Chapter 1 Introduction

1.1 Historical Perspective
1.2 A Digital Circuit Design Example
1.3 VLSI Design Methodologies
1.4 VLSI Design Styles
1.5 Design Quality
1.6 Packaging Technology
1.7 CAD Technology
1.1 Historical Perspective

- Evolution of logic complexity in integrated circuits

<table>
<thead>
<tr>
<th>Era</th>
<th>Date</th>
<th># of logic blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI</td>
<td>1967</td>
<td>20-200</td>
</tr>
<tr>
<td>LSI</td>
<td>1972</td>
<td>200-2000</td>
</tr>
<tr>
<td>VLSI</td>
<td>1978</td>
<td>2000-20000</td>
</tr>
<tr>
<td>ULSI</td>
<td>1989</td>
<td>> 200000</td>
</tr>
</tbody>
</table>

- Prominent driving trends in information service technologies
- CMOS technology advances
 - Device scaling with smaller transistor feature size
 - Increasing operating speeds and packing density
 - Increasing process complexity and fabrication cost
- Evolution of minimum feature size and level of integration
Classifications of digital integrated circuits

- NMOS logics
 - NMOS logic with resistive load
 - NMOS logic with depletion-mode load
 - NMOS logic with enhancement-mode load

- CMOS logics
 - Static circuits
 - Classical CMOS
 - Transmission-gate CMOS
 - Cascade voltage switch logic (CVSL)
 - Dynamic circuits
 - Domino logic
 - NORA logic
 - TSPC logic
A Digital Circuit Design Example

- Design flow for digital integrated circuits
 - Define the logic functionality
 - Required specifications include:
 - Operating speed
 - Chip area
 - Power consumption
 - Noise margins
 - Circuit performance is verified during design and layout phases
 - Design iteration may be needed during design and layout phases
 - Tradeoff is typically involved in circuit designs
One-bit binary full-adder with 0.8-μm CMOS

Specifications:
- Propagation delay of sum and carry_out signals < 1.2 ns (worst case)
- Transition delay of sum and carry_out signals < 1.2 ns (worst case)
- Circuit area < 1500 μm²
- Dynamic power dissipation (@ V_{DD} = 5 V and f_{max} = 20 MHz) < 1 mW

Boolean description:
- Input: A, B and C
- Output: sum_out, carry_out
Gate-level schematic

Transistor-level schematic
Alternative transistor-level schematic

Preliminary layout

- Minimum device size (2 µm/0.8 µm) for NMOS and PMOS
- Total Si area = 1134 µm²
- Post-layout simulation
 - Parasitics extracted from the layout are included in the simulation
 - Worst-case delay = 2.0 ns > 1.2 ns
 - The carry_out is used to generate sum output (critical path)
- Modified full-adder design
- Resize PMOS and NMOS devices
- Chip area = 1290 μm²
- Worst-case delay = 1.0 ns
- Dynamic power dissipation = 460 μW
1.3 VLSI Design Methodologies

- Performance versus design cycle

- Technology window
VLSI design flow

- Representations or abstractions:
 - Behavior representation
 - Logic representation
 - Circuit representation
 - Layout representation

- Verification is essential in every step during the process
1.4 VLSI Design Styles

- Field programmable gate array (FPGA)
 - Logic gates with programmable interconnects
 - I/O buffers, configurable logic blocks (CLBs) and programmable interconnect structures
 - Requires no process steps for logic realization
 - For fast prototyping and small-volume ASIC production (short turn-around time)
 - Design flow of FPGA:
 - Behavioral description of its functionality
 - Technology-mapped into circuits or logic cells
 - Assigns logic cells to FPGA CLBs and determines the routing pattern
- Configurable logic blocks (CLBs)
 - Independent combinational function generators (memory look-up table)
 - Clock signal terminal
 - User-programmable multiplexers
 - Flip-flops

- Programmable interconnect
 - Six pass transistors per switch matrix interconnect point
 - Accomplished by data in RAM cells
Gate array design

- Uncommitted transistors separated by routing channels
- Circuit implementation:
 - 1st phase: generic masks for uncommitted transistors on each GA chip (stored)
 - 2nd phase: Customization by (multiple) metal fabrication process

- Ranks second after FPGA with a turn-around time of a few days
- Chip utilization factor is higher than that of the FPGA
- **Standard-cell based design**
 - Commonly used logics are developed, characterized and stored in a standard cell library
 - Cell library includes:
 - Delay time versus load capacitance
 - Circuit simulation model
 - Timing simulation model
 - Fault simulation model
 - Cell data for place-and-route
 - Mask data
 - Standard cell arrangement:
 - Fixed cell height
 - Parallel power and ground rails
 - Input and output pins are located on the upper and lower boundaries
 - Cells are placed side by side in standard-cell based design
 - The required logic circuits are realized using the cells in the library
 - Complete mask sets are developed for chip fabrication
 - One of the most prevalent design style for ASIC applications
Layout of a standard cell and floorplan of a standard-cell based design
- Full custom design
 - Design and develop the IC from scratch
 - Possibly to achieve the highest performance compared with other design styles
 - Highest development cost and design cycle time
 - Design reuse is coming popular to alleviate the design effort
 - Suitable for design of high-performance processors, FPGAs and memory chips
1.5 Design Quality

- Testability
 - Time and effort for chip test increase exponentially with design complexity
 - The test task requires
 - Generation of good test vectors
 - Availability of reliable test fixture at speed
 - Design of testable chip

- Yield and manufacturability
 - The ratio of good tested chips to total tested chips
 - Functionality yield:
 - Testing the chips at lower speed
 - Identify problems of shorts, opens and leakage current
 - Detect logic and circuit design failure
 - Parametric yield
 - Test at the required speed
 - Delay testing is performed at this stage
 - Consider manufacturability of the chip in the design phase
 - Sufficient tolerance to device fluctuations and margin for measurement uncertainty
Reliability

- Depends on the design and process conditions
- Reliability problems:
 - Electrostatic discharge (ESD) and electrical overstress (EOS)
 - Electromigration
 - Latch-up in CMOS I/O and internal circuits
 - Hot-carrier induced aging
 - Oxide breakdown
 - Single event upset
 - Power and ground bouncing
 - On-chip noise and crosstalk

Technology updateability

- Be technology-updated to new design rules
- Fast migration to new process technology
- “Dumb shrink” method with uniform scaling is rarely practiced
- Silicon compilation: generate physical layout from high-level specifications
1.6 Packaging Technology

- Packaging for integrated circuits
 - Proper packaging technology is critical to the success of the chip development
 - Package issues have to be taken into consideration in early stages of chip development
 - Ensure sufficient design margins to accommodate the parasitics of the package
- Important packaging concerns:
 - Hermetic seals to prevent the penetration of moisture
 - Thermal conductivity
 - Thermal expansion coefficient
 - Pin density
 - Parasitic inductance and capacitance
 - α-particle protection
 - Cost
- Types of packaging technology
 - Classified by the method used to solder the package on the printed PCB
 - Pin-through-hole (PTH)
 - Surface-mounted technology (SMT)
- Dual in-line packages (DIP)
 - Advantage of low cost
 - Not applicable for high-speed operations due to the inductance of the bond wires
 - Maximum pin count is typically limited to 64

- Pin grid array (PGA) packages
 - Offers a higher pin count (several hundreds)
 - High thermal conductivity especially with a passive or active heat sink
 - Requires large PCB area
 - Cost is higher than DIP

- Chip carrier packages (CCP)
 - Leadless chip carrier:
 - Chip mounted on PCB directly
 - Supports higher pin count
 - Problem with difference in thermal coefficient
 - Leaded chip carrier:

- Quad flat packages (QFP)
 - Similar to leaded chip carrier with leads extending outward
Multi-chip modules (MCM)
- Used for very high performance in special applications
- Multiple chips are assembled on a common substrate in a single package
- A large number of critical interconnects among the chips are made within the package
- Important features:
 - Significant reduction in the overall system size
 - Reduced package lead counts
 - Faster operation allowed
 - Higher implementation cost
1.7 CAD Technology

- Categories of CAD tools for VLSI chip design
 - Synthesis tools:
 - High-level synthesis tools with hardware description language
 - Address automation of the design phase in the top level
 - Layout tools:
 - Floorplanning
 - Place-and-route
 - Module generation
 - Simulation and verification tools
 - Behavior simulation
 - Logic level simulation
 - A number of test vectors are applied
 - Verify logic functionality
 - Timing level simulation
 - Circuit-level simulation
 - Determine nominal and worst-case delays
 - High computational cost