Unit 6: Placement

- Course contents:
 - Placement metrics
 - Constructive placement: cluster growth, min cut
 - Iterative placement: force-directed method, simulated annealing, genetic algorithm

- Readings
 - Chapter 7.1--7.4
 - Chapter 5.8

Placement

- Placement is the problem of automatically assigning correct positions on the chip to predesigned cells, such that some cost function is optimized.

- Inputs: A set of fixed cells/modules, a netlist.
- Goal: Find the best position for each cell/module on the chip according to appropriate cost functions.
 - Considerations: routability/channel density, wirelength, cut size, performance, thermal issues, I/O pads.
Placement Objectives and Constraints

- What does a placement algorithm try to optimize?
 - the total area
 - the total wire length
 - the number of horizontal/vertical wire segments crossing a line

- Constraints:
 - the placement should be routable (no cell overlaps; no density overflow).
 - timing constraints are met (some wires should always be shorter than a given length).

VLSI Placement: Building Blocks

- Different design styles create different placement problems.
 - E.g., building-block, standard-cell, gate-array placement

- Building block: The cells to be placed have arbitrary shapes.
VLSI Placement: Standard Cells

- Standard cells are designed in such a way that power and clock connections run horizontally through the cell and other I/O leaves the cell from the top or bottom sides.
- The cells are placed in rows.
- Sometimes feedthrough cells are added to ease wiring.

Consequences of Fabrication Method

- Full-custom fabrication (building block):
 - Free selection of aspect ratio (quotient of height and width).
 - Height of wiring channels can be adapted to necessity.
- Semi-custom fabrication (gate array, standard cell):
 - Placement has to deal with fixed carrier dimensions.
 - Placement should be able to deal with fixed channel capacities.
Relation with Routing

- Ideally, placement and routing should be performed simultaneously as they depend on each other’s results. This is, however, too complicated.
 - P&R: placement and routing

- In practice placement is done prior to routing. The placement algorithm estimates the wire length of a net using some metric.

Estimation of Wirelength

- **Semi-perimeter method**: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!

- **Squared Euclidean distance**: Squares of all pairwise terminal distances in a net using a quadratic cost function

\[
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2]
\]

- **Steiner-tree approximation**: Computationally expensive.

- **Minimum spanning tree**: Good approximation to Steiner trees.

- **Complete graph**: Since #edges in a complete graph is \(\frac{n(n-1)}{2} \), wirelength \(\approx \frac{2}{n} \sum_{(i,j) \in \text{net}} \text{dist}(i,j) \).
Placement Algorithms

- The placement problem is NP-complete
- Popular placement algorithms:
 - **Constructive algorithms**: once the position of a cell is fixed, it is not modified anymore.
 - Cluster growth, min cut, etc.
 - **Iterative algorithms**: intermediate placements are modified in an attempt to improve the cost function.
 - Force-directed method, etc
 - **Nondeterministic approaches**: simulated annealing, genetic algorithm, etc.
- Most approaches combine multiple elements:
 - Constructive algorithms are used to obtain an initial placement.
 - The initial placement is followed by an iterative improvement phase.
 - The results can further be improved by simulated annealing.
Bottom-Up Placement: Clustering

- Starts with a single cell and finds more cells that share nets with it.

Placement by Cluster Growth

- Greedy method: Selects unplaced components and places them in available slots.
 - SELECT: Choose the unplaced component that is most strongly connected to all of the placed components (or most strongly connected to any single placed component).
 - PLACE: Place the selected component at a slot such that a certain “cost” of the partial placement is minimized.
Cluster Growth Example

- # of other terminals connected: $c_a = 3$, $c_b = 1$, $c_c = 1$, $c_d = 1$, $c_e = 4$, $c_f = 3$, and $c_g = 3 \Rightarrow e$ has the most connectivity.
- Place e in the center, slot 4. a, b, g are connected to e, and $\tilde{c}_{ae} = 2$, $\tilde{c}_{be} = \tilde{c}_{eg} = 1 \Rightarrow$ Place a next to e (say, slot 3). Continue until all cells are placed.
- Further improve the placement by swapping the gates.

Top-down Placement: Min Cut

- Starts with the whole circuit and ends with small circuits.
- Recursive bipartitioning of a circuit (e.g., K&L) leads to a min-cut placement.
Min-Cut Placement

- **Quadrature**: suitable for circuits with high density in the center.
- **Bisection**: good for standard-cell placement.
- **Slice/Bisection**: good for cells with high interconnection on the periphery.

Algorithm for Min-Cut Placement

```
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n: # of cells to be placed */
/* n_0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n ≤ n_0) then PlaceCells(N, n, C)
3 else
4    (N_1, N_2) ← CutSurface(N);
5    (n_1, C_1), (n_2, C_2) ← Partition(n, C);
6    Call Min_Cut_Placement(N_1, n_1, C_1);
7    Call Min_Cut_Placement(N_2, n_2, C_2);
8 end
```
Quadrature Placement Example

- Apply the K-L heuristic to partition + Quadrature Placement: Cost $C_1 = 4$, $C_{2L} = C_{2R} = 2$, etc.

![Diagram of circuit with labels]

Min-Cut Placement with Terminal Propagation

- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.

 - What happens if we swap \{1, 3, 6, 9\} and \{2, 4, 5, 7\} in the previous example?

![Diagram of min-cut placement]

prefer to have them in R1
Terminal Propagation

- We should use the fact that s is in L_1!

- When not to use p to bias partitioning? Net s has cells in many groups?

Terminal Propagation Example

- Partitioning must be done breadth-first, not depth-first.
General Procedure for Iterative Improvement

Algorithm: Iterative_Improvement()
1 begin
2 \(s \leftarrow \text{initial_configuration}(); \)
3 \(c \leftarrow \text{cost}(s); \)
4 while (not stop()) do
5 \(s' \leftarrow \text{perturb}(s); \)
6 \(c' \leftarrow \text{cost}(s'); \)
7 if (accept(c, c'))
8 then \(s \leftarrow s'; \)
9 end

Placement by the Force-Directed Method

- Reduce the placement problem to solving a set of simultaneous linear equations to determine equilibrium locations for cells.
- Analogy to Hooke’s law: \(F = kd \), \(F \): force, \(k \): spring constant, \(d \): distance.
- Goal: Map cells to the layout surface.
Finding the Zero-Force Target Location

- Cell \(i \) connects to several cells \(j \)'s at distances \(d_{ij} \)'s by wires of weights \(w_{ij} \)'s. Total force: \(F_i = \sum_j w_{ij} d_{ij} \)
- The zero-force target location \((\hat{x}_i, \hat{y}_i)\) can be determined by equating the \(x \)- and \(y \)-components of the forces to zero:
 \[
 \sum_j w_{ij} (x_j - \hat{x}_i) = 0 \implies \hat{x}_i = \frac{\sum_j w_{ij} x_j}{\sum_j w_{ij}}
 \]
 \[
 \sum_j w_{ij} (y_j - \hat{y}_i) = 0 \implies \hat{y}_i = \frac{\sum_j w_{ij} y_j}{\sum_j w_{ij}}
 \]
- In the example, \(\hat{x}_i = \frac{8 \times 0 + 10 \times 2 + 3 \times 0 + 3 \times 2}{8 + 10 + 3 + 3} = 1.083 \) and \(\hat{y}_i = 1.50 \).

Force-Directed Placement

- Can be constructive or iterative:
 - Start with an initial placement.
 - Select a "most profitable" cell \(p \) (e.g., maximum \(F \), critical cells) and place it in its zero-force location.
 - "Fix" placement if the zero-location has been occupied by another cell \(q \).
- Popular options to fix:
 - **Ripple move**: place \(p \) in the occupied location, compute a new zero-force location for \(q \), …
 - **Chain move**: place \(p \) in the occupied location, move \(q \) to an adjacent location, …
 - Move \(p \) to a free location close to \(q \).
Algorithm: Force-Directed Placement

1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while $(\text{IterationCount} < \text{IterationLimit})$ do
5 \hspace{0.5cm} Seed \gets next module from L;
6 \hspace{0.5cm} Declare the position of the seed vacant;
7 \hspace{0.5cm} while (EndRipple $= \text{FALSE}$) do
8 \hspace{1cm} Compute target location of the seed;
9 \hspace{1cm} case the target location
10 \hspace{1.5cm} \textbf{VACANT}: \hspace{0.5cm} Move seed to the target location and lock;
11 \hspace{1.5cm} EndRipple $\gets \text{TRUE}$; \text{AbortCount} \gets 0;
12 \hspace{1cm} \textbf{SAME AS PRESENT LOCATION}: \hspace{0.5cm} EndRipple $\gets \text{TRUE}$; \text{AbortCount} \gets 0;
13 \hspace{1cm} \textbf{LOCKED}: \hspace{0.5cm} Move selected cell to the nearest vacant location;
14 \hspace{1.5cm} EndRipple $\gets \text{TRUE}$; \text{AbortCount} \gets AbortCount + 1;
15 \hspace{1.5cm} if (AbortCount $> \text{AbortLimit}$) then
16 \hspace{2cm} Unlock all cell locations;
17 \hspace{1.5cm} \text{IterationCount} \gets \text{IterationCount} + 1;
18 \hspace{0.5cm} \textbf{OCCUPIED AND NOT LOCKED}: \hspace{0.5cm} Select cell as the target location for next move;
19 \hspace{0.5cm} Move seed cell to target location and lock the target location;
20 \hspace{0.5cm} EndRipple $\gets \text{FALSE}$; \text{AbortCount} \gets 0;
21 end

Placement by Simulated Annealing

- TimberWolf: Stage 1
 - Modules are moved between different rows as well as within the same row.
 - Modules overlaps are allowed.
 - When the temperature is reached below a certain value, stage 2 begins.

- TimberWolf: Stage 2
 - Remove overlaps.
 - Annealing process continues, but only interchanges adjacent modules within the same row.
Solution Space & Neighborhood Structure

- **Solution Space**: All possible arrangements of the modules into rows, possibly with overlaps.

- **Neighborhood Structure**: 3 types of moves
 - M_1: Displace a module to a new location.
 - M_2: Interchange two modules.
 - M_3: Change the orientation of a module.

Neighborhood Structure

- TimberWolf first tries to select a move between M_1 and M_2: $\text{Prob}(M_1) = 0.8$, $\text{Prob}(M_2) = 0.2$.
- If a move of type M_1 is chosen and it is rejected, then a move of type M_3 for the same module will be chosen with probability 0.1.
- Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules can be interchanged?

- **Key: Range Limiter**
 - At the beginning, (W_a, H_a) is big enough to contain the whole chip.
 - Window size shrinks as temperature decreases. Height & width $\propto \log(T)$.
 - Stage 2 begins when window size is so small that no inter-row module interchanges are possible.
Cost Function

- **Cost function**: \(C = C_1 + C_2 + C_3 \).

\(C_1 \): total estimated wirelength.
- \(C_1 = \sum_{i \in \text{Nets}} (\alpha_i w_i + \beta_i h_i) \)
- \(\alpha_i, \beta_i \) are horizontal and vertical weights, respectively. \((\alpha_i=1, \beta_i=1 \Rightarrow \text{half perimeter of the bounding box of Net } i)\)
- Critical nets: Increase both \(\alpha_i \) and \(\beta_i \).
- If vertical wirings are “cheaper” than horizontal wirings, use smaller vertical weights: \(\beta_i < \alpha_i \).

\(C_2 \): penalty function for module overlaps.
- \(C_2 = \gamma \sum_{i \neq j} O_{ij}^2 \), \(\gamma \): penalty weight.
- \(O_{ij} \): amount of overlaps in the \(x \)-dimension between modules \(i \) and \(j \).

\(C_3 \): penalty function that controls the row length.
- \(C_3 = \delta \sum_{r \in \text{Rows}} |L_r - D_r| \), \(\delta \): penalty weight.
- \(D_r \): desired row length.
- \(L_r \): sum of the widths of the modules in row \(r \).

Annealing Schedule

- \(T_k = r_k T_{k-1}, \quad k = 1, 2, 3, \ldots \)
- \(r_k \) increases from 0.8 to max value 0.94 and then decreases to 0.8.
- At each temperature, a total \# of \(nP \) attempts is made.
- \(n \): \# of modules; \(P \): user specified constant.
- Termination: \(T < 0.1 \).
Placement by the Genetic Algorithm

Genetic algorithm: A search technique that emulates the biological evolution process to find the optimum.

Generic approaches:
- Start with an initial set of random configurations (population); each individual is a string of symbol (symbol string ↔ chromosome: a solution to the optimization problem, symbol ↔ gene).
- During each iteration (generation), the individuals are evaluated using a fitness measurement.
- Two fitter individuals (parents) at a time are selected to generate new solutions (offsprings).
- Genetic operators: crossover, mutation, inversion

In the example, string = [aghcbdife]; fitness value = 1/\sum (i,j) \in E wij d i j = 1/85.

Genetic Operator: Crossover

- Main genetic operator: Operate on two individuals and generates an offspring.
 - \([bidef] [aghc] \frac{1}{86} + [bidef] [gcha] \frac{1}{110} \rightarrow [bidef] [gcha] \frac{1}{63}\).
 - Need to avoid repeated symbols in the solution string!

Partially mapped crossover for avoiding repeated symbols:
 - \([bidef] [gcha] \frac{1}{86} + [aghc] [bidef] \frac{1}{85} \rightarrow [gcha] [bidef]\).
 - Copy idef to the offspring; scan \([bidef] [gcha]\) from the left, and then copy all unRepeated genes.
Two More Crossover Operations

- **Cut-and-paste + Chain moves:**
 - Copy a randomly selected cell and its four neighbors from parent 1 to parent 2.
 - The cells that earlier occupied the neighboring locations in parent 2 are shifted outwards.

- **Cut-and-paste + Swapping**
 - Copy $k \times k$ square modules from parent 1 to parent 2 (k: random # from a normal distribution with mean 3 and variance 1).
 - Swap cells not in both square modules.

Genetic Operators: Mutation & Inversion

- **Mutation**: prevents loss of diversity by introducing new solutions.
 - Incremental random changes in the offspring generated by the crossover.
 - A commonly used mutation: pairwise interchange.

- **Inversion**: $[bidxefgha] \rightarrow [bid|hcgfe|a]$.

- Apply mutation and inversion with probability P_μ and P_i respectively.
Algorithm: Genetic_Placement($N_p, N_g, N_o, P_i, P_{\mu}$)

1 * N_p: population size; *
2 * N_g: \# of generation; *
3 * N_o: \# of offspring; *
4 * P_i: inversion probability; *
5 * P_{μ}: mutation probability; *
6 \begin{algorithmic}
7 1. begin
8 2. ConstructPopulation(N_g); * randomly generate the initial population *
9 3. for $j \leftarrow 1 \text{ to } N_g$
10 4. Evaluate Fitness(population(N_g));
11 5. for $i \leftarrow 1 \text{ to } N_p$
12 6. for $j \leftarrow 1 \text{ to } N_o$
13 7. $(x, y) \leftarrow \text{ChooseParents};$ * choose parents with probability * fitness value *
14 8. offspring($j) \leftarrow \text{GenerateOffspring}(x, y);$ * perform crossover to generate offspring *
15 9. for $h \leftarrow 1 \text{ to } N_p$
16 10. With probability P_{μ}, apply Mutation(population(h));
17 11. for $h \leftarrow 1 \text{ to } N_p$
18 12. With probability P_i, apply Inversion(population(h));
19 13. Evaluate Fitness(offspring(j));
20 14. population $\leftarrow \text{Select}(\text{population, offspring, } N_o)$;
21 15. return the highest scoring configuration in population;
22 16. end
23 \end{algorithmic}

Genetic Placement Experiment: GINIE

- Termination condition: no improvement in the best solution for 10,000 generations.
- Population size: 50. (Each generation: 50 unchanged throughout the process.)
- Each generation creates 12 offsprings.
- Comparisons with simulated annealing:
 - Similar quality of solutions and running time.
 - Needs more memory.