Module #2: Basic Proof Methods

Rosen 5th ed., §1.5 & 3.1
29 slides, ~2 lectures
Module #2 - Proofs

Nature & Importance of Proofs

• In mathematics, a proof is:
 – a correct (well-reasoned, logically valid) and complete (clear, detailed) argument that rigorously & undeniably establishes the truth of a mathematical statement.
• Why must the argument be correct & complete?
 – Correctness prevents us from fooling ourselves.
 – Completeness allows anyone to verify the result.
• In this course (& throughout mathematics), a very high standard for correctness and completeness of proofs is demanded!!

Overview of §§ 1.5 & 3.1

• Methods of mathematical argument (i.e., proof methods) can be formalized in terms of rules of logical inference.
• Mathematical proofs can themselves be represented formally as discrete structures.
• We will review both correct & fallacious inference rules, & several proof methods.
Module #2 - Proofs

Applications of Proofs

• An exercise in clear communication of logical arguments in any area of study.
• The fundamental activity of mathematics is the discovery and elucidation, through proofs, of interesting new theorems.
• Theorem-proving has applications in program verification, computer security, automated reasoning systems, etc.
• Proving a theorem allows us to rely upon its correctness even in the most critical scenarios.

Proof Terminology

• Theorem
 – A statement that has been proven to be true.
• Axioms, postulates, hypotheses, premises
 – Assumptions (often unproven) defining the structures about which we are reasoning.
• Rules of inference
 – Patterns of logically valid deductions from hypotheses to conclusions.
Module #2 - Proofs

More Proof Terminology

- **Lemma** - A minor theorem used as a stepping-stone to proving a major theorem.
- **Corollary** - A minor theorem proved as an easy consequence of a major theorem.
- **Conjecture** - A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)
- **Theory** – The set of all theorems that can be proven from a given set of axioms.

Module #2 - Proofs

Graphical Visualization

A Particular Theory

The Axioms of the Theory

Various Theorems

A proof
Module #2 - Proofs

Inference Rules - General Form

• **Inference Rule** –
 – Pattern establishing that if we know that a set of *antecedent* statements of certain forms are all true, then a certain related *consequent* statement is true.

 - **antecedent 1**
 - **antecedent 2** …
 - **∴ consequent**

 “∴” means “therefore”

Module #2 - Proofs

Inference Rules & Implications

• Each logical inference rule corresponds to an implication that is a tautology.

 uganda. 1
 - **antecedent 2** …
 - **∴ consequent**

• Corresponding tautology:

 \((\text{ante. } 1) \land (\text{ante. } 2) \land \ldots) \rightarrow \text{consequent}\)
Module #2 - Proofs

Some Inference Rules

- Rule of Addition
 \[\frac{p}{\therefore p \lor q} \]
- Rule of Simplification
 \[\frac{p \land q}{\therefore p} \]
- Rule of Conjunction
 \[\frac{p}{q} \quad \frac{q}{\therefore p \land q} \]

Module #2 - Proofs

Modus Ponens & Tollens

- Rule of *modus ponens* (a.k.a. *law of detachment*)
 \[\frac{p}{p \rightarrow q} \quad \frac{p \rightarrow q}{\therefore q} \]

- Rule of *modus tollens*
 \[\frac{\neg q}{p \rightarrow q} \quad \frac{p \rightarrow q}{\therefore \neg p} \]

“the mode of affirming”

“the mode of denying”
Module #2 - Proofs

Syllogism Inference Rules

- \[\frac{p \rightarrow q}{q \rightarrow r} \] \[\therefore p \rightarrow r \] Rule of hypothetical syllogism

- \[\frac{p \lor q}{\neg p} \] \[\therefore q \] Rule of disjunctive syllogism

Aristotle (ca. 384–322 B.C.)

Module #2 - Proofs

Formal Proofs

- A formal proof of a conclusion \(C \), given premises \(p_1, p_2, \ldots, p_n \) consists of a sequence of steps, each of which applies some inference rule to premises or to previously-proven statements (as antecedents) to yield a new true statement (the consequent).

- A proof demonstrates that if the premises are true, then the conclusion is true.
Module #2 - Proofs

Formal Proof Example

- Suppose we have the following premises:
 - “It is not sunny and it is cold.”
 - “We will swim only if it is sunny.”
 - “If we do not swim, then we will canoe.”
 - “If we canoe, then we will be home early.”
- Given these premises, prove the theorem “We will be home early” using inference rules.

Proof Example cont.

- Let us adopt the following abbreviations:
 - sunny = “It is sunny”;
 - cold = “It is cold”;
 - swim = “We will swim”;
 - canoe = “We will canoe”; early = “We will be home early”.
- Then, the premises can be written as:
 1. ¬sunny ∧ cold
 2. swim → sunny
 3. ¬swim → canoe
 4. canoe → early
Module #2 - Proofs

Proof Example \textit{cont.}

<table>
<thead>
<tr>
<th>Step</th>
<th>Proved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\neg\text{sunny} \land \neg\text{cold})</td>
<td>Premise #1.</td>
</tr>
<tr>
<td>2. (\neg\text{sunny})</td>
<td>Simplification of 1.</td>
</tr>
<tr>
<td>3. (\text{swim}\rightarrow\text{sunny})</td>
<td>Premise #2.</td>
</tr>
<tr>
<td>4. (\neg\text{swim})</td>
<td>Modus tollens on 2,3.</td>
</tr>
<tr>
<td>5. (\neg\text{swim}\rightarrow\text{canoe})</td>
<td>Premise #3.</td>
</tr>
<tr>
<td>6. \text{canoe}</td>
<td>Modus ponens on 4,5.</td>
</tr>
<tr>
<td>7. (\text{canoe}\rightarrow\text{early})</td>
<td>Premise #4.</td>
</tr>
<tr>
<td>8. (\text{early})</td>
<td>Modus ponens on 6,7.</td>
</tr>
</tbody>
</table>

Inference Rules for Quantifiers

- \(\forall x P(x) \)
 - Universal instantiation (substitute any object \(o \))
 \[\therefore P(o) \]

- \(P(g) \)
 - Universal generalization (for \(g \) a general element of u.d.)
 \[\therefore \forall x P(x) \]

- \(\exists x P(x) \)
 - Existential instantiation (substitute a new constant \(c \))
 \[\therefore P(c) \]

- \(P(o) \)
 - Existential generalization (substitute any extant object \(o \))
 \[\therefore \exists x P(x) \]
Common Fallacies

- A *fallacy* is an inference rule or other proof method that is not logically valid.
 - May yield a false conclusion!
- Fallacy of *affirming the conclusion*:
 - “$p \rightarrow q$ is true, and q is true, so p must be true.”
 (No, because $F \rightarrow T$ is true.)
- Fallacy of *denying the hypothesis*:
 - “$p \rightarrow q$ is true, and p is false, so q must be false.”
 (No, again because $F \rightarrow T$ is true.)

Circular Reasoning

- The fallacy of (explicitly or implicitly) assuming the very statement you are trying to prove in the course of its proof. Example:
- Prove that an integer n is even, if n^2 is even.
- Attempted proof: “Assume n^2 is even. Then $n^2 = 2k$ for some integer k. Dividing both sides by n gives $n = (2k)/n = 2(k/n)$. So there is an integer j (namely k/n) such that $n = 2j$. Therefore n is even.”

Begs the question: How do you show that $j = k/n = n/2$ is an integer, without first assuming n is even?
Removing the Circularity

Suppose \(n^2 \) is even .\(\therefore 2|n^2 \). Of course \(n \mod 2 \) is either 0 or 1. If it’s 1, then \(n \equiv 1 \pmod{2} \), so \(n^2 \equiv 1 \pmod{2} \), using the theorem that if \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \) then \(ac \equiv bd \pmod{m} \), with \(a = c = n \) and \(b = d = 1 \). Now \(n^2 \equiv 1 \pmod{2} \) implies that \(n^2 \mod 2 = 1 \). So by the hypothetical syllogism rule, \((n \mod 2 = 1) \) implies \((n^2 \mod 2 = 1) \). Since we know \(n^2 \mod 2 = 0 \neq 1 \), by modus tollens we know that \(n \mod 2 \neq 1 \). So by disjunctive syllogism we have that \(n \mod 2 = 0 \). \(\therefore 2|n \). \(\therefore n \) is even.

Proof Methods for Implications

For proving implications \(p \rightarrow q \), we have:

- **Direct** proof: Assume \(p \) is true, and prove \(q \).
- **Indirect** proof: Assume \(\neg q \), and prove \(\neg p \).
- **Vacuous** proof: Prove \(\neg p \) by itself.
- **Trivial** proof: Prove \(q \) by itself.
- Proof by cases:
 - Show \(p \rightarrow (a \lor b) \), and \((a \rightarrow q) \) and \((b \rightarrow q) \).
Module #2 - Proofs

Direct Proof Example

- **Definition:** An integer \(n \) is called *odd* iff \(n = 2k + 1 \) for some integer \(k \); \(n \) is *even* iff \(n = 2k \) for some \(k \).
- **Axiom:** Every integer is either odd or even.
- **Theorem:** (For all numbers \(n \)) If \(n \) is an odd integer, then \(n^2 \) is an odd integer.
- **Proof:** If \(n \) is odd, then \(n = 2k + 1 \) for some integer \(k \). Thus, \(n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \). Therefore \(n^2 \) is of the form \(2j + 1 \) (with \(j \) the integer \(2k^2 + 2k \)), thus \(n^2 \) is odd. □

Module #2 - Proofs

Indirect Proof Example

- **Theorem:** (For all integers \(n \))

 If \(3n+2 \) is odd, then \(n \) is odd.

- **Proof:** Suppose that the conclusion is false, *i.e.*, that \(n \) is even. Then \(n = 2k \) for some integer \(k \). Then \(3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1) \). Thus \(3n+2 \) is even, because it equals \(2j \) for integer \(j = 3k+1 \). So \(3n+2 \) is not odd. We have shown that \(\neg(n \text{ is odd}) \implies \neg(3n+2 \text{ is odd}) \), thus its contrapositive \((3n+2 \text{ is odd}) \implies (n \text{ is odd}) \) is also true.
Module #2 - Proofs

Vacuous Proof Example

• **Theorem:** (For all n) If n is both odd and even, then $n^2 = n + n$.

• **Proof:** The statement “n is both odd and even” is necessarily false, since no number can be both odd and even. So, the theorem is vacuously true. □

Module #2 - Proofs

Trivial Proof Example

• **Theorem:** (For integers n) If n is the sum of two prime numbers, then either n is odd or n is even.

• **Proof:** Any integer n is either odd or even. So the conclusion of the implication is true regardless of the truth of the antecedent. Thus the implication is true trivially. □
Proof by Contradiction

- Assume $\neg p$, and prove both q and $\neg q$ for some proposition q.
- Thus $\neg p \rightarrow (q \land \neg q)$
- $(q \land \neg q)$ is a trivial contradiction, equal to F
- Thus $\neg p \rightarrow F$, which is only true if $\neg p = F$
- Thus p is true.

Review: Proof Methods So Far

- Direct, indirect, vacuous, and trivial proofs of statements of the form $p \rightarrow q$.
- Proof by contradiction of any statements.
- Next: Constructive and nonconstructive existence proofs.
Module #2 - Proofs

Proving Existentials

- A proof of a statement of the form $\exists x \ P(x)$ is called an *existence proof*.
- If the proof demonstrates how to actually find or construct a specific element a such that $P(a)$ is true, then it is a *constructive* proof.
- Otherwise, it is *nonconstructive*.

Constructive Existence Proof

- **Theorem:** There exists a positive integer n that is the sum of two perfect cubes in two different ways:
 - equal to $j^3 + k^3$ and $l^3 + m^3$ where j, k, l, m are positive integers, and $\{j,k\} \not\subseteq \{l,m\}$
- **Proof:** Consider $n = 1729$, $j = 9$, $k = 10$, $l = 1$, $m = 12$. Now just check that the equalities hold.
Another Constructive Existence Proof

• **Theorem:** For any integer \(n > 0 \), there exists a sequence of \(n \) consecutive composite integers.

• Same statement in predicate logic:
 \[\forall n > 0 \exists x \forall i (1 \leq i \leq n) \rightarrow (x + i \text{ is composite}) \]

• Proof follows on next slide…

The proof...

• Given \(n > 0 \), let \(x = (n + 1)! + 1 \).
• Let \(i \geq 1 \) and \(i \leq n \), and consider \(x + i \).
• Note \(x + i = (n + 1)! + (i + 1) \).
• Note \((i+1)|(n+1)! \), since \(2 \leq i+1 \leq n+1 \).
• Also \((i+1)|(i+1) \). So, \((i+1)|(x+i) \).
• \[\therefore x + i \text{ is composite.} \]
• \[\therefore \forall n \exists x \forall 1 \leq i \leq n : x + i \text{ is composite. Q.E.D.} \]
Nonconstructive Existence Proof

- **Theorem:**
 “There are infinitely many prime numbers.”
- Any finite set of numbers must contain a maximal element, so we can prove the theorem if we can just show that there is *no* largest prime number.
- *I.e.*, show that for any prime number, there is a larger number that is *also* prime.
- More generally: For *any* number, *∃* a larger prime.
- Formally: Show \(\forall n \exists p > n : p \) is prime.

The proof, using *proof by cases*...

- Given \(n > 0 \), prove there is a prime \(p > n \).
- Consider \(x = n! + 1 \). Since \(x > 1 \), we know \((x \text{ is prime}) \lor (x \text{ is composite})\).
- **Case 1:** \(x \) is prime. Obviously \(x > n \), so let \(p = x \) and we’re done.
- **Case 2:** \(x \) has a prime factor \(p \). But if \(p \leq n \), then \(p \mod x = 1 \). So \(p > n \), and we’re done.
The Halting Problem (Turing‘36)

- The halting problem was the first mathematical function proven to have no algorithm that computes it!
 - We say, it is uncomputable.
- The desired function is $\text{Halts}(P,I)$:
 - the truth value of this statement:
 - “Program P, given input I, eventually terminates.”
- **Theorem:** Halts is uncomputable!
 - I.e., There does not exist any algorithm A that computes Halts correctly for all possible inputs.
- Its proof is thus a non-existence proof.
- **Corollary:** General impossibility of predictive analysis of arbitrary computer programs.

The Proof

- Given any arbitrary program $H(P,I)$,
- Consider algorithm Breaker, defined as:

 \[
 \text{procedure } \text{Breaker}(P: \text{ a program})
 \]

 \[
 \text{halts} := H(P,P)
 \]

 \[
 \text{if} \ \text{halts} \ \text{then while } T \ \text{begin} \ \text{end}
 \]

 - Note that $\text{Breaker}(\text{Breaker})$ halts iff $H(\text{Breaker},\text{Breaker}) = \text{F}$.

 - So H does not compute the function Halts!
Module #2 - Proofs

Limits on Proofs

- Some very simple statements of number theory haven’t been proved or disproved!
 - E.g. Goldbach’s conjecture: Every integer \(n=2 \) is exactly the average of some two primes.
 - \(\forall n=2 \exists \text{ primes } p,q: n=(p+q)/2. \)
- There are true statements of number theory (or any sufficiently powerful system) that can never be proved (or disproved) (Gödel).

Module #2 - Proofs

More Proof Examples

- Quiz question 1a: Is this argument correct or incorrect?
 - “All TAs compose easy quizzes. Ramesh is a TA. Therefore, Ramesh composes easy quizzes.”
- First, separate the premises from conclusions:
 - Premise #1: All TAs compose easy quizzes.
 - Premise #2: Ramesh is a TA.
 - Conclusion: Ramesh composes easy quizzes.
Module #2 - Proofs

Answer

Next, re-render the example in logic notation.

• Premise #1: All TAs compose easy quizzes.
 – Let U.D. = all people
 – Let $T(x) \equiv \text{“} x \text{ is a TA} \text{”}
 – Let $E(x) \equiv \text{“} x \text{ composes easy quizzes} \text{”}$
 – Then Premise #1 says: $\forall x, T(x) \implies E(x)$

Module #2 - Proofs

Answer cont…

• Premise #2: Ramesh is a TA.
 – Let $R \equiv \text{Ramesh}$
 – Then Premise #2 says: $T(R)$
 – And the Conclusion says: $E(R)$

• The argument is correct, because it can be reduced to a sequence of applications of valid inference rules, as follows:
The Proof in Gory Detail

- Statement
 1. \(\forall x, T(x) \implies E(x) \) (Premise #1)
 2. \(T(\text{Ramesh}) \implies E(\text{Ramesh}) \) (Universal instantiation)
 3. \(T(\text{Ramesh}) \) (Premise #2)
 4. \(E(\text{Ramesh}) \) (Modus Ponens from statements #2 and #3)

Another example

- Quiz question 2b: Correct or incorrect: At least one of the 280 students in the class is intelligent. Y is a student of this class. Therefore, Y is intelligent.
- First: Separate premises/conclusion, & translate to logic:
 - Premises: (1) \(\exists x \text{ InClass}(x) \land \text{Intelligent}(x) \) (2) \(\text{InClass}(Y) \)
 - Conclusion: \(\text{Intelligent}(Y) \)
Module #2 - Proofs

Answer

• No, the argument is invalid; we can disprove it with a counter-example, as follows:
• Consider a case where there is only one intelligent student X in the class, and X \neq Y.
 – Then the premise $\exists x \text{ InClass}(x) \land \text{Intelligent}(x)$ is true, by existential generalization of
 $\text{InClass}(X) \land \text{Intelligent}(X)$
 – But the conclusion $\text{Intelligent}(Y)$ is false, since X is the only intelligent student in the class, and Y \neq X.
• Therefore, the premises do not imply the conclusion.

Module #2 - Proofs

Another Example

• Quiz question #2: Prove that the sum of a rational number and an irrational number is always irrational.
• First, you have to understand exactly what the question is asking you to prove:
 – “For all real numbers x, y, if x is rational and y is irrational, then $x+y$ is irrational.”
 – $\forall x, y: \text{Rational}(x) \land \text{Irrational}(y) \not\implies \text{Irrational}(x+y)$
Module #2 - Proofs

Answer

• Next, think back to the definitions of the terms used in the statement of the theorem:

 \[\forall r : \text{Rational}(r) \]
 \[\exists i, j : \text{Integer}(i) \land \text{Integer}(j) : r = i/j. \]
 \[\forall r : \text{Irrational}(r) \] \[\neg \text{Rational}(r) \]

• You almost always need the definitions of the terms in order to prove the theorem!

• Next, let’s go through one valid proof:

Module #2 - Proofs

What you might write

• **Theorem:**
 \[\forall x, y : \text{Rational}(x) \land \text{Irrational}(y) \rightarrow \neg \text{Irrational}(x+y) \]

• **Proof:** Let \(x, y \) be any rational and irrational numbers, respectively. ... (universal generalization)

• Now, just from this, what do we know about \(x \) and \(y \)? You should think back to the definition of rational:

• ... Since \(x \) is rational, we know (from the very definition of rational) that there must be some integers \(i \) and \(j \) such that \(x = i/j \). So, let \(i_x, j_x \) be such integers ...

• We give them unique names so we can refer to them later.
What next?

- What do we know about y? Only that y is irrational: $\neg \exists \text{integers } i,j: y = i/j$.
- But, it’s difficult to see how to use a direct proof in this case. We could try indirect proof also, but in this case, it is a little simpler to just use proof by contradiction (very similar to indirect).
- So, what are we trying to show? Just that $x+y$ is irrational. That is, $\neg \exists i,j: (x + y) = i/j$.
- What happens if we hypothesize the negation of this statement?

More writing...

- Suppose that $x+y$ were not irrational. Then $x+y$ would be rational, so $\exists \text{integers } i,j: x+y = i/j$. So, let i_s and j_s be any such integers where $x+y = i_s/j_s$.
- Now, with all these things named, we can start seeing what happens when we put them together.
- So, we have that $(i_x/j_x) + y = (i_s/j_s)$.
- Observe! We have enough information now that we can conclude something useful about y, by solving this equation for it.
Module #2 - Proofs

Finishing the proof.

• Solving that equation for y, we have:
 $y = (i_s/j_s) - (i_x/j_x)$
 $= (i_s j_x - i_x j_s) / (j_s j_x)$

Now, since the numerator and denominator of this expression are both integers, y is (by definition) rational. This contradicts the assumption that y was irrational.

Therefore, our hypothesis that $x+y$ is rational must be false, and so the theorem is proved.

Module #2 - Proofs

Example wrong answer

• 1 is rational. $\sqrt{2}$ is irrational. $1 + \sqrt{2}$ is irrational. Therefore, the sum of a rational number and an irrational number is irrational. (Direct proof.)

• Why does this answer merit no credit?
 – The student attempted to use an example to prove a universal statement. **This is always wrong!**
 – Even as an example, it’s incomplete, because the student never even proved that $1 + \sqrt{2}$ is irrational!