Chapter 2: More Fundamentals

- § 2.1: Algorithms (Formal procedures)
- § 2.2: Complexity of algorithms
 - Analysis using order-of-growth notation.
- § 2.3: The Integers & Division
 - Some basic number theory.
- § 2.6: Matrices
 - Some basic linear algebra.

§ 2.1: Algorithms

• The foundation of computer programming.
• Most generally, an algorithm just means a definite procedure for performing some sort of task.
• A computer program is simply a description of an algorithm in a language precise enough for a computer to understand, requiring only operations the computer already knows how to do.
• We say that a program implements (or “is an implementation of”) its algorithm.
Module #5 - Algorithms

Algorithms You Already Know

- Grade school arithmetic algorithms:
 - How to add any two natural numbers written in decimal on paper using carries.
 - Similar: Subtraction using borrowing.
 - Multiplication & long division.
- Your favorite cooking recipe.
- How to register for classes at UF.

Module #5 - Algorithms

Programming Languages

- Some common programming languages:
 - Newer: Java, C, C++, Visual Basic, JavaScript, Perl, Tcl, Pascal
 - Older: Fortran, Cobol, Lisp, Basic
 - Assembly languages, for low-level coding.
- In this class we will use an informal, Pascal-like “pseudo-code” language.
- You should know at least 1 real language!
Algorithm Example (English)

- Task: Given a sequence \(\{a_i\} = a_1, \ldots, a_n \), \(a_i \in \mathbb{N} \), say what its largest element is.
- Set the value of a temporary variable \(v \) (largest element seen so far) to \(a_1 \)'s value.
- Look at the next element \(a_i \) in the sequence.
- If \(a_i > v \), then re-assign \(v \) to the number \(a_i \).
- Repeat previous 2 steps until there are no more elements in the sequence, & return \(v \).

Executing an Algorithm

- When you start up a piece of software, we say the program or its algorithm are being *run* or *executed* by the computer.
- Given a description of an algorithm, you can also execute it by hand, by working through all of its steps on paper.
- Before ~WWII, “computer” meant a *person* whose job was to run algorithms!
Executing the Max algorithm

- Let \(\{a_i\} = 7, 12, 3, 15, 8 \). Find its maximum...
- Set \(v = a_1 = 7 \).
- Look at next element: \(a_2 = 12 \).
- Is \(a_2 > v \)? Yes, so change \(v \) to 12.
- Look at next element: \(a_2 = 3 \).
- Is \(3 > 12 \)? No, leave \(v \) alone….
- Is \(15 > 12 \)? Yes, \(v = 15 \)…

Algorithm Characteristics

Some important features of algorithms:
- **Input**. Information or data that comes in.
- **Output**. Information or data that goes out.
- **Definiteness**. Precisely defined.
- **Correctness**. Outputs correctly relate to inputs.
- **Finiteness**. Won’t take forever to describe or run.
- **Effectiveness**. Individual steps are all do-able.
- **Generality**. Works for many possible inputs.
- **Efficiency**. Takes little time & memory to run.
Module #5 - Algorithms

Our Pseudocode Language: \squareA2

Procedure

```
procedure procname (arg: type)

• Declares that the following text defines a procedure named procname that takes inputs (arguments) named arg which are data objects of the type type.
  – Example:
    procedure maximum(L: list of integers)
    [statements defining maximum…]
```
Module #5 - Algorithms

variable: \(= \) **expression**

- An *assignment* statement evaluates the expression \(\text{expression} \), then reassigns the variable \(\text{variable} \) to the value that results.
 - Example:
 \(v := 3x + 7 \)
 (If \(x \) is 2, changes \(v \) to 13.)
- In pseudocode (but not real code), the expression might be informal:
 - \(x := \) the largest integer in the list \(L \)

Module #5 - Algorithms

Informal statement

- Sometimes we may write a statement as an informal English imperative, if the meaning is still clear and precise: “swap \(x \) and \(y \)”
- Keep in mind that real programming languages never allow this.
- When we ask for an algorithm to do so-and-so, writing “Do so-and-so” isn’t enough!
 - Break down algorithm into detailed steps.
Module #5 - Algorithms

begin statements end

- Groups a sequence of statements together:

  ```
  begin
  statement 1
  statement 2
  ...
  statement n
  end
  ```

- Allows sequence to be used like a single statement.
- Might be used:
 - After a `procedure` declaration.
 - In an `if` statement after `then` or `else`.
 - In the body of a `for` or `while` loop.

Module #5 - Algorithms

{`comment`}

- Not executed (does nothing).
- Natural-language text explaining some aspect of the procedure to human readers.
- Also called a `remark` in some real programming languages.
- Example:
 - `{Note that \(v \) is the largest integer seen so far.}`
Module #5 - Algorithms

if condition then statement

- Evaluate the propositional expression *condition*.
- If the resulting truth value is *true*, then execute the statement *statement*; otherwise, just skip on ahead to the next statement.
- Variant: **if cond then stmt1 else stmt2**
 Like before, but iff truth value is *false*, executes *stmt2*.

while condition statement

- **Evaluate** the propositional expression *condition*.
- If the resulting value is *true*, then execute *statement*.
- Continue repeating the above two actions over and over until finally the *condition* evaluates to *false*; then go on to the next statement.
Module #5 - Algorithms

while condition statement

• Also equivalent to infinite nested ifs, like so:

```plaintext
if condition
    begin
        statement
        if condition
            begin
                statement
                ...(continue infinite nested if's)
            end
    end
```

for var = initial to final stmt

• *Initial* is an integer expression.
• *Final* is another integer expression.
• Repeatedly execute *stmt*, first with variable var = initial, then with var = initial + 1, then with var = initial + 2, etc., then finally with var = final.
• What happens if *stmt* changes the value that initial or final evaluates to?
Module #5 - Algorithms

for \(var : = initial \) **to** final **stmt**

- **For** can be exactly defined in terms of **while**, like so:

```
begin
  var : = initial
  while \( var \leq final \)
  begin
    stmt
  \end
  var : = var + 1
end
```

Module #5 - Algorithms

procedure(argument)

- A **procedure call** statement invokes the named **procedure**, giving it as its input the value of the **argument** expression.
- Various real programming languages refer to procedures as **functions** (since the procedure call notation works similarly to function application \(f(x) \)), or as **subroutines**, **subprograms**, or **methods**.
Module #5 - Algorithms

Max procedure in pseudocode

procedure max(a₁, a₂, …, aₙ: integers)
 v := a₁ {largest element so far}
 for i := 2 to n {go thru rest of elements}
 if aᵢ > v then v := aᵢ {found bigger?}
 {at this point v’s value is the same as the largest integer in the list}
 return v

Another example task

• Problem of searching an ordered list.
 – Given a list L of n elements that are sorted into a definite order (e.g., numeric, alphabetical),
 – And given a particular element x,
 – Determine whether x appears in the list,
 – and if so, return its index (position) in the list.

• Problem occurs often in many contexts.
• Let’s find an efficient algorithm!
Module #5 - Algorithms

Search alg. #1: Linear Search

procedure linear search
 (x: integer, a_1, a_2, ..., a_n: distinct integers)
 i := 1
 while (i ≤ n ∧ x ≠ a_i)
 i := i + 1
 if i ≤ n then location := i
 else location := 0
 return location \{index or 0 if not found\}

Search alg. #2: Binary Search

• Basic idea: On each step, look at the middle element of the remaining list to eliminate half of it, and quickly zero in on the desired element.
Search alg. #2: Binary Search

procedure binary search
 (x:integer, a_1, a_2, …, a_n: distinct integers)
 i := 1 {left endpoint of search interval}
 j := n {right endpoint of search interval}
 while i<j begin {while interval has >1 item}
 m := \lfloor (i+j)/2 \rfloor {midpoint}
 if x>a_m then i := m+1 else j := m
 end
 if x = a_i then location := i else location := 0
return location

Practice exercises

• 2.1.3: Devise an algorithm that finds the sum of all the integers in a list. [2 min]
• procedure sum(a_1, a_2, …, a_n: integers)
 s := 0 {sum of elems so far}
 for i := 1 to n {go thru all elems}
 s := s + a_i {add current item}
 {at this point s is the sum of all items}
return s
Module #5 - Algorithms

Review \(\S 2.1: \) Algorithms

- Characteristics of algorithms.
- Pseudocode.
- Examples: Max algorithm, linear search & binary search algorithms.
- Intuitively we see that binary search is much faster than linear search, but how do we analyze the efficiency of algorithms formally?
- Use methods of algorithmic complexity, which utilize the order-of-growth concepts from \(\S 1.8. \)

Module #5 - Algorithms

Review: \textit{max} algorithm

\begin{verbatim}
procedure max(a_1, a_2, \ldots, a_n; integers)
 v := a_1 \{ largest element so far \}
 for i := 2 to n \{ go thru rest of elems \}
 if a_i > v then v := a_i \{ found bigger? \}
 \{ at this point v’s value is the same as the largest integer in the list \}
 return v
\end{verbatim}
Module #5 - Algorithms

Review: Linear Search

procedure linear search

\((x: \text{integer}, a_1, a_2, \ldots, a_n: \text{distinct integers}) \)

\(i := 1 \)

while \((i \leq n \land x \neq a_i)\)

\(i := i + 1 \)

if \(i \leq n\) then \(\text{location} := i\)

else \(\text{location} := 0\)

return \(\text{location}\) \{index or 0 if not found\}

Module #5 - Algorithms

Review: Binary Search

- Basic idea: On each step, look at the *middle* element of the remaining list to eliminate half of it, and quickly zero in on the desired element.

\[<x <x <x >x\]
Module #5 - Algorithms

Review: Binary Search

procedure binary search
 (x:integer, a_1, a_2, ..., a_n: distinct integers)
 i := 1 {left endpoint of search interval}
 j := n {right endpoint of search interval}
 while i<j begin {while interval has >1 item}
 m := \lfloor (i+j)/2 \rfloor {midpoint}
 if x > a_m then i := m+1 else j := m
 end
 if x = a_i then location := i else location := 0
 return location