Module #3 - Sets

University of Florida
Dept. of Computer & Information Science & Engineering
COT 3100
Applications of Discrete Structures
Dr. Michael P. Frank

Slides for a Course Based on the Text
Discrete Mathematics & Its Applications
(5th Edition)
by Kenneth H. Rosen

Module #3:
The Theory of Sets

Rosen 5th ed., □6-1.7
~43 slides, ~2 lectures
Module #3 - Sets

Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).

Naïve set theory

- Basic premise: Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.
- But, the resulting theory turns out to be logically inconsistent!
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the postulates of the theory!
 - \therefore The conjunction of the postulates is a contradiction!
- This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!
- More sophisticated set theories fix this problem.
Module #3 - Sets

Basic notations for sets

• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x | P(x)\}$ is the set of all x such that $P(x)$.

Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 $\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}$.
• All elements are *distinct* (unequal); multiple listings make no difference!
 – If $a=b$, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}$.
 – This set contains at most 2 elements!
Module #3 - Sets

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain exactly the same elements.
- In particular, it does not matter *how the set is defined or denoted*.
- For example: The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\} = \{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\} \)

Module #3 - Sets

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:
 - \(\mathbb{N} = \{0, 1, 2, \ldots\} \) \text{ The Natural numbers.}
 - \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) \text{ The Integers.}
 - \(\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125\ldots\)
- *Infinite sets come in different sizes!* More on this after module #4 (functions).
Module #3 - Sets

Venn Diagrams

Basic Set Relations: Member of

- \(x \in S \) ("x is in S") is the proposition that object \(x \) is an element or member of set \(S \).
 - e.g. \(3 \in \mathbb{N} \), “a” \(\in \{ x \mid x \text{ is a letter of the alphabet} \} \)
 - Can define set equality in terms of \(\in \) relation:
 \[\forall S,T: S = T \iff (\forall x: x \in S \iff x \in T) \]
 “Two sets are equal iff they have all the same members.”
- \(x \notin S :\equiv \neg(x \in S) \) “x is not in S”
Module #3 - Sets

The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x | \text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.

Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S$, $S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \not\subseteq T$ means $\neg(S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$.
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \not\subseteq S$. Similar for $S \supset T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$

Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- E.g. let $S = \{x \mid x \subseteq \{1,2,3\}\}$ then $S = \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!

Very Important!
Module #3 - Sets

Cardinality and Finiteness

- \(|S|\) (read “the cardinality of \(S\)”) is a measure of how many different elements \(S\) has.
- E.g., \(|\emptyset| = 0, \quad |\{1,2,3\}| = 3, \quad |\{a,b\}| = 2, \quad |\{\{1,2,3\},\{4,5\}\}| = 2^{2}\).
- If \(|S|\in\mathbb{N}\), then we say \(S\) is finite. Otherwise, we say \(S\) is infinite.
- What are some infinite sets we’ve seen?

\[\mathbb{N}, \mathbb{Z}, \mathbb{R}\]

The Power Set Operation

- The power set \(P(S)\) of a set \(S\) is the set of all subsets of \(S\). \(P(S) = \{x \mid x \subseteq S\}\).
- E.g. \(P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\).
- Sometimes \(P(S)\) is written \(2^S\). Note that for finite \(S\), \(|P(S)| = 2^{|S|}\).
- It turns out that \(|P(\mathbb{N})| > |\mathbb{N}|\). There are different sizes of infinite sets!
Module #3 - Sets

Review: Set Notations So Far

• Variable objects \(x, y, z \); sets \(S, T, U \).
• Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
• \(\in \) relational operator, and the empty set \(\emptyset \).
• Set relations =, \(\subseteq \), \(\supseteq \), \(\subset \), \(\supset \), \(\not\subseteq \), etc.
• Venn diagrams.
• Cardinality |\(S \)| and infinite sets \(\mathbb{N}, \mathbb{Z}, \mathbb{R} \).
• Power sets \(\mathcal{P}(S) \).

Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead pathologically to structures that are not well-defined. (That do not have consistent properties.)
• These “sets” mathematically cannot exist.
• E.g. let \(S = \{x \mid x \notin x\} \). Is \(S \in S \)?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence of length n is written (a_1, a_2, \ldots, a_n). The first element is a_1, etc.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.
- E.g. $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is not commutative: $\neg \forall AB: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Module #3 - Sets

Review of § 1.6

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|\cdot|$, $P(\cdot)$, $S \times T$.
- Next up: § 1.5: More set ops: \cup, \cap, \setminus.

Start § 1.7: The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or (“∨”) in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that $A \cup B$ contains all the elements of A and it contains all the elements of B: $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Module #3 - Sets

Union Examples

- \{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\}
- \{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)

The Intersection Operator

- For sets \(A, B\), their intersection \(A \cap B\) is the set containing all elements that are simultaneously in \(A\) and ("\(\wedge\)") in \(B\).
- Formally, \(\forall A, B: A \cap B = \{x \mid x \in A \wedge x \in B\}\).
- Note that \(A \cap B\) is a subset of \(A\) and it is a subset of \(B\):
 \(\forall A, B: (A \cap B \subseteq A) \wedge (A \cap B \subseteq B)\)
Intersection Examples

- \{a,b,c\} \cap \{2,3\} = \emptyset
- \{2,4,6\} \cap \{3,4,5\} = \{4\}

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”

Disjointedness

- Two sets \(A, B\) are called disjoint (i.e., unjoined) iff their intersection is empty. \((A \cap B = \emptyset)\)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- How many elements are in \(A \cup B \)?

\[
|A \cup B| = |A| + |B| - |A \cap B|
\]

Example: How many students are on our class email list? Consider set \(I \) and set \(M \).

- \(I \) is the set of students who turned in an information sheet.
- \(M \) is the set of students who sent the TAs their email address.

- Some students did both!

\[
|I \cup M| = |I| + |M| - |I \cap M|
\]

Set Difference

- For sets \(A, B \), the difference of \(A \) and \(B \), written \(A - B \), is the set of all elements that are in \(A \) but not \(B \).

\[
A - B \equiv \{ x \mid x \in A \land x \notin B \}
= \{ x \mid \neg (x \in A \rightarrow x \in B) \}
\]

- Also called: The complement of \(B \) with respect to \(A \).
Module #3 - Sets

Set Difference Examples

- \(\{1, 4, 6\} - \{2, 3, 5, 7, 9, 11\} = \{1, 4, 6\} \)
- \(\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat. \#}\} = \{x \mid x \text{ is a negative integer}\} = \{\ldots, -3, -2, -1\} \)

Set Difference - Venn Diagram

- \(A - B \) is what’s left after \(B \) “takes a bite out of \(A \)”
Set Complements

- The universe of discourse can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the complement of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.
- E.g., If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, ...\}$

More on Set Complements

- An equivalent definition, when U is clear:
 $$\overline{A} = \{x \mid x \notin A\}$$
Module #3 - Sets

Set Identities

- Identity: \(A \cup \emptyset = A \) \(A \cap U = A \)
- Domination: \(A \cup U = U \) \(A \cap \emptyset = \emptyset \)
- Idempotent: \(A \cup A = A = A \cap A \)
- Double complement: \(\overline{A} = A \)
- Commutative: \(A \cup B = B \cup A \) \(A \cap B = B \cap A \)
- Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \) \(A \cap (B \cap C) = (A \cap B) \cap C \)

DeMorgan’s Law for Sets

- Exactly analogous to (and derivable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Module #3 - Sets

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where Es are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use set builder notation & logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
- Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Module #3 - Sets

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.

Module #3 - Sets

Membership Table Example

Prove \((A \cup B) - B = A - B\).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A \cup B</td>
<td>(A \cup B) - B</td>
<td>A - B</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Module #3 - Sets

Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

A	B	C	A \cup B	(A \cup B) - C	A - C	B - C	(A - C) \cup (B - C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

2004/3/2 (c)2001-2003, Michael P. Frank

Module #3 - Sets

Review of \(\S\).6-1.7

- Sets \(S, T, U\) … Special sets \(\mathbb{N}, \mathbb{Z}, \mathbb{R}\).
- Set notations \(\{a,b,...\}, \{x|P(x)\}…\)
- Relations \(x \in S, S \subseteq T, S \supseteq T, S = T, S \subset T, S \supset T\).
- Operations \(|S|, P(S), \times, \cup, \cap, -, \bar{S}\)
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Module #3 - Sets

Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even unordered sets of sets, \(X=\{A \mid P(A)\}\).

Generalized Union

- Binary union operator: \(A \cup B\)
- \(n\)-ary union:
 \[
 A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots ((A_1 \cup A_2) \cup \ldots) \cup A_n)
 \]
 (grouping & order is irrelevant)
- “Big U” notation: \(\bigcup_{i=1}^{n} A_i\)
- Or for infinite sets of sets: \(\bigcup_{A \in X} A\)
Module #3 - Sets

Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A \cap A_2 \cap \ldots \cap A_n \equiv ((A_1 \cap A_2) \cap \ldots) \cap A_n \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]

Module #3 - Sets

Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- E.g., one can represent natural numbers as
 - Sets: \(0 \equiv \emptyset, \; 1 \equiv \{0\}, \; 2 \equiv \{0, 1\}, \; 3 \equiv \{0, 1, 2\}, \ldots \)
 - Bit strings:
 \(0 \equiv 0, \; 1 \equiv 1, \; 2 \equiv 10, \; 3 \equiv 11, \; 4 \equiv 100, \ldots \)
Module #3 - Sets

Representing Sets with Bit Strings

For an enumerable u.d. \(U \) with ordering
\(\{x_1, x_2, \ldots \} \), represent a finite set \(S \subseteq U \) as
the finite bit string \(B=b_1b_2\ldots b_n \) where
\[\forall i: x_i \in S \leftrightarrow (i < n \land b_i = 1). \]

E.g. \(U = \mathbb{N}, S = \{2, 3, 5, 7, 11\} \), \(B = 001101010001 \).

In this representation, the set operators
“\(\cup \)”, “\(\cap \)”, “\(\neg \)” are implemented directly by
bitwise OR, AND, NOT!