
2011 IC/CAD Contest
Introduction to EDA

National Taiwan University
Spring 2011

積體電路電腦輔助設計(CAD)軟體製作競賽

九十九學年度大學校院積體電路電腦輔助
設計(CAD)軟體製作競賽

http://cad_contest.cs.nctu.edu.tw/cad11/

Outline

 A1: Structural checking of low-power logic
design with voltage island & power gating

 A2: Formal property qualification
 A3: Multi-core static timing analysis
 B1: Numerical optimization on photo-mask –

Model-based optical proximity correction
 B2: 3D IC design partitioning with power

consideration
 B3: Gated clock cloning for timing fixing

Outline

A1
A2
A3
B1
B2
B3

Problem A1

Structural checking of low-power logic
design with voltage island & power gating
Low power techniques:
Multi-supply voltage (MSV)
Power gating (PSO)

Low power design validation:
Simulation (ineffective)
Structural checking (to be implemented)

Problem A1

Problem description & I/O format
Input:
a design in gate-level Verilog netlist
specification of power intent
low power cell library

Output:
All design errors according to 10 pre-defined low-

power design rules
Diagnosis information (location, type, occurrence of

design error)

Problem A1

Example

Problem A1

Example (cont’d)

Problem A1

Example (cont’d)

Problem A1

Example (cont’d)

Problem A1

Example (cont’d)

Problem A1

Languate/platform
Language: C or C++
Platform: Linux OS
Implementation according to specified syntax

Evaluation
Correctness
CPU time and memory

Outline

A1
A2
A3
B1
B2
B3

Problem A2

Formal property qualification

Problem A2

Model checking
Verify whether a design satisfies some (un)desirable

properties
Open problem: How many properties are enough for

complete verification?

Mutation based analysis (to be implemented)
A design is changed (mutated) into a set of mutants so

as to introduce behavioral errors
A set of properties/tests is analyzed for each mutant to

see which of the properties detect the difference
between the design and the mutant

Problem A2

 I/O format
 Input:
Design M and properties P[i], for i = 1,…,n, are given in

DIMACS CNF format
Mutation types

• A literal always positive
• A literal always negative
• A literal is negated

Mutants of M are denoted M[i], for i = 1, …, m
Output:
The set of “live” mutants

• A mutant M[k] is live if it pass all P[i], that is, SAT(M[k], P[i]) =
true for all i = 1, …, n

Problem A2

Example

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Example (cont’d)

Problem A2

Popular state-of-the-art SAT solvers
MiniSAT
PrecoSAT

See SAT solver competitions
http://baldur.iti.uka.de/sat-race-2010/
http://www.satcompetition.org/

Outline

A1
A2
A3
B1
B2
B3

Problem A3

Multi-core static timing analysis (STA)
STA validates the timing performance of a

(combinational) design by indentifying timing
“true” and “false” paths
Multi-core computer can be exploited to

accelerate STA

Problem A3

Terminology
True path
A path is true if there exists an input vector that

sensitizes the path
We consider sensitization under the floating mode

delay model
Floating mode delay model
All signals of a gate are initially of X (unknown) value
3-valued simulation is performed for value update

from inputs to outputs

Problem A3

Example
True path

Problem A3

Example (cont’d)
True path

Problem A3

 Input example
Library cell

Problem A3

 Input example
Verilog design

Problem A3

Output example

Problem A3

 Example
Floating mode simulation

Problem A3

Example
Paths and slacks

Problem A3

Multi-core computing environment
CPU: Intel Xeon X7350 2.93G x 16
Memory: 128GB

Outline

A1
A2
A3
B1
B2
B3

Problem B1

Numerical optimization on photo-mask – Model-
based optical proximity correction

Optical Proximity Correction (OPC) plays an
important role in modern IC manufacturing

Model-Based OPC (MBOPC) optimizes the
mask pattern numerically based on a given
lithography model

MBOPC algorithm (to be implemented)
To achieve better printing fidelity for a given set of

design patterns using a simplified lithography model

Problem B1

Motivation

Problem B1

OPC methods
Rule-based (fast)
Model-based (achieve better optimization)

Problem B1

 Input format
Target design patterns given in CIF mask format
 Information script file
Parameters of lithography process model (sum of

coherent system, SOCS)
Manufacturability constraints of mask patterns
 Information about interested evaluation box

Output format
Optimized mask pattern in CIF format
 Image result within interested evaluation box
 Information about optimization process

Problem B1

 Example
 Information script file

Problem B1

 Example
Manufacturability constraints

Problem B1

 Lithography process model
Sum of coherent system (SOCS)

Problem B1

 Bitmap error as the measuring metric for both simulation
accuracy and litho process fidelity
 Bitmap error is defined in a certain interested evaluation box,

specified in the script file

Problem B1

 Caltech Intermediate Format (CIF) for pattern definition
 Describe patterns with polygons

 E.g.,

Outline

A1
A2
A3
B1
B2
B3

Problem B2

3D IC design partitioning with power
consideration

Problem B2

Problem B2

 Thermal and power issues in 3D IC

Problem B2

 Input format
A gate-level netlist (in Verilog)
Information file about the standard cells,

standard I/O cells, TSV cells (for power and
area calculation)
Design constraint file

Output format
The gate-level netlist (in Verilog) for each layer

in 3D IC
A report of basic statistics

Problem B2

Power model

Problem B2

Goal
Basic requirement
The output netlist must be equivalent to the original desing
Total power before and after partition must be the same
The power of each layer must satisfy the power

constraints
Optimization consideration
Area overhead
TSV cell number
Program performance (in term of run time and memory

usage)

Outline

A1
A2
A3
B1
B2
B3

Problem B3

Gated clock cloning for timing fixing
Clock gating is an important technique in

low power design
Prevent unnecessary signal switching in FFs
May cause setup time violation

Timing fix by logic duplication (to be
implemented)

Problem B3

Problem B3

Problem B3

Problem B3

Problem B3

Problem B3

Problem B3

Problem B3

 Input format
Design section
Locations and names of clock source, enable logic,

FFs, clock gating cells and nets)
Parameter section
Die size, clock period, enable logic delay, buffer

weight and clock gating cell weight

Output format
Design section
Value of objective function and execution time

