rosen

2004/3/2 (c)2001 -2003, Michael P. Frank

Module #17: Recurrence Relations

Rosen 5th ed., 6.1-6.3
~29 slides, ~1.5 lecture

2004/3/2 (c)2001-2003, Michael P. Frank

(c)2001-2002, Michael P. Frank
6.1: Recurrence Relations

- A recurrence relation (R.R., or just recurrence) for a sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one or more previous elements \(a_0, \ldots, a_{n-1} \) of the sequence, for all \(n=n_0 \).
 - A recursive definition, without the base cases.
- A particular sequence (described non-recursively) is said to solve the given recurrence relation if it is consistent with the definition of the recurrence.
 - A given recurrence relation may have many solutions.

Recurrence Relation Example

- Consider the recurrence relation
 \[
a_n = 2a_{n-1} - a_{n-2} \quad (n=2).
\]
- Which of the following are solutions?
 \[
 a_n = 3n \quad \text{Yes}

 a_n = 2^n \quad \text{No}

 a_n = 5 \quad \text{Yes}
 \]
Module #17 - Recurrences

Example Applications

- Recurrence relation for growth of a bank account with $P\%$ interest per given period:
 \[M_n = M_{n-1} + \frac{P}{100}M_{n-1} \]

- Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.
 \[P_n = P_{n-1} + P_{n-2} \quad \text{(Fibonacci relation)} \]

Solving Compound Interest RR

- \[M_n = M_{n-1} + \frac{P}{100}M_{n-1} \]
 \[= (1 + \frac{P}{100}) M_{n-1} \]
 \[= r M_{n-1} \quad \text{(let } r = 1 + \frac{P}{100}) \]
 \[= r (r M_{n-2}) \]
 \[= r \cdot r \cdot (r M_{n-3}) \quad \text{...and so on to...} \]
 \[= r^n M_0 \]
Module #17 - Recurrences

Tower of Hanoi Example

• Problem: Get all disks from peg 1 to peg 2.
 – Only move 1 disk at a time.
 – Never set a larger disk on a smaller one.

Hanoi Recurrence Relation

• Let $H_n = \# \text{ moves for a stack of } n \text{ disks.}$
• Optimal strategy:
 – Move top $n-1$ disks to spare peg. (H_{n-1} moves)
 – Move bottom disk. (1 move)
 – Move top $n-1$ to bottom disk. (H_{n-1} moves)
• Note: $H_n = 2H_{n-1} + 1$
Module #17 - Recurrences

Solving Tower of Hanoi RR

\[H_n = 2^2 (H_{n-2} + 1) + 1 = 2^2 H_{n-2} + 2 + 1 \]
\[= 2^2(2 (H_{n-3} + 1) + 2 + 1) = 2^3 H_{n-3} + 2^2 + 2 + 1 \]
\[\vdots \]
\[= 2^{n-1} H_1 + 2^{n-2} + \ldots + 2 + 1 \]
\[= 2^{n-1} + 2^{n-2} + \ldots + 2 + 1 \]
\[= \sum_{i=0}^{n-1} 2^i \]
\[= 2^n - 1 \]

§ 6.2: Solving Recurrences

- A linear homogeneous recurrence of degree \(k \) with constant coefficients ("k-LiHoReCoCo") is a recurrence of the form
 \[a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k}, \]
 where the \(c_i \) are all real, and \(c_k \neq 0 \).
- The solution is uniquely determined if \(k \) initial conditions \(a_0 \ldots a_{k-1} \) are provided.
Module #17 - Recurrences

Solving LiHoReCoCos

• Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.
• This requires the characteristic equation:
 $$r^n = c_1 r^{n-1} + \ldots + c_k r^{n-k}, \text{ i.e., }$$
 $$r^k - c_1 r^{k-1} - \ldots - c_k = 0$$
• The solutions (characteristic roots) can yield an explicit formula for the sequence.

Module #17 - Recurrences

Solving 2-LiHoReCoCos

• Consider an arbitrary 2-LiHoReCoCo:
 $$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
• It has the characteristic equation (C.E.):
 $$r^2 - c_1 r - c_2 = 0$$
• Thm. 1: If this CE has 2 roots $r_1 \neq r_2$, then
 $$a_n = a_1 r_1^n + a_2 r_2^n \text{ for } n=0$$
 for some constants a_1, a_2.
Example

- Solve the recurrence $a_n = a_{n-1} + 2a_{n-2}$ given the initial conditions $a_0 = 2$, $a_1 = 7$.
- Solution: Use theorem 1
 - $c_1 = 1$, $c_2 = 2$
 - Characteristic equation:
 $r^2 - r - 2 = 0$
 - Solutions: $r = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm 3}{2}$, so $r = 2$ or $r = -1$.
 - So $a_n = a_1 2^n + a_2 (-1)^n$.

Example Continued…

- To find a_1 and a_2, solve the equations for the initial conditions a_0 and a_1:
 - $a_0 = 2 = a_1 2^0 + a_2 (-1)^0$
 - $a_1 = 7 = a_1 2^1 + a_2 (-1)^1$
 - Simplifying, we have the pair of equations:
 $2 = a_1 + a_2$
 $7 = 2a_1 - a_2$
 - which we can solve easily by substitution:
 $a_2 = 2 - a_1$; $7 = 2a_1 - (2 - a_1) = 3a_1 - 2$;
 $9 = 3a_1$; $a_1 = 3$; $a_2 = 1$.
- Final answer: $a_n = 3 \cdot 2^n - (-1)^n$
 - Check: $\{a_{n=0}\} = 2, 7, 11, 25, 47, 97 \ldots$
Module #17 - Recurrences

The Case of Degenerate Roots

• Now, what if the C.E. \(r^2 - c_1 r - c_2 = 0 \) has only 1 root \(r_0 \)?

• **Theorem 2:** Then,
 \[a_n = a_1 r_0^n + a_2 n r_0^n, \]
 for all \(n=0 \), for some constants \(a_1, a_2 \).

Module #17 - Recurrences

\(k \)-LiHoReCoCos

• Consider a \(k \)-LiHoReCoCo:

• It’s C.E. is:
 \[r^k - \sum_{i=1}^{k} c_i r^{k-i} = 0 \]

• **Thm.3:** If this has \(k \) distinct roots \(r_p \) then the solutions to the recurrence are of the form:

 \[a_n = \sum_{i=1}^{k} \alpha_i r_i^n \]
 for all \(n=0 \), where the \(a_i \) are constants.
Module #17 - Recurrences

Degenerate \(k \)-LiHoReCoCos

- Suppose there are \(t \) roots \(r_1, \ldots, r_t \) with multiplicities \(m_1, \ldots, m_r \). Then:

\[
a_n = \sum_{i=1}^{t} \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n
\]

for all \(n=0 \), where all the \(a \) are constants.

Module #17 - Recurrences

LiNoReCoCos

- Linear nonhomogeneous RRs with constant coefficients may (unlike LiHoReCoCos) contain some terms \(F(n) \) that depend only on \(n \) (and not on any \(a_i \)'s). General form:

\[
a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k} + F(n)
\]

The associated homogeneous recurrence relation (associated LiHoReCoCo).
Solutions of LiNoReCoCos

- A useful theorem about LiNoReCoCos:
 - If $a_n = p(n)$ is any particular solution to the LiNoReCoCo
 $$a_n = \sum_{i=1}^{k} c_i a_{n-i} + F(n)$$
 - Then all its solutions are of the form:
 $$a_n = p(n) + h(n),$$
 where $a_n = h(n)$ is any solution to the associated homogeneous RR
 $$a_n = \sum_{i=1}^{k} c_i a_{n-i}$$

Example

- Find all solutions to $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?
 - Notice this is a 1-LiNoReCoCo. Its associated 1-LiHoReCoCo is $a_n = 3a_{n-1}$, whose solutions are all of the form $a_n = a3^n$. Thus the solutions to the original problem are all of the form $a_n = p(n) + a3^n$. So, all we need to do is find one $p(n)$ that works.
Module #17 - Recurrences

Trial Solutions

- If the extra terms $F(n)$ are a degree-t polynomial in n, you should try a degree-t polynomial as the particular solution $p(n)$.
- This case: $F(n)$ is linear so try $a_n = cn + d$.

\[
\begin{align*}
 cn + d &= 3(c(n-1) + d) + 2n & \text{(for all } n) \\
 -2c+2n + (3c-2d) &= 0 & \text{(collect terms)}
\end{align*}
\]

So $c = -1$ and $d = -3/2$. So $a_n = -n - 3/2$ is a solution.
- Check: $a_{n=1} = \{-5/2, -7/2, -9/2, \ldots\}$

Finding a Desired Solution

- From the previous, we know that all general solutions to our example are of the form:

\[
a_n = -n - 3/2 + a3^n.
\]

Solve this for a for the given case, $a_1 = 3$:

\[
3 = -1 - 3/2 + a3^1 \\
a = 11/6
\]

- The answer is $a_n = -n - 3/2 + (11/6)3^n$
Main points so far:

- Many types of problems are solvable by reducing a problem of size n into some number a of independent subproblems, each of size $\leq \lceil n/b \rceil$, where $a \geq 1$ and $b > 1$.
- The time complexity to solve such problems is given by a recurrence relation:

$$T(n) = aT(\lceil n/b \rceil) + g(n)$$

Divide+Conquer Examples

- **Binary search**: Break list into 1 subproblem (smaller list) (so $a=1$) of size $\leq \lceil n/2 \rceil$ (so $b=2$).
 - So $T(n) = T(\lceil n/2 \rceil) + c$ (since $g(n) = c$ constant)
- **Merge sort**: Break list of length n into 2 sublists ($a=2$), each of size $\leq \lceil n/2 \rceil$ (so $b=2$), then merge them, in $g(n) = T(n)$ time.
 - So $T(n) = T(\lceil n/2 \rceil) + cn$ (roughly, for some c)
Module #17 - Recurrences

Fast Multiplication Example

- The ordinary grade-school algorithm takes $T(n^2)$ steps to multiply two n-digit numbers.
 - This seems like too much work!
- So, let’s find an asymptotically faster multiplication algorithm!
- To find the product cd of two $2n$-digit base-b numbers, $c=(c_{2n-1}c_{2n-2}...c_0)_b$ and $d=(d_{2n-1}d_{2n-2}...d_0)_b$, first, we break c and d in half:
 - $c = b^nC_1 + C_0$
 - $d = b^nD_1 + D_0$
 - and then... (see next slide)

Module #17 - Recurrences

Derivation of Fast Multiplication

\[cd = (b^nC_1 + C_0)(b^nD_1 + D_0) \]
\[= b^{2n}C_1D_1 + b^n(C_1D_0 + C_0D_1) + C_0D_0 \]
\[= b^{2n}C_1D_1 + C_0D_0 + \]
\[b^n(C_1D_0 + C_0D_1 + C_0D_1 - C_1D_0) \]
\[= (b^{2n} + b^n(C_1D_1 + (b^n + 1)C_0D_1) + \]
\[b^n(C_1D_0 - C_1D_1 - C_0D_0 + C_0D_1) \]
\[= (b^{2n} + b^n(C_1D_1 + (b^n + 1)C_0D_1) + \]
\[b^n(C_1 - C_0)(D_1 - D_0) \]

Three multiplications, each with n-digit numbers
Module #17 - Recurrences

Recurrence Rel. for Fast Mult.

Notice that the time complexity $T(n)$ of the fast multiplication algorithm obeys the recurrence:

- $T(2n) = 3T(n) + \Theta(n)$

Time to do the needed adds & subtracts of n-digit and $2n$-digit numbers

- $T(n) = 3T(n/2) + \Theta(n)$

So $a = 3$, $b = 2$.

Module #17 - Recurrences

The Master Theorem

Consider a function $f(n)$ that, for all $n = b^k$ for all $k \in \mathbb{Z}^+$, satisfies the recurrence relation:

$$f(n) = af(n/b) + cn^d$$

with $a = 1$, integer $b > 1$, real $c > 0$, $d = 0$. Then:

$$f(n) \in \begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n\log_a n) & \text{if } a > b^d
\end{cases}$$
Module #17 - Recurrences

Master Theorem Example

• Recall that complexity of fast multiply was:
 \[T(n) = 3T(n/2) + \Theta(n) \]
• Thus, \(a = 3, b = 2, d = 1 \). So \(a > b^d \), so case 3 of the master theorem applies, so:
 \[T(n) = O(n^{\log_b a}) = O(n^{\log_2 3}) \]
which is \(O(n^{1.58...}) \), so the new algorithm is strictly faster than ordinary \(T(n^2) \) multiply!

Module #17 - Recurrences

6.4: Generating Functions

• Not covered this semester.
Module #17 - Recurrences

§ 6.5: Inclusion-Exclusion

- This topic will have been covered out-of-order already in Module #15, Combinatorics.
- As for Section 6.6, applications of Inclusion-Exclusion: No slides yet.