2011 IC/CAD Contest
Introduction to EDA

National Taiwan University
Spring 2011

AT R R ek (CAD) # 8 B v

11 FERA ST RRFAUTET NH
F 3 (CAD) v gl et

http://cad_contest.cs.nctu.edu.tw/cadll/

Outline

Structural checking of low-power logic
design with voltage island & power gating

Formal property qualification
Multi-core static timing analysis

Numerical optimization on photo-mask —
Model-based optical proximity correction

3D IC design partitioning with power
consideration

Gated clock cloning for timing fixing

Outline

Al
A2
A3
Bl
B2
B3

Problem Al

Structural checking of low-power logic
design with voltage island & power gating
Low power techniques:

Multi-supply voltage (MSV)
Power gating (PSO)

Low power design validation:
Simulation (ineffective)
Structural checking (to be implemented)

Problem Al

Problem description & 1/O format

Input:
a design in gate-level Verilog netlist
specification of power intent
low power cell library

Output:

All design errors according to 10 pre-defined low-
power design rules

Diagnosis information (location, type, occurrence of
design error)

Problem Al

Example

Input - Design file

module Top
input iso,
output outl,
Blockl ul
BlockZ uZ
Block3 u3
endmodule

(iso,
in;

in, outl, out2);
out?2;

(.in(in),
(.in(nl),
(.in(nl),

.out(nl));
.1so(iso .out (outl));

)
) s
.out (out2));

module Blockl (in, out);
input in;
output out;
SC_INV u0 (.A(in), .Y (out));
endmodule
module Block2 (iso, in, out);
input iso, inj;
output out;
IsoAND TL 1P u iso (.A(in), .Ib(iso), .¥(nl));:
SC INV ul (.A(nl), .Y (out)):
endmodule
module Block3 (in, out);
input in;
output out;
SC_INV ul (.A(in), .Y (out));

endmodule

Problem Al

Example (cont'd)

Input — Cell library

module SC_INV (A, Y):
input A;
output ¥;
not (Y, A):
endmodule
module IsoAND TL 1P (A, Ib, Y):
input A, Ib;
output ¥;
and (Y, Ib, A);
endmodule

Problem Al

Example (cont’'d)

Input - Power intent specification

define isclation cell -cells { IsoAND TL 1P } -enable Ib \
-valid location to
create power domain -name TDD -boundary ports { in } \
—-instances { ul }
create power domain -name TDR -boundary ports { outl out2 iso } \
—instances { u2 u3 } \
-default

L]

create nominal condition —name onlL -voltage 1.
create nominal condition -name off -voltage 0
create power mode -name Ml -domain conditions {TDDEonL TDRE@onL} \
—default

create power mode -name M2 -domain conditions {TDDE@off TDRE@onL}
create isolation rule -name isol -from TDD -to TDR \

—isolation condition !iso \

-isolation output low

Problem Al
Example (cont’d)

Expected Ouput - Report ISO 4

[ISO_4] [Power domain crossing does not have user-detined isolation cell] [Occurrence:1]
- [#1] [Pin ‘u3/in’ in rule ‘isol’ does not have isolation cell]

Problem Al

Example (cont’d)

Figure 1. Missing isolation cell in the OFF/ON domain crossing (ISO_4) in the example 3.1

Problem Al

Languate/platform

_anguage: C or C++

Platform: Linux OS

mplementation according to specified syntax

Evaluation
Correctness
CPU time and memory

Outline

Al
A2
A3
Bl
B2
B3

Problem A2

Formal property qualification

Informal
Specification

Enviranment

r

I

J_{

Formalization and
Implementation

“-__,-d""ﬂ-ﬂd_

Design
Implemean,
-x_bf

Formal

"| Properties
‘M___FP/-‘-F

A[Model Checking H '""gg:;":sr‘:’"]

4

|

Standard verification flow
based on model checking

Figure 1: The formal verification process.

Problem A2

Model checking

Verify whether a design satisfies some (un)desirable
properties

Open problem: How many properties are enough for
complete verification?

Mutation based analysis (to be implemented)

A design is changed (mutated) into a set of mutants so
as to introduce behavioral errors

A set of properties/tests is analyzed for each mutant to
see which of the properties detect the difference
between the design and the mutant

Problem A2

/O format
Input:
Design M and properties PJi], fori =1,...,n, are given in
DIMACS CNF format

Mutation types
A literal always positive
A literal always negative
A literal is negated

Mutants of M are denoted MJi], fori= 1, ..., m

Output:

The set of “live” mutants

A mutant M[K] is live if it pass all P[i], that is, SAT(M[K], P[i]) =
trueforalli=1, ..., n

Problem A2

Example

¢ Design: M
C

p cnf S0 80
16 23 42 0
-16 23 42 0
26 41 -42 0
-26 41 -42 0
32 -41 -42 0
615 -410
-6 15 -32 0

1 -32 46 0

-1 -32 46 0
-15 -41 -46 0
-15 -21 -46 0

Figure 2: Design M: written in DIMACS CNF format.

Problem A2

Example (cont’'d)

¢ Property: P[1]
@

p cnf 3 2

] -30

23-10

Figure 3: Property P[1]: written in DIMACS CNF format.

Problem A2

Example (cont’'d)

¢ Concatenation (M, P[1])
c

p cnf 52 82
16 23 42 0
-16 23 42 0
26 41 -42 0
-26 41 -42 0
32 41 -42 0
615 -41 0

-6 15 -32 0

| -3246 0

-1 -3246 0
-15 -41 -46 0
-15 =21 -46 0

Literals & clauses may increase

due to the concatenation

Append the clauses of
PllJtoM

Figure 4: The concatenation of M and P[1]: (M, P[1]).

Problem A2

Example (cont’'d)

¢ Mutant: M[2]

o! literal 42 is always positive
p cnf 50 &80
16 23 42 0
-16 23 42 0
26 41 A2 d“.
26 41 42 0
32 41042 p'
6 15 -4170
-6 15 -32 0
1 -32 46 0
-1 -3246 0
-15 -41 -46 0
-15 =21 -46 0

Here is the program

change

Figure 5: A Mutant M|2]: written in the DIMACS CNF format.

Problem A2

Example (cont’'d)

¢ Mutant: M[2]

o literal 42 is negated compared with M
p cnf 50 80
16 23 5'112“4‘}
116 23 -42'0
26 41142 oli
226 4142 ¢
32 -41“42,:‘6
6 15 -41 0
-6 15 -32 0
| -32 46 0
-1 -32 46 0
-15 -41 -46 0
-15 -21 -46 0

Here is the program

change

Figure 6: A Mutant M[4]: written in the DIMACS CNF format.

Problem A2

Example (cont’'d)

10

M 1
M 2
M 3
M 4
M 5
M 6
M_7
M 8
M 9
M_10

Figure 7: mutation_file

Problem A2

Example (cont’'d)

5

P I
P2
P 3
P 4
P 5

Figure 8: property file

Problem A2

Example (cont’'d)

M 2
M 5
M 10

Figure 9: Output file format

Problem A2

Popular state-of-the-art SAT solvers
MiniSAT
PrecoSAT

See SAT solver competitions
http://baldur.iti.uka.de/sat-race-2010/
http://www.satcompetition.org/

Outline

Al
A2
A3
Bl
B2
B3

Problem A3

Multi-core static timing analysis (STA)
STA validates the timing performance of a
(combinational) design by indentifying timing
“true” and “false” paths

Multi-core computer can be exploited to
accelerate STA

Problem A3

Terminology

True path

A path is true if there exists an input vector that
sensitizes the path

We consider sensitization under the floating mode
delay model

Floating mode delay model
All signals of a gate are initially of X (unknown) value

3-valued simulation is performed for value update
from inputs to outputs

Problem A3

Example

True path

controlling value

A ~___true path
X
. ‘
=
A
X
>

controlling value

A __true path
X T
>
=
A
X
>
T

controlling value

A ____true path
X T
»
=
A
X
»
T+1

T+1

controlling value
A
X
»
=
cortrolling value
X

controlling value
A
X

T+1

_true path

true path

__ true path

Figure3: An Example of AND gate Controlling value

T+2

Problem A3

Example (cont’d)
True path

non- controlling value non- controlling value
A ____true path A ~true path
X T X T
5 A | A
Tl —> | x § P ; X
| - | non- controlling value)]
A — » A b
- » N 5
.y | " true path
T 0

Figure4: An Example of AND gate non-controlling value

Problem A3

Input example

module NANDZ2 (Y, A, B);

Library cell input A, B
output Y;
nand (Y, A, B);
endmodule

module OR2 (Y, A, B);
input A, B;
output Y;
or (Y, A, B);

endmodule

Figure 5: An example of Verilog model

module multiplier2 (A, B, M);
Problem A3 SRR

input [1:0] B:

output [2:0] M;

wire Nl 2, 13, 8, NS; ne; 117 ; N8}

Input example
AND2 Ul
Verilog design (.A(nl), .B(B[1]), .Y(MI[2]));

ANDZ U2 { JA{ALL])s -BlH2); Y1))i
NAND2 U3 An3), -Blnd), X(nZ))
NAND2 U4

(Bnb),; Blae), TMLL]))3
NAND2 U5 (.A(n3), .B(n7), .XY(ne));
NOT1 U6 { ~Aing), Y{nd)):
NARDZ2 OT 4 . Alnd),; Blnd); . YIins))1
NANDZ2 US8

(~-.&(B[Q]), .BlA[l]), .XY(nB)):
NOTL U8 { AN, -X(d))3
NAND2 U10

(~B(AIQ])y BIBI[1l)s X7)i
AND2 Ull

(.A(A[O]), .B(B[O]), .X¥(M[O]))z

endmodule

Figure 6: An example of Verilog gate-level netlist - 2 bits multipiler

Problem A3

Output example

Header { A True PathSet }
Benchmark { casel }
Path { 1 }

A True Path List

{
Pin type Incr Path delay
Al0] (in) 0 0 r
U10/Aa (NANDZ) 0 0 r
u10/Y (NANDZ2) 3 1 r
ug/a (NOT1) 0 1 f
ug/y (NOT1) 1 2 f
U¥B (NANDZ) 0 2 r
U3y (NAND2) 1 3 r
U2/8 (AND2) 0 3 f
U2y (AND2) | 4 f
UyA (ANDZ) 0 4 f
uyy (AND2) § 5 f
M[2] (out) 0 5 f
Data Required Time 10
Data Arrival Time 5
Slack 5

}

Input Vector

{
Al0] = r
Al1] 1
BlO] = 1
B[] = 1

}

Path { 2 }

A True Path List

i
Pin type Incr Path delay
Al0] (in) 0 0 f
u10/a (NANDZ) 0 0 f
u10/Y (NAND2) 1 1 f
U9/a (NOT1) 0 1 r
U9y (NOT1) 1 2 r
uye (NAND2) 0 2 f
U3Y [NAND2) i 3 f
Uz/B (AND2) 0 3 r
U2y (AND2) : | 4 r
Ui/A (AND2) 0 4 r
uyy (AND2) 1 5 r
M[2] (out) 0 5 r

Problem A3

Example
Floating mode simulation

3. .,

A[0] >

B[O]

=]

Figure 9: An example for floating mode simulation

Problem A3

Al1]
Al0]
B[1]

B[0]

Example

A

Paths and slacks

v | M[O]
(ViR}
- Yol
b 4 - A Yo e + u7
= v ol M)
e U4
A
4 Y I Y f
B B
‘ T U3 us
Y e——f Yo A ¥ = .
ug B ¥
u10 Uz B
ul

Figure 8: Schematic of example design

Table 2: All paths list of example design

Path | Slack | Path Path List
Type
1 5 r A[1]=U8/B—US/Y—=U6/A—U6/Y—U3/A—U3/Y—=U2B—-U2/Y=Ul/A—=Ul/Y—M[2]
¥) f All1]=U8/B—UBY—Ub/A—U6/Y—UIA—U3Y—-U2/B—-U2/Y—-UI/A—-Ul/Y—M[2]
3 5 r A[0]=Ul0/A—=U10/Y =U9/A—U9/Y—U3/B—U3/Y—=U2/B—U2/Y=Ul/A=-UI/Y—M|2]
4 3 f A[0]=U10/A—=U10/Y = UYA—-UIY—-U3/B—-U3Y—-U2/B—-U2ZY—-Ul/A—=UI/Y—M|[2]
5 5 r B[1]—=Ul10/B—U10/Y =UYA—-UYY—U3/B—U3Y—=U2B—-U2Y—=Ul/A=-UI/Y—M[2]
6 5 f | B[1]—=Ul0/B—=U10/Y—=U9%A—U9Y—-U3/B—U3/Y-U2B—-U2Y-UI/A=Ul/Y—M[2]
T 5 r B[0]—U8/A—UB/Y—Ub/A—U6/Y —=UIA—U3Y—-U2/B—U2/Y—=Ul/A—U1/Y—M[2]
8 5 f | B[0]=U8/A—US/Y—=U6/A—U6/Y—U3/A—-U3Y—-U2/B—U2/Y—-Ul/A—-Ul/Y—M][2]
9 6 r A[0]=UI0/A—-U10/ Y = UYA—UYY—-UTA—-UTY—-U4A—-U4Y—M[1]
10 6 f | A[0]=UI0/A—=U10/Y =UYA—=UIY—=UTA—=UTY—-UdA—U4Y—M[1]
11 6 I A[l1]=U8/B—UBY—Ub/A—U6/Y = US/A—US/Y—=U4/B—U4Y—-M[1]
12 6 f | A[1]—=U8/B—UB/Y—U6/A—Ub6/Y—U5/A—US5/Y—U4/B—U4/Y—M[1]
13 6 r B[0]—=UR/A—UR/Y—U/A—U6/Y—=U5/A—US5/Y—=U4/B—U4/Y—M[1]
14 6 f | B[0]=U8/A—U8/Y—=U6/A—U6/Y—US/A—US5Y—=U4/B—U4/Y—=M[1]
15 6 r B[1]—U10/B—=U10/Y =UYA—-UYY—-UT/A—=UTY—-U4/A—U4/Y—-M[1]
16 6 f | B[1]=Ul0/B=U10/Y =UYA—UYY—=UTA—UTY U4/ A—U4/Y—M[1]
17 7 r | A[0]=UI0VA=UL0Y —US/B—US/Y—=U4/B—U4/Y—=M[1]
18 7 f | A[0]=UI0VA—=U10/Y=U5/B—US/Y —U4/B—U4/Y—M[1]
19 7 r | All1—=U8/B—US/Y—=U7/B—U7/Y—-U4/A—U4/Y—=MI1]
20 7 f | A[l]=US8/B—U8Y—-UTB—-UTY—-U4/A—-U4Y—-M[1]
21 7 r B[1]—=U10/B—U10/Y —=US5/B—U5/Y —U4/B—U4/Y—M[1]
22 7 f | B[1]=Ul0/B=U10/Y—=US5/B—U5/Y —=U4/B—U4/Y—M[1]
23 7 r | BO]=US/A—US/Y - UT/B—UT/Y—>U4/A—Ud/Y —M[1]
24 7 f | B[0]=U8/A—U8/Y—=U7/B—=U7/Y—=U4/A—-U4/Y—=M[1]
25 8 r A[l]=U2/A—=U2Y =Ul/A—=UI/Y—M][2]
26 8 f | A[l]=U2/A-U2Y - Ul/A—-UI/Y—M[2]
27 9 r A[0]=UI/A—=U11/Y—MJ[0]
28 9 f | A[0]=UlI/A—=U11/Y—=M[0]
29 9 r B[0]—=U11/B—=U11/Y—=M[0]
30 9 f | B[0]=Ull/B=UIl/Y—M[0]
31 9 r | B(1] =UI/B=UI/Y—M[2]
32 9 f | B[1]=U1/B—Ul/Y—M][2]

Problem A3

Multi-core computing environment
CPU: Intel Xeon X7350 2.93G x 16
Memory: 128GB

Outline

Al
A2
A3
Bl
B2
B3

Problem Bl

Numerical optimization on photo-mask — Model-
based optical proximity correction

Optical Proximity Correction (OPC) plays an
important role in modern IC manufacturing

Model-Based OPC (MBOPC) optimizes the
mask pattern numerically based on a given
lithography model

MBOPC algorithm (to be implemented)

To achieve better printing fidelity for a given set of
design patterns using a simplified lithography model

Problem Bl

Motivation

Litho | u u |
process | n Ij |

Figure: Challenge of modern lithography process ("OPC and image optimization using localized frequency
analysis“, SPIE2002).

Litho
process

Problem Bl

OPC methods
Rule-based (fast)

Model-based (achieve better optimization)
. Table (width, space)
OPC = mask b|asmg
process
. Simulation-based
opC edge push-pull by
lithography model

Figure: lllustration of data pre-processing and two traditional methods of OPC.

Problem Bl

Input format
Target design patterns given in CIF mask format

Information script file

Parameters of lithography process model (sum of
coherent system, SOCYS)

Manufacturability constraints of mask patterns
Information about interested evaluation box

Output format
Optimized mask pattern in CIF format
Image result within interested evaluation box
Information about optimization process

Problem Bl

Example
Information script file

Contents after the pound sign are comments. Format of information script file <.isf>, please load and parse it.
The format is <token name:> <token values>. The <token name:> is always a string shorter than 31 characters.
Parameters of lithography process model, it should NOT be modified.

PROCESS_NAME FAKE # Name of process model.

SOCS_KER_NUM 3 # Number of kernels used in SOCS.

SOCS_KER_AMBIT 500 # Effective proximity range of SOCS kernel (in nm).
SOCS_KER_PAR1000.0121 #Parameters of SOCS kernel (see section 4 for detailed definition).
SOCS_KER_PAR1-100.0121 #The formatis <weight> <f> <g> <rho> <alpha> <beta> for each kernel.
SOCS_KER_PAR1100.0121 # Note that kernels stored in matrix form can be complex-valued.

RESIST_STEP_THR 0.3 # Contour image threshold for constant resist step function.
Mask manufacturability constraints, it should NOT be madified.
MASK_VAL_TYPE BIN # Type of mask value, the only option is binary-valued (0/1) mask.

Continuous distribution or multi-valued masks are not allowed in this work.
MASK_SHAPE_TYPE RECT # Type of mask shape, the only option is Cartesian rectangular.

No 45 degree nor curves are allowed in this work.

MASK_ADDRESSING 1 # DBU (in nm) of input mask data to some dedicate mask writer.
MASK_MIN_AREA 100 # Minimum area (in nm*2) of an isolated mask feature can be written out.
MASK_MIN_GRID 10 # Minimum size (in nm) of a manufacturable square grid for free form mask.
MASK_MIN_LENGTH 5 # Minimum length (in nm) of a mask segment for traditional edge biasing OPC.

Information of interested evaluation box for full image result comparison, it should NOT be modified.
EVAL_BOX 512 512 00511 511 # Matrix size (dimensionless) and corner coordinates (in nm).

The format is <width> <height> <lower x> <lower y> <upper x> <upper y>.
Optimization recipe and user-defined arguments that can be modified.
OPT_SCALE_FACT 0.5 # (required) User-defined optimization factor.
MAX_ITER_NUM 100 # (optional) Maximum iteration limit, an example of user-defined argument.

Problem Bl

Example

Manufacturability constraints

Polygons given from original target
design are main features (MF).

Additional polygons outside MF are
assist features (AF). They should
never be printed on silicon wafer.

For OPC on MF, the shortest mask
edge dissection length must be longer
than MASK_MIN_LENGTH.

The difference between push-pull MF
mask edges must be multiple of
MASK_ADDRESSING.

For any polygon (both MF and AF) to
be written onto the mask, it smallest
end dimension must be larger than
MASK_MIN_GRID, its area must be
largerthan MASK_MIN_AREA, and
- distance between any of them must
’ be longer than MASK_MIN_GRID.

Figure: lllustration of mask manufacturability constraints.

Problem Bl

Lithography process model

Zwerghtdkerne! (x, y)=mask(x,y)| Z w ezghrk|F {F{kernel, (x,y)}- F{mask(x,y)} }|
image,,, (x,y) = =

sim Ny

Zwerghf f |;’cerne/ (x, y)= 1| Zweig]n‘ k|F “{F{kernel (x,y)}- F{l} }|
k

cos(pk(x +y°))

kernel, (x,y) =
‘ B+ pp (x* +

Weightkvfkagkﬁpkaak:ﬁk
e H2n(fix+ &)} .
g TR are aven in ISF file for each kernel k

I i @ > i >.
> Square '
system sum
Linear @ S > Weighted>
> quare
system sum
[]
o

Linear S > Weighted >
> quare
system sum

Figure: Illustration of a Sum of Coherent System (SOCS).

Problem Bl

Bitmap error as the measuring metric for both simulation
accuracy and litho process fidelity

Bitmap error is defined in a certain interested evaluation box,
specified in the script file

Lithography
process

Image contour is the cutting
OPC :

shape of image result at a
constant threshold value.

I & . .
errory,» = A Z Z|Step(zmagex (X, ¥)) —design(x, y)‘

Xy & ¥

step(image) = 1

Target design
after bitmapping.

Lithography
process

A certain evaluation
box will be given with
dimension and corner

coordinates to be filled
into bitmap.

[1 ,image > threshold

0, otherwise

Image contour
after bitmapping.

Bitmapped fidelity
error is averaged
absolute sum of
difference between
image result and
target design.

Figure: lllustration of an interested evaluation box and measurement of bitmap error.

Problem Bl

Caltech Intermediate Format (CIF) for pattern definition
Describe patterns with polygons

D5 1;
LL1;
Px1ylx2ylx2y?2xly2;
DF 1;

E.g.,

P0050050101010 101000 100;

Figure: An example of L-shape polygon

Outline

Al
A2
A3
Bl
B2
B3

Problem B2

3D IC design partitioning with power
consideration

Problem B2

‘ } }
 Package stacking . Diestacking . Wafer stacking

1. PiP packages (Package in

Package) Wire Bonding 3D ICw/ TSV

Cu threugh via | 1um 5.}
m pich

b |

I0iin EDjers

Commedting Cu through via

o —————
\1-1-\‘1-'\.‘.1.|-‘l‘1-11‘\\‘11\‘1“‘1\‘\1\\1“1J

Encapsulate resin

2. POP packages (Package on
Package)

-2 Rather OSATs

Problem B2

Thermal and power issues in 3D IC

Heat Sink

.
e

Stacked Die

Encapsulatio
TSV_CELL
TSV_LAND

Interlayer Layer 2

Dielectric
Metal Laye

~d

[1 1 1 1
Layer 1
= 0l

O O0O00000000O0 0]

Figure 3 TSVs for layer interconnection

Problem B2

Input format
A gate-level netlist (in Verilog)

Information file about the standard cells,
standard 1/O cells, TSV cells (for power and
area calculation)

Design constraint file

Output format

The gate-level netlist (in Verilog) for each layer
in 3D IC

A report of basic statistics

Problem B2

Power model

L L M X ¥
1., .
Power,,, = § Prifri+ § EVda’_mreij('I.f + E :PDFF_LfDFF.:' + § ‘PE_PAD.;ffI_PAD.;f + § PO_PAD.:‘fO_PAD.;f
i=1 i=1 =1 =1

i=1

L I M
1_., .
Power,,, = Z Bifrs+ Z) Vid_coreS1:Crs + Z For S prr s
i1

i=1

i=1
X ¥

Powery,, = Z R'_PAD_J}_PAD; + Z PO_PA.D_;‘fO_PAD.r‘
i=1

i=1

Problem B2

Goal

Basic requirement

The output netlist must be equivalent to the original desing
Total power before and after partition must be the same

The power of each layer must satisfy the power
constraints

Optimization consideration
Area overhead
TSV cell number

Program performance (in term of run time and memory
usage)

Outline

Al
A2
A3
Bl
B2
B3

Problem B3

Gated clock cloning for timing fixing
Clock gating Is an important technigue In
low power design
Prevent unnecessary signal switching in FFs
May cause setup time violation
Timing fix by logic duplication (to be
iImplemented)

Problem B3

CLK

CLK

DATAIN —71 f

i
7

DATA OUT

DATA IN

| DATA OUT

Problem B3

Enable Logic

Leaf

Root

5+3 35+1

X

Ef

Clock period =5 [>

rl:

cKk o PP i
R — r[:
D> 1

!_I:

Clock tree >0 i
I':

>>—>
>>— > |F

Figure 3: An example of a design with clock gates which violate setup time

Root

Leaf
CIK_i

E
CK_o

Figure 4: The waveform of the example in Fig 3.

Problem B3

Enable Logic

> > >

>

Clock tree

Figure 5: Clone the clock gate to satisfy the setup time

Problem B3

Root_1

Root_3

o 1

Root_2

>

Root_4

(L0} 0] ELLL

Figure 6: Possible clock gate location for clock tree.

Problem B3

Skew = Max(Sp + Lp) — Min(Sp+Lp)

Delay = Max(3! + Li)

>

Clock period = PO

Figure 7: Example of constraint function and skew.

Problem B3

Setup Time Constraint: Max(87+L7) + Enable Logic(E0+Ej) <= Clock Period
(P0) + Delay (S)

Skew = Max(Sp + Lp) — Min(Sq+Lq)

Constraint Function: Max(87+L7) + Enable Logic(E0+Ej) + Skew <= Clock
Period (P0) + Delay (S))

Problem B3

Buffer number
FF1 1 1(150,150)
so| 17| 16| 13 165 b e
100 258 199 182 170 (150,100)
Length 200| 38| 32| 301| 288 |
400 455| 412| w9| 3N FF3 L |(150,0)
00| 952 78| s3] 798
1600 | 1952 | 1825| 1766 1612 HPWL = 200, Fanout = 3

Figure 8: Example of delay lookup table for logic 87 and Ei Figure 10: An example of logic L1.

Fan-out Fan-out
~J1 3 W # =n T e
so| 22| 28s| 357|411 50 | 7 ? 2
100 432| 511 698| 802 100 A 2 2
HPWL 200| 712| 985| 1255| 1658 HPWL 5.5 A 5 5
400 | 1385| 1985 | 2358 | 3125 400 NE 3 3
800 | 2587 3945| 4587| 6012 200 3| 4 4 4
1600 | 49%9| 7845 | 9121 | 12543 1600 y 5 s 6

Fi 9 E le of delay lookup table for logic Li
18HTe rampie of delay fookup fable fot fogle & Figure 11: Example of buffer number lookup table for logic Li

Problem B3

Input format

Design section

Locations and names of clock source, enable logic,
FFs, clock gating cells and nets)

Parameter section

Die size, clock period, enable logic delay, buffer
weight and clock gating cell weight

Output format
Design section
Value of objective function and execution time

