
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

2

Computation & Optimization in a
Nutshell

 Course contents:
Computational complexity
NP-completeness; PSPACE-completeness
Algorithmic paradigms
Mathematical optimization

 Readings
Chapter 4
Reference:

T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

M. Sipser. Introduction to the Theory of Computation.
Cengage Learning, 2nd edition, 2005.

3

Computation Complexity
 We would like to characterize the efficiency/hardness of problem

solving

 By that, we can have a better idea on how to come up with good
algorithms
 Algorithm: a well-defined procedure transforming some input to a

desired output in finite computational resources in time and space
(c.f. semi-algorithm)

 Why does complexity matter?

assuming 109 instructions per second

4

O: Upper Bounding Function
 Definition: f(n)= O(g(n)) if  c>0 and n0>0 such that

0  f(n)  c g(n) for all n  n0

 E.g., 2n2 + 3n = O(n2), 2n2 = O(n3), 3n lg n = O(n2)
 Intuition: f(n) “ ” g(n) when we ignore constant multiples and

small values of n

5

Big-O Notation
 How to show O (Big-Oh) relationships?

 f(n) = O(g(n)) iff limn   = c for some c  0
 “An algorithm has worst-case running time O(g(n))”: there

is a constant c s.t. for every n large enough, every
execution on an input of size n takes at most c g(n) time

()

()

f n

g n

6

Big-O Notation (cont’d)

Only the dominating term needs to be kept while
constant coefficients are immaterial

 Example
0.3 n2 = O(n2)
3 n2 + 152 n + 1777= O(n2)
n2 lg n+ 3n2 = O(n2 lg n)

The following are correct but not used
3n2 = O(n2 lg n)
3n2 = O(0.1 n2)
3n2 = O(n2 + n)

7

Other Asymptotic Bounds
Other notations (though not important for now):
 Definition: f(n)= (g(n)) if  c, n0 > 0 such that

0  c g(n)  f(n) for all n  n0.
 -notation provides an asymptotic lower bound on a function

 Definition: f(n)= (g(n)) if  c1, c2, n0 > 0 such that
0  c1 g(n)  f(n)  c2 g(n) for all n  n0.

 -notation provides an asymptotic tight bound on a function

 Showing the complexity upper bound of solving a problem
(not an instance) is often much easier than showing the
complexity lower bound
 Why?

8

Computational Complexity

 Computational complexity: an abstract measure
of the time and space necessary to execute an
algorithm as function of its “input size”

 Input size examples:
 sort n words of bounded length  n
 the input is the integer n  lg n
 the input is the graph G(V, E)  |V| and |E|

 Time complexity is expressed in elementary
computational steps (e.g., an addition,
multiplication, pointer indirection)

 Space complexity is expressed in memory
locations (e.g. bits, bytes, words)

9

Computational Complexity

 Example
 Computing longest delay path of a directed acyclic graph

a
b

z

c 1
1

2

2

2

3 3

a

b

c

z
2

2

2

3 3

1 1

O(|V|+|E|)

10

Asymptotic Functions

 Polynomial-time complexity: O(nk), where n is the
input size and k is a constant.

 Example polynomial functions:
 999: constant
 lg n: logarithmic
 : sublinear
 n: linear
 n lg n: loglinear
 n2: quadratic
 n3: cubic

Example non-polynomial functions
 2n, 3n: exponential
 n!: factorial

n

11

Run-time Comparison

Assume 1000 MIPS (Yr: 200x), 1
instruction /operation

12

Computation Problems

Two common types of problems in
computer science:
Optimization problems

Often discrete/combinatorial rather than continuous
E.g., Minimum Spanning Tree (MST), Travelling

Salesman Problem (TSP), etc.

Decision problems
E.g., Fixed-weight Spanning Tree, Satisfiability (SAT),

etc.

13

Terminology
 Problem: a general class, e.g., “the shortest-path problem for

directed acyclic graphs”
 Instance: a specific case of a problem, e.g., “the shortest-

path problem in a specific graph, between two given vertices”
 Optimization problems: those finding a legal configuration

such that its cost is minimum (or maximum).
 MST: Given a graph G=(V, E), find the cost of a minimum

spanning tree of G.
 An instance I = (F, c) where

 F is the set of feasible solutions, and
 c is a cost function, assigning a cost value to each feasible

solution c : F  R
 The solution of the optimization problem is the feasible

solution with optimal (minimal/maximal) cost
 c.f., optimal solutions/costs, optimal (exact) algorithms (Attn:

optimal  exact in the theoretic computer science community).

14

Optimization problem: Minimum
Spanning Tree (MST)

MST: Given an undirected graph G = (V, E) with
weights on the edges, a minimum spanning tree
of G is a subgraph T  G such that
 T has no cycles (i.e. a tree)
 T contains all vertices in V
 Sum of the weights of all edges in T is minimum

1 6

2

10

4

13

7

11

9

12

3

5

15

Optimization Problem: Traveling
Salesman Problem (TSP)

 TSP: Given a set of cities and that distance between each
pair of cities, find the distance of a minimum tour starts
and ends at a given city and visits every city exactly once

16

Terminology
 Decision problems: problem that can only be answered

with “yes” or “no”
 MST: Given a graph G=(V, E) and a bound K, is there a

spanning tree with a cost at most K?
 TSP: Given a set of cities, distance between each pair of cities,

and a bound B, is there a route that starts and ends at a given
city, visits every city exactly once, and has total distance at
most B?

 A decision problem , has instances: I = (F, c, k)
 The set of of instances for which the answer is “yes” is given

by Y
 A subtask of a decision problem is solution checking: given f 

F, checking whether the cost is less than k
 Can apply binary search on decision problems to obtain

solutions to optimization problems
 NP-completeness is associated with decision problems

17

Decision Problem: Fixed-weight
Spanning Tree

Given an undirected graph G = (V, E), is
there a spanning tree of G with weight c?

Can solve MST by posing it as a sequence
of decision problems (with binary search)

18

Decision Problem: Satisfiability
Problem (SAT)

 Satisfiability Problem (SAT):
 Instance: A Boolean formula  in conjunctive normal

form (CNF), a.k.a. product-of-sums (POS)
 Question: Is there an assignment of Boolean values to

the variables that makes  true ?

 A Boolean formula  is satisfiable if there exists a
a set of Boolean input values that makes 
valuate to true. Otherwise,  is unsatisfiable.
 (a+b)(a+c)(b+c) is satisfiable since <a, b, c> = <0,

1, 0> makes the formula true.
 (a+b)(a+c)(b)(c) is unsatisfiable

19

Decision Problem: Circuit
Satisfiability Problem (CSAT)

 Circuit-Satisfiability Problem (CSAT):
 Instance: A combinational circuit C composed of AND, OR,

and NOT gates
 Question: Is there an assignment of Boolean values to the

inputs that makes the output of C to be 1?
 A circuit is satisfiable if there exists a a set of Boolean input

values that makes the output of the circuit to be 1
 Circuit (a) is satisfiable since <x1, x2, x3> = <1, 1, 0> makes

the output to be 1

20

Complexity Hierarchy
 Tractable: solvable in deterministic polynomial time (P)
 Intractable: unsolvable in deterministic polynomial time (P)

PcoNP NP

PSPACE

EXPTIME

21

Complexity Class P
 Complexity class P contains those problems that can be

solved in polynomial time in the size of input
 Input size: size of encoded “binary” strings
 Edmonds: Problems in P are considered tractable

 The computer concerned is a deterministic Turing machine
 Deterministic means that each step in a computation is

predictable
 A Turing machine is a mathematical model of a universal

computer (any computation that needs polynomial time
on a Turing machine can also be performed in
polynomial time on any other machine)

 MST and shortest path problems are in P

22

Complexity Class NP
 Suppose that solution checking for some problem can be done in

polynomial time on a deterministic machine  the problem can be
solved in polynomial time on a nondeterministic Turing machine
 Nondeterministic: the machine makes a guess, e.g., the right one (or

the machine evaluates all possibilities in parallel)
 The class NP (Nondeterministic Polynomial): class of problems

that can be verified in polynomial time in the size of input
 NP: class of problems that can be solved in polynomial time on a

nondeterministic machine
 Is TSP  NP?

 Need to check a solution in polynomial time
 Guess a tour
 Check if the tour visits every city exactly once
 Check if the tour returns to the start
 Check if total distance  B

 All can be done in O(n) time, so TSP  NP

23

P vs. NP

An issue which is still unsettled:
P  NP or P = NP?
 There is a strong belief that P  NP, due to the

existence of NP-complete problems.
One of the 7 Clay Millennium Prize Problems

24

NP-Completeness

 The NP-complete (NPC) class:
 Developed by S. Cook and R. Karp in early 1970

Cook showed the first NP-complete problem (SAT) in 1971
Karp showed many other problems are NP-complete (by

polynomial reduction) in 1972

 Thousands of combinatorial problems are known to be
NP-complete
NP-complete problems: SAT, 3SAT, CSAT, TSP, Bin Packing,

Hamiltonian Cycles, …

 All problems in NPC have the same degree of difficulty:
Any NPC problem can be solved in polynomial time 
All problems in NP can be solved in polynomial time

25

Beyond NP

 A quantified Boolean formula (QBF) is
Q1 x1, Q2 x2, …, Qn xn. 
where Qi is either a existential () or universal
quantifier (), xi is a Boolean variable, and  is a
Boolean formula.
 i: x1,x2,x3, …,Qnxi. 
 i: x1,x2,x3, …,Qnxi. 

 The polynomial-time hierarchy
 1 (= NP)  2 … i  ….

 1 (= coNP)  2 … i  ….

26

Polynomial Hierarchy

P1

coNP

1

NP

PSPACE

22

27

PSPACE-completeness

The satisfiability problem for quantified
Boolean formulae (QSAT) is PSPACE-
complete
GO is PSPACE-complete!
Many sequential verification problems are

PSPACE-complete

28

Polynomial-time Reduction
 Motivation: Let L1 and L2 be two decision problems.

Suppose algorithm A2 can solve L2. Can we use A2 to solve
L1?

 Polynomial-time reduction f from L1 to L2: L1 P L2
 f reduces input for L1 into an input for L2 s.t. the reduced input

is a “yes” input for L2 iff the original input is a “yes” input for L1
L1  P L2 if  polynomial-time computable function f: {0,

1}* {0, 1}* s.t. x  L1 iff f(x)  L2,  x  {0, 1}*

L2 is at least as hard as L1

 f is computable in polynomial time

29

Significance of Reduction

 Significance of L1 P L2:
  polynomial-time algorithm for L2   polynomial-time

algorithm for L1 (L2  P  L1  P)
 polynomial-time algorithm for L1  polynomial-

time algorithm for L2 (L1  P  L2  P)

 P is transitive, i.e., L1 P L2 and L2 P L3  L1 P
L3

30

Polynomial-time Reduction
 The Hamiltonian Circuit, a.k.a. Hamiltonian Cycle, Problem (HC)

 Instance: an undirected graph G = (V, E)
 Question: is there a cycle in G that includes every vertex exactly once?

 TSP (The Traveling Salesman Problem)
 How to show HC P TSP?

1. Define a function f mapping any HC instance into a TSP instance, and
show that f can be computed in polynomial time

2. Prove that G has an HC iff the reduced instance has a TSP tour with
distance  B (x  HC  f(x)  TSP)

31

HC P TSP: Step 1
 Define a reduction function f for HC P TSP

 Given an arbitrary HC instance G = (V, E) with n vertices
 Create a set of n cities labeled with names in V
 Assign distance between u and v

 Set bound B = n
 f can be computed in O(V2) time

32

HC P TSP: Step 2
 G has an HC iff the reduced instance has a TSP with

distance  B
 xHC  f(x)TSP

Suppose the HC is h = <v1, v2, …, vn, v1>. Then, h is also
a tour in the transformed TSP instance

The distance of the tour h is n = B since there are n
consecutive edges in E, and so has distance 1 in f(x)

Thus, f(x)  TSP (f(x) has a TSP tour with distance  B)

33

HC P TSP: Step 2 (cont’d)
 G has an HC iff the reduced instance has a TSP with

distance  B
 f(x)TSP  xHC

Suppose there is a TSP tour with distance  n = B. Let it be
<v1, v2, …, vn, v1>.

Since distance of the tour  n and there are n edges in the
TSP tour, the tour contains only edges in E

Thus, <v1, v2, …, vn, v1> is a Hamiltonian cycle (x  HC)

34

NP-Completeness and NP-Hardness

NP-completeness: worst-case analyses for
decision problems

 L is NP-complete if
 L  NP
 NP-Hard: L'  P L for every L'  NP

NP-hard: If L satisfies the 2nd property, but not
necessarily the 1st property, we say that L is NP-
hard

 Significance of NPC class:
Suppose L  NPC
 If L  P, then there exists a polynomial-time algorithm

for every L'  NP (i.e., P = NP)
 If L  P, then there exists no polynomial-time algorithm

for any L'  NPC (i.e., P  NP)

35

Proving NP-Completeness

 Five steps for proving that L is NP-complete:
1.Prove L  NP
2.Select a known NP-complete problem L'
3.Construct a reduction f transforming every

instance of L' to an instance of L
4.Prove that x  L' iff f(x)  L for all x  {0, 1}*

5.Prove that f is a polynomial-time transformation

 E.g., we showed that TSP is NP-complete

A known
NP-complete

problem L’

A problem L
to be proved
NP-completereduce

f

36

Easy vs. Hard Problems

Many seemly similar problems may have
substantial difference in their inherent
hardness
Shortest path  P; longest path  NPC
Spanning tree  P; Steiner tree  NPC
 Linear programming (LP)  P; integer linear

programming (ILP)  NPC
…

37

Spanning Tree vs. Steiner Tree
 Manhattan distance: If two points (nodes) are located at coordinates (x1,

y1) and (x2, y2), the Manhattan distance between them is given by d12 =
|x1-x2| + |y1-y2|

 Rectilinear spanning tree: a spanning tree that connects its nodes using
Manhattan paths (Fig. (b) below)

 Steiner tree: a tree that connects its nodes, and additional points
(Steiner points) are permitted to used for the connections

 The minimum rectilinear spanning tree problem is in P, while the minimum
rectilinear Steiner tree (Fig. (c)) problem is NP-complete
 The spanning tree algorithm can be an approximation for the Steiner tree

problem (at most 50% away from the optimum)

Steiner
points

38

Hardness of Problem Solving

Most optimization problems are intractable
Cannot afford to search the exact optimal

solution
Global optimal (optimum) vs. local optimal

(optimal)

Search a reasonable solution within a
reasonable bound on computational
resources

39

Coping with NP-hard Problems
 Approximation algorithms

 Guarantee to be a fixed percentage away from the optimum
 E.g., MST for the minimum Steiner tree problem

 Randomized algorithms
 Trade determinism for efficiency

 Pseudo-polynomial time algorithms
 Has the form of a polynomial function for the complexity, but is not to

the problem size
 E.g., O(nW) for the 0-1 knapsack problem

 Restriction
 Work on some subset of the original problem
 E.g., longest path problem restricted to directed acyclic graphs

 Exhaustive search/Branch and bound
 Is feasible only when the problem size is small

 Local search:
 Simulated annealing (hill climbing), genetic algorithms, etc.

 Heuristics: No guarantee of performance

40

Algorithmic Paradigms
 Exhaustive search: Search the entire solution space
 Branch and bound: A search technique with pruning
 Greedy method: Pick a locally optimal solution at each step
 Dynamic programming: Partition a problem into a collection of

sub-problems, the sub-problems are solved, and then the original
problem is solved by combining the solutions (applicable when the
sub-problems are NOT independent)

 Hierarchical approach: Divide-and-conquer
 Mathematical programming: A system of solving an objective

function under constraints
 Simulated annealing: An adaptive, iterative, non-deterministic

algorithm that allows “uphill” moves to escape from local optima
 Tabu search: Similar to simulated annealing, but does not

decrease the chance of “uphill” moves throughout the search
 Genetic algorithm: A population of solutions is stored and

allowed to evolve through successive generations via mutation,
crossover, etc.

41

Exhaustive Search v.s. Branch and
Bound

 TSP example

Backtracking/exhaustive search

Branch and bound

42

Dynamic Programming (DP) v.s.
Divide-and-Conquer

 Both solve problems by combining the solutions to sub-problems
 Divide-and-conquer algorithms

 Partition a problem into independent sub-problems, solve the
sub-problems recursively, and then combine their solutions to
solve the original problem

 Inefficient if they solve the same sub-problem more than once
 Dynamic programming (DP)

 Applicable when the sub-problems are not independent
 DP solves each sub-problem just once

43

Example: Bin Packing
 The Bin-Packing Problem  :

Items U = {u1, u2, …, un}, where ui is of an integer size si;
set B of bins, each with capacity b

 Goal:
Pack all items, minimizing # of bins used (NP-hard!)

S = (1, 4, 2, 1, 2, 3, 5)

44

Algorithms for Bin Packing
 Greedy approximation algorithm:

First-Fit Decreasing (FFD)
 FFD()  11OPT()/9 + 4)

 Dynamic Programming? Hierarchical Approach? Genetic
Algorithm? …

 Mathematical Programming:
Use integer linear programming (ILP) to find a solution
using |B| bins, then search for the smallest feasible |B|

S = (1, 4, 2, 1, 2, 3, 5)

45

ILP Formulation for Bin Packing
 0-1 variable: xij=1 if item ui is placed in bin bj, 0 otherwise

 Step 1: Set |B| to the lower bound of the # of bins
 Step 2: Use the ILP to find a feasible solution
 Step 3: If the solution exists, the # of bins required is |B|. Then exit.
 Step 4: Otherwise, set |B|  |B| + 1. Goto Step 2.

46

Mathematical Programming
 Many optimization problems can be formulated as

minimize (or maximize) f0(x) objective function
subject to fi(x)  ci, i = 1, …, m. constraints

 Some special common mathematical programming
 Linear programming (LP)
 Integer linear programming (ILP)
 Nonlinear programming

 Convex optimization
 Semi-definite programming, geometric programming, …

