Sequential ATPG

® Introduction

® Time-frame expansion methods

® Simulation-based methods (* not in exam)
+ CONTEST [Agrawal & Cheng 88]
+ Genetic Algorithm

® |[ssues of Sequential ATPG

® Conclusions AP

Simulation-Based Methods

® Idea: use logic/fault simulators to guide ATPG [Seshu 62]
¢ Simulation is faster than ATPG
® Approach
¢ Generate candidate test vectors
¢ Fitness* of candidates evaluated by logic or fault simulation
¢ Select best candidate based on a certain cost function

® Advantage:
¢ No time frame expansion. Easy memory management

Simulate Many Vectors and Choose Best

CONTEST- Concurrent Test Generator
for Sequential CirCults jagrawai & cheng g9

e Based on event-driven concurrent fault simulator
® Search for test vectors guided by cost functions
® Three phases

@ Initialization

@ Concurrent fault detection

® Single fault detection

1. Inttialization Phase

® Start with arbitrary test vector
¢ Start with FFs in unknown states

® Use logic simulation (not fault simulation)
¢ Cost = number of FFs in unknown state

¢ Trial vectors are generated by single-bit change of the current
vector. A trial vector is accepted and becomes the current
vector if it lowers the cost

® Stop this phase when cost drops below a desired value

QUIZ

B J ‘ AB | coSst = number
of unknown FF
¢ 00 |1
= il 01
10

VLSI Test 8.4 © National Taiwan University

2. Concurrent Fault Detection Phase

® Start with fault simulation of generated initialization sequence
¢ Detected faults are dropped from the fault list
® Compute the cost of the last vector
¢ Cost of an undetected fault f
— COST(f) = minimum distance of its fault effect to a PO
— distance = level of logic gates
¢ Cost of a vector
— Sum of costs of all undetected faults
® Trial vectors are generated by single-bit change
¢ Only accept the vectors that reduce the cost

Example

000
A -—
0 G0 [0 oo [A8[ceta
K
I901 — 001. D-:J [00 | ‘
c 110 10 |2 <]
FFE 01 |
<0
DDO
A —-)
AB = distance
110" ga0 D’'D"1 D oD to 56
010 111 {>cj « 10 |0
. D00 1110
00 |«
FF
o1

Test Vector Sequence: AB =(01), 10, 11

QUIZ

A010)

AB | cost =distance
. K of D or D’ to PO
001 _D'D" ~ -
c SAl 10
FF 01
cO

VLSI Test 8.4 © National Taiwan University

Need Phase 3

® Experience shows test patterns for all stuck-at faults are
usually clustered instead of being evenly distributed

® \When only a few faults are left, their tests will be isolated
vectors and we need a different test generation strategy

Phase 2: Concurrent Fault Detection

9

Vector space

= o

-
/ o

0aY ——0
o -2 Initial vector
GD 9] nitial vecto

]

Vector space

N

o

Phase 3: Single Fault Detection

3. Single Fault Detection Phase

® Start with any vector

® Generate new vectors by single-bit change to reduce cost of the
selected fault until it is detected

¢ The lowest cost fault is picked first

® Cost of afault f at signal line g is
¢ If not activated yet:
KC(f)+ Co(f)
K = constant ; Cy=activation ;C,=propagation cost
¢ If activated:
Min(Cy(i)), ie the set of inputs to signal g

10

C,and DC

® Activation Cost, C,
¢ C,(g stuck-at-v) = DC,(g) = dynamic controllability of line g at v’
® Dynamic Controllability, DC

¢ Similar to sequential controllability in SCOAP except logic
values known

DCO(C) DC(C)
A C min[DC?(A),DC’(B)], if C=1or x | DC(A) + DCY(B) ,if C=0or x
B 0 , ifC=0 0 ,ifC=1
A DCO(A) + DC(B) , if C=1 or X min[DCY(A),DCY(B)] , if C=0 or x
B :D_ Clo | if C=0 0 | if A=1
DCY(A) , iIf C=1 or x DCO(A) , iIf C=0 or X
A—>e—c |, if C=0 0 if c=1
Primary inbuts 1 ,1IfC=1orx 1 ,1f C=0 or x
e/ 0 if C=0 0 if C=1
C = FF(A) DCOY(A)+K i_f C=1lorx DCYA)+K* | i_f C=0or x
0 , if C=0 0 , if C=1

11 * K is a chosen constant

C, and DC Example

® C,(g, stuck-at0) =DC,(g,) =10 < easier

® C,(g, stuck-at 1) = DC,(g,) =100

04)

(10,0)

(0.4)

1

jo—

(O,

gl
0

16)

(0,10)

0 0
D (0,10)

0

(DCY, DCY) = (6,0)

12

FF ;DX

X (100,10)

g2

(100,104)

Propagation Cost, C;

® C,(g9) = Dynamic Observability of node g

13

Dynamic observability (DO)
¢ Similar to combinational observability in SCOAP
¢ Measure the effort to observe the fault on a given node
— the number of gates between N and PO’s, and

— the minimum number of Pl assignments required to
propagate the logical value on node N to a primary output.

Dynamic Observability (DO)

® Similar to combinational observability in SCOAP

DO(A)

C | Do(c)+DCyB)+1

DO(C) + DC(B) + 1

ieie

C DO(C) +1

— C

A ! min[DO(C,),DO(C,)]
 C,

Primary outputs 0

14

C, and DO Example

® C,(9,)=D0O(g,) =1

® C,(g9,) =DO(g,) =1 <:

DO=1
DC=(0,16)
0 0>
DC=(0,4) :D” bO=0
)0 C=(0,4) | DO =1
(0,4)
—j_ DO=1
X
)
DC=(DC?, DC?) = (6,0) FF g2 D DO=0
X
DC=(100,104)
DO=1

15

® Choose gl SAO as target fault to generate test vector

16

DC=(0,4)

Total Cost

® Faultg,: C,=10, C,=1
® Faultg,: C,=100,C,=1

1
DC=(DC?, DCY) =

DO =1
10,0 DC=(0,16)
’ 1 91 0 0
oo) -
j’_ DO=1
0 DO =101
FF
(6,0) g2
X

DC=(100,104)
DO =1

DO=0

17000

17

Sequential ATPG

Simulation-based methods (* not in exam)

ca§§ XK

+ Genetic Algorithm

Genetic Algorithms (GA) [Holiand 1975]

® General Principle: Survival of fittest(s)
¢ Keep a population of feasible solutions, not just one
¢ Parent population generates child population
— by gene crossover, mutation etc
¢ Select only best children, remove weak children
¢ Repeat the above for many generations

evaluation selection

B B O B B pxg g
| 1 o

I N N O m o X

] @
m-mm C"_'b

mutation crossover

[www.jade-cheng.com]

18

Crossover and Mutation

® Test vectors are represented by bit-stream “gene”
® Crossover: Two feasible solutions generate child by switching gene

01011 || 001 l 01011 | 110

10000 | | 110 10000 | | 001

® Mutation: some gene can change by a random probability

01811001 - 01111001

19

Pseudo Code of GA

0O NO O1T B~ WD P

(o)

10
11
12
13
14
15

GENETICALGORITHM
pop = set of initial solutions

childpop =9
for (i = 1 to (n x pop.size)) // n times size

crossover = random O or 1

If (crossover)
parentl = random_choose(pop)
parent2 = random_choose(pop)

child = crossover(parentl, parent2)

else /7T mutate
parent = random_choose(pop)
child = mutate(parent)

childpop = childpop w{child}

pop = evaluate&select(childpop)
while (!stop)
16 return (best solution)

20

® Need to decide

1. initial solution

2. corssover/ mutation
3. evaluate & select

4. stop criterion

evaluation selection

-

mutation Crossover

Summary

® Simulation-based methods
¢ Randomly generate many trial test vectors
¢ Evaluate test vectors by simulation and pick the best
¢ Need many testability measure to help smart decision
® Advantages
¢ Better memory management than time frame expansion
¢ Timing can be considered
¢ Use genetic algorithm to optimize
® Disadvantages
¢ Cannot identify untestable faults
¢ Test length can be longer than time frame expansion

21

