Sample Solutions to Homework #2

1. (10)

To apply simulated annealing, we must define 4 items: the solution space, the neighborhood structure, the cost function, and the annealing schedule.

 (1) Solution space: We divide all cells into two set C_1 and C_2, where $C_1 \cap C_2 = \emptyset$ and both meets balance criteria.

 (2) Neighborhood structure: We randomly select a cell, move it to the opposite side, and then get two new cell sets C'_1 and C'_2, which is the neighborhood of the original solution.

 (3) Cost function: We define ϕ representing the cutsize between C_1 and C_2 as our cost function. The objective of our simulated annealing is to minimize the cost function.

 (4) Annealing schedule: See the following procedure:

 1. Get a randomly initial partition C_1, C_2;
 2. Set the initial temperature $T > 0$;
 3. while not yet “frozen” do
 4. for $1 \leq i \leq P$ do
 5. Pick a random cell c in $C_1 \cup C_2$;
 6. $\Delta \leftarrow \text{cost}(\phi') - \text{cost}(\phi)$;
 7. if $\Delta \leq 0$ then $C_1, C_2 \leftarrow C'_1, C'_2$;
 8. if $\Delta > 0$ then $C_1, C_2 \leftarrow C'_1, C'_2$ with probability $e^{-\Delta T}$;
 9. $T \leftarrow rT$;
 10. return C_1, C_2

2. (20)

 (a) (5) No, the balloting property is not satisfied because the number of operands is equal to the number of operators for subexpression $E_8 = 12V34HVH$.

 (b) (5) No, E is not a normalized Polish expression because the balloting property is not satisfied.

 We apply the M_3 operation to make E be a normalized Polish expression E':

 $$ E = 12V34HVH5 \xrightarrow{M_3} E' = 12V34HV5H. $$

 (c) (5) Note that E is not a Polish expression because the balloting property is not satisfied. We can only show the corresponding tree for E'. The corresponding tree is shown in Figure 1.

 (d) (5) The area of the smallest bound rectangle is 42. The steps are shown in Figure 2.
3. (10) Because the y coordinate of an element in list \(C \) equals \(\max\{q_i, y_j\} \), \(\forall 1 \leq i \leq m, 1 \leq j \leq n \), there are at most \(m + n - 1 \) different kinds of y coordinate in \(C \). (At least one element with the smallest y coordinate will be deleted.)

And since the element \((c_j, d_j)\) would be deleted if there exists another element \((c_i, d_i)\) in \(C \) with \(c_i \leq c_j \) and \(d_i \leq d_j \), for those elements with the same y coordinate in \(C \), only one element (which has the smallest x coordinate) can survive from deletion.

Therefore, the resulting list \(C \) has at most \(m + n - 1 \) elements.

4. (35)

(a) (5) See Figure 3.

\[\Gamma_+ = eca db \]
\[\Gamma_- = acbde \]
(b) (5) See Figure 4.

Figure 4: The horizontal and vertical constraint graphs G_H and G_V for S.

(c) (5) We can derive the length of the longest path in $G_H (s \rightarrow a \rightarrow d \rightarrow t)$ is 7, and in $G_V (s \rightarrow b \rightarrow d \rightarrow e \rightarrow t)$ is 8. Hence, the cost is $7 \times 8 = 56$.

(d) (5) To derive a B*-tree, we first compact the floorplan to left and down as shown in Figure 5(a). Then, we can get the B*-tree (Figure 5(b)).

(e) (5) Module a: $(0,0)$,
Module b: $(0 + 3, 0) = (3, 0)$,
Module c: $(0, 0 + 2) = (0, 2)$,
Module d: $(0 + 2, 0 + 3) = (2, 3)$,
Module e: $(0, 3 + 2) = (0, 5)$.
Area cost = $6 \times 8 = 48$.

(f) (5) See Figure 6.

(g) (5) $\Gamma_S = acbde$ (C_H and C_V are the same with Figure 6.)

5. (15)

(a) (5) We first decompose the L-shaped modules into rectangular ones (Figure 7(a)). Then, the B*-tree can be constructed (Figure 7(b)).

(b) (5) Let W_i and H_i be the width and height of module i, respectively.
$1a : (0,0)$
Figure 6: The TCG for Problem 4.

Figure 7: (a) The placement after the decomposition. (b) The corresponding B*-tree for the left placement.

2 : (0 + W_{1a}, 0) = (W_{1a}, 0)
3 : (W_{1a} + W_2, 0)
4a : (W_{1a} + W_2, H_3)
5 : (W_{1a} + W_2 + W_{4a}, H_3)
6 : (W_{1a} + W_2 + W_{4a} + W_7, H_3)
4b : (W_{1a} + W_2, H_3 + H_{4a})
9a : (W_{1a} + W_2, H_3 + H_{4a} + H_{4b})
10 : (W_{1a} + W_2 + W_9a, H_3 + H_{4a} + H_{4b})
9b : (W_{1a} + W_2, H_3 + H_{4a} + H_{4b} + H_{9a})
1b : (0, H_{1a})
7a : (0, H_{1a} + H_{1b})
7b : (0 + W_{7a}, H_{1a} + H_{1b}) = (W_{7a}, H_{1a} + H_{1b})
8 : (W_{7a}, H_{1a} + H_{1b} + H_{7b})

(c) (5) For the nodes corresponding to the modules along the bottom boundary of a floorplan, the nodes are on the left-most branch of B*-tree. For the nodes corresponding to the modules along the left boundary of a floorplan, the nodes are on the right-most branch of B*-tree.

6. (10) In general, the advantages of the Λ-shaped multilevel framework are the drawbacks of V-shaped multilevel framework and vice versa. The Λ-shaped framework has the view of local configuration at earlier stages and therefore good for local effects. However, such a framework lacks of global view. For the V-shaped framework, it has the view of the global configuration at earlier stages and good for global effects. Take a full-chip routing problem as an example. To achieve high routability, it is desirable to use a Λ-shaped routing framework since the routability
is a local effect. For a good circuit performance, using a V-shaped routing framework may be desirable.

7. (10) Let \((x_i, y_i)\) be the coordinate of the lower left corner of module \(m_i\), and \(y\) the top boundary of the floorplan. For the topological relationship of modules, we introduce the following binary variables:

\[r_i : m_i \text{ is rotated.} \]

\[p_{ij}, q_{ij} : \text{Specifier of nonoverlap constraints.} \]

The constraints of the mixed-ILP are described as follows:

\[
\begin{align*}
\text{minimize} & \quad y, \\
\text{subject to} & \quad x_i, y_i \geq 0, i = 1, 2, 3 \\
& \quad p_{ij}, q_{ij}, r_i \in \{0, 1\}, i = 1, 2, 3, j = \text{mod}(i, 3) + 1 \\
& \quad x_1 + 2(1 - r_1) + 3r_1 \leq x_2 + 10(p_{12} + q_{12}) \\
& \quad y_1 + 3(1 - r_1) + 2r_1 \leq y_2 + 10(1 + p_{12} - q_{12}) \\
& \quad x_2 + 5(1 - r_2) + 4r_2 \leq x_1 + 10(1 - p_{12} + q_{12}) \\
& \quad y_2 + 4(1 - r_2) + 5r_2 \leq y_1 + 10(2 - p_{12} - q_{12}) \\
& \quad x_2 + 5(1 - r_2) + 4r_2 \leq x_3 + 10(p_{23} + q_{23}) \\
& \quad y_2 + 4(1 - r_2) + 5r_2 \leq y_3 + 10(1 + p_{23} - q_{23}) \\
& \quad x_3 + 3(1 - r_3) + 6r_3 \leq x_2 + 10(1 - p_{23} + q_{23}) \\
& \quad y_3 + 6(1 - r_3) + 3r_3 \leq y_2 + 10(2 - p_{23} - q_{23}) \\
& \quad x_3 + 3(1 - r_3) + 6r_3 \leq x_1 + 10(p_{31} + q_{31}) \\
& \quad y_3 + 6(1 - r_3) + 3r_3 \leq y_1 + 10(1 + p_{31} - q_{31}) \\
& \quad x_1 + 2(1 - r_1) + 3r_1 \leq x_3 + 10(1 - p_{31} + q_{31}) \\
& \quad y_1 + 3(1 - r_1) + 2r_1 \leq y_3 + 10(2 - p_{31} - q_{31}) \\
& \quad x_1 + 2(1 - r_1) + 3r_1 \leq 10 \\
& \quad y_1 + 3(1 - r_1) + 2r_1 \leq y \\
& \quad x_2 + 5(1 - r_2) + 4r_2 \leq 10 \\
& \quad y_2 + 4(1 - r_2) + 5r_2 \leq y \\
& \quad x_3 + 3(1 - r_3) + 6r_3 \leq 10 \\
& \quad y_3 + 6(1 - r_3) + 3r_3 \leq y
\end{align*}
\]

\(y\) is the objective such that the floorplan area can be shrink. Equations 2 and 3 specify the types of variables and trivial constraints. Equations 4–7 are the nonoverlap constraints for \(m_1\) and \(m_2\). Equations 8–11 are the nonoverlap constraints for \(m_2\) and \(m_3\). Equations 12–15 are the nonoverlap constraints for \(m_3\) and \(m_1\). Equations 16–21 are the constraints to fit modules into the outline.

8. (15)

(a) (5) Adding a new operator \(Z\) representing Z-dimension slicing.

(b) (5) Similar to MP tree, we use several B*-tree to represent layers of modules. During packing, B*-trees in lower layers are packed before those in higher layers, maintaining Z-dimension contour.

(c) (5) We use two sequence pairs for 3D floorplanning one for X-Y plane loci, and one for X-Z (or Y-Z) plane loci. Packing with these sequence pairs can get the correct Z-dimension location for each module.

9. (25) DIY problem