
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

2

Model of Computation

3

Model of Computation
 In system design, intended system behavior is translated

into physical implementation
 The physical implementation can be in hardware or software,

in silicon or non-silicon (e.g., living cells)
 How a system behaves or interacts with its environmental

stimuli must be specified formally

 Model of computation (MoC) can be seen as the subject of
devising/selecting effective “data structures” in describing
system behaviors precisely and concisely

 MoC gives a formal way of describing system behaviors
 It is useful in the specification, synthesis and verification of

systems

4

Model of Computation

Outline
 State transition systems

Finite automata / finite state machines
 Real-time systems

Timed automata
 Hybrid systems

Hybrid automata for hybrid systems, which exhibits both
discrete and continuous dynamic behavior

 Asynchronous systems
Petri nets for asynchronous handshaking

 Signal processing systems
Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)

5

Modeling State Transition
 Finite automata A = (Q, q0, F, , )

 Q: states; q0: initial state; F: accepting states; : input
alphabet; : QQ transition

 Can be alternatively represented in state diagram

 Finite automata are used as the recognizer of regular
language
 Example

 The finite automaton accepts all binary strings ended in a “1”, i.e.,
which form the language: (0*1*)*1 or {0,1}*1

1

1

0

0

q0 q1

6

Modeling State Transition (cont’d)
 Finite state machine (FSM) M = (Q, I, , , , )

 Q: states; I: initial states; : input alphabet;  : output alphabet; :
QQ transition function; : Q (respectively : Q) output
function for Mealy (respectively Moore) FSM

 Can be alternatively represented in state transition graph (STG) or
state transition table (STG)

 E.g., vending machine, traffic light controller, elevator controller,
Rubik’s cube!, etc.



 1

1

1

00

0  Q Q’ 

0 G G go
0 Y Y yield
0 R R stop
1 G Y go
1 Y R yield
1 R G stop

7

Modeling State Transition (cont’d)

FSMs are often used as controllers in
digital systems
 E.g. data flow controller, ALU (arithmetic logic

unit) controller, etc.

Variants of FSM
Hierarchical FSM
Communicating FSM
…

8

Modeling Real-Time Systems

 Timed automata
 Example

push | x  2 | x:=0, y:=0

click | y  9 | x:=0

qoff qon

light switch controller

push | x  2 | x:=0

x and y are clock variables

- Switch may be turned on whenever at least 2 time units has elapsed since last turn off
- Light switches off automatically after 9 time units

action

gard

reset

9

Modeling Hybrid Systems

 Hybrid automata
 Example

(,)onT f T x (,)offT f T x

T > Thigh

T < Tlow

temperature control system

qon qoff

10

Modeling Asynchronous Systems

 Petri net P = (G, M0)
 Petri net graph G is a bipartite weighted directed graph:

Two types of nodes: places in circles and transitions in
boxes

Arcs: arrows labeled with weights indicating how many
tokens are consumed or produced

Tokens: black dots in places
 Initial marking M0

Initial token positions

t1p1

p2

t2

p3

t3

p4

1

1

1

1

2

4

1

1

ref: EE249 lecture notes, UC Berkeley

11

Modeling Asynchronous Systems
(cont’d)

 In a Petri net graph G,
 places: represent distributed state by holding tokens

marking (state) M is an vector (m1, m2, …, mn), where mi is the non-
negative number of tokens in place pi

 initial marking M0 is initial state

 transitions: represent actions/events
 enabled transition: enough tokens in predecessors

 firing transition: modifies marking

t1p1

p2

t2

p3

t3

p4

1

1

1

1

2

4

1

1

ref: EE249 lecture notes, UC Berkeley

12

Modeling Asynchronous Systems
(cont’d)

 A marking is changed according to the following rules:
 A transition is enabled if there are enough tokens in each input place

 An enabled transition may or may not fire (i.e. non-deterministic)

 The firing of a transition modifies marking by consuming tokens from
the input places and producing tokens in the output places

2
2

2
2

ref: EE249 lecture notes, UC Berkeley

13

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

14

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

15

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

16

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

17

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

18

Modeling Asynchronous Systems
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

19

Modeling Signal Processing
 Data-flow process network

 Nodes represent actors; arcs represent FIFO queues
 Firing rules are specified on arcs
 Actors respect firing rules that specify how many tokens must be

available on every input for an actor to fire. When an actor fires, it
consumes a finite number of tokens and produces also a finite
number of output tokens.

1

1

2

2

1

1

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html

20

MoC in System Construction

 There are many other models of computation
tailored for specific applications
 Can you devise a new computation model in some

domain?

 Hierarchical modeling combined with several
different models of computation is often
necessary

 By using a proper MoC, a system can be specified
formally, and further synthesized and verified
 In the sequel of this course, we will be focusing on FSMs

mainly

21

High Level Synthesis

Logic synthesis

High-level synthesis

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang

22

High Level Synthesis

Course contents
Hardware modeling
Data flow
Scheduling/allocation/assignment

Reading
Chapter 5

23

High Level Synthesis
 Hardware-description language (HDL) synthesis

 Starts from a register-transfer level (RTL) description;
circuit behavior in each clock cycle is fixed

 Uses logic synthesis techniques to optimize the design
 Generates a netlist

 High-level synthesis (HLS), also called architectural or
behavioral synthesis
 Starts from an abstract behavioral description
 Generates an RTL description
 It normally has to perform the trade-off between the

number of cycles and the hardware resources to fulfill a
task

24

HL Synthesis vs. RTL Synthesis

 RTL synthesis
implements all
functionality within a
single clock cycle

 HL synthesis
automatically allocates
the functionality
across multiple clock
cycles

25

Output of High Level Synthesis
 Behavioral Compiler creates a design that consists of a

datapath, memory I/O and a control FSM

26

Benefits of High Level Synthesis (1)
 Quick specification and verification

 Specify behavioral HDL easily, since it's intuitive and natural to
write

 Save time -- behavioral HDL code is up to 10 times shorter
than equivalent RTL

 Simulate orders of magnitude faster because of the higher
level of abstraction

 Reuse designs more readily by starting with a more abstract
description

 Reduce design time
 Model hardware and software components of system

concurrently
 Easily implement algorithms in behavioral HDL and generate

RTL code with a behavioral compiler
 Verify hardware in system context at various levels of

abstraction

27

Benefits of High Level Synthesis (2)

 Explore architectural trade-offs
 Create multiple architectures from a single specification
 Trade-off throughput and latency using high-level

constraints
 Analyze various combinations of technology-specific

datapath and memory resources
 Evaluate cost/performance of various implementations

rapidly
 Automatically infer memory and generate FSM

 Specify memory reads and writes
 Schedule memory I/O, resolve conflicts by building

control FSM
 Trade-off single-ported (separate registers) vs. multi-

ported memories (register files)
 Generate a new FSM

28

Hardware Models for HL Synthesis
 All HLS systems need to restrict the target hardware

 Otherwise search space is too large
 All synthesis systems have their own peculiarities, but most

systems generate synchronous hardware and build it with
functional units:
 A functional unit can perform one or more computations,

e.g., addition, multiplication, comparison, ALU

29

Hardware Models

 Registers: they store
inputs, intermediate
results and outputs;
sometimes several
registers are taken
together to form a
register file

Multiplexers: from
several inputs, one is
passed to the output

30

Hardware Models (cont’d)

 Buses: a connection
shared between
several hardware
elements, such that
only one element can
write data at a specific
time

 Tri-state drivers:
control the exclusive
writing on the bus

31

Hardware Models (cont’d)

 Parameters defining the hardware model for the
synthesis problem:
Clocking strategy: e.g. single or multiple

phase clocks
 Interconnect: e.g. allowing or disallowing

buses
Clocking of functional units: allowing or

disallowing
multicycle operations
operation chaining (multiple operations in

one cycle)
pipelined units

32

Chaining, Multicycle Operation,
Pipelining

33

Example of a HLS Hardware Model

34

Hardware Concepts: Data Path +
Control

 Hardware is normally partitioned into two parts:
 Data path: a network of functional units, registers,

multiplexers and buses
The actual ‘‘computation’’ takes place in the data path

 Control: the part of the hardware that takes care of
having the data present at the right place at a specific
time, of presenting the right instructions to a
programmable unit, etc.

 High-level synthesis often concentrates on data-path
synthesis
 The control part is then realized as a finite state

machine or in microcode

35

Steps of High Level Synthesis
 Preprocess the design with high-level optimization

 Code motion
 Common subexpression elimination
 Loop unrolling
 Constant propagation
 Modifications taking advantage of associativity and distributivity, etc.

 Transform the optimized design into intermediate format
(internal representation) which reveals more structural
characteristics of the design

 Optimize the intermediate format
 Tree height reduction
 Behavior retiming

 Allocate the required resources to implement the design
 Also called module selection

 Schedule each operation to be performed at certain time such
that no precedence constraint is violated

 Assign (bind) each operation to a specific functional unit and
each variable to a register

36

HLS Optimization Criteria

 Typically, in terms of speed, area, and power
consumption

Optimization is often constrained
 Optimize area when the minimum speed is given 

time-constrained synthesis
 Optimize speed when a maximum for each resource type

is given  resource-constrained synthesis
E.g. power-constrained synthesis

 Minimize power dissipation for a given speed and area
requirement  time- and area- constrained synthesis

37

Input Format

 The algorithm, which is the input to a high-level
synthesis system, is often provided in textual
form either
 in a conventional programming language, such

as C, C++, SystemC, or
 in a hardware description language (HDL),

which is more suitable to express the
parallelism present in hardware.

 The description has to be parsed and transformed
into an internal representation and thus
conventional compiler techniques can be used.

38

Example of HL Optimization

 Applying the distributive law to reduce resource
requirement

39

Internal Representation

Most systems use
some form of a data-
flow graph (DFG)
 A DFG may or may not

contain information on
control flow

 A data-flow graph is
built from
 vertices (nodes):

representing
computation, and

 edges: representing
precedence relations

40

Token Flow in a DFG

 A node in a DFG fires when all tokens are present
at its inputs

 The input tokens are consumed and an output
token is produced (like in Petri nets)

A token

Firing
a node

Generate
a token
after
firing

41

Conditional Data Flow

 Conditional data flow by means of two special
nodes:

42

Explicit Iterative Data Flow

 Selector and
distributor nodes can
be used to describe
iteration
 Example

 Loops require careful
placement of initial
tokens on edges

while (a > b)
a  a – b;

43

Implicit Iterative Data Flow

 Iteration implied by regular input stream of
tokens

 Initial tokens act as buffers
 Delay elements instead of initial tokens

44

Iterative DFG Example

a second-order filter section

45

Optimization of Internal Representation

Restructuring data
and control flow
graphs prior to the
actual mapping
onto hardware
 Examples:

Replacing chain of
adders by a tree

Behavior retiming

Tree height reduction

46

Behavior Retiming (BRT)

 By moving registers
through logic and
hierarchical
boundaries, BRT
reduces the clock
period with minimum
area impact

47

Effectiveness of Behavior Retiming

 RTL designs have a single clock net and were synthesized into gates using
Synopsys Design Compiler

 Design type: dataflow implies significant number of operators; control
implies state machine dominated

Synopsys exp:

48

HLS Subtasks: Allocation, Scheduling,
Assignment

 Subtasks in high-level synthesis
 Allocation (Module selection): specify the hardware

resources that will be necessary
 Scheduling: determine for each operation the time at which it

should be performed such that no precedence constraint is
violated

 Assignment (Binding): map each operation to a specific
functional unit and each variable to a register

 Remarks:
 Though the subproblems are strongly interrelated, they are

often solved separately. However, to attain a better solution,
an iterative process executing these three subtasks must be
performed.

 Most scheduling problems are NP-complete  heuristics are
used

49

Example of High Level Synthesis
 The following couple of slides shows an example of

scheduling and binding of a design with given resource
allocation

 Given the second-order filter which is first made acyclic:

50

Example of Scheduling

 The schedule and operation assignment with an
allocation of one adder and one multiplier:

51

Binding for Data Path Generation
 The resulting data path after register assignment

 The specification of a controller would complete the
design

Multiplier Adder

52

Resource Allocation Problem
 This problem is relatively simple. It simply decides the

kinds of hardware resources (hardware implementation for
certain functional units such as adder, multiplier, etc.) and
the quantity of these resources.
 For example two adders, one multiplier, 4 32-bit registers, etc.

for a certain application

 The decision made in this step has a profound influence on
the scheduling which under the given resource constraints
decides the time when an operation should be executed by
a functional unit

 This step set an upper bound on the attainable performance.

53

Problem Formulation of Scheduling
 Input consists of a DFG G(V, E) and a library of resource

types
 There is a fixed mapping from each v V to some r  ;

the execution delay (v) for each operation is therefore
known

 The problem is time-constrained; the available execution
times are in the set

 A schedule :VT maps each operation to its starting time;
for each edge (vi, vj)  E, a schedule should respect: (vj) 
(vi) + (vi).

 Given the resource type cost (r) and the requirement
function Nr(), the cost of a schedule  is given by:

54

ASAP Scheduling

As soon as possible (ASAP)
scheduling maps an operation to the
earliest possible starting time not violating
the precedence constraints

Properties:
It is easy to compute by finding the

longest paths in a directed acyclic graph
It does not make any attempt to

optimize the resource cost

55

Graph for ASAP Scheduling

56

Mobility Based Scheduling

Compute both the ASAP and ALAP (as late
as possible) schedules S and L

For each v  V, determine the scheduling
range [S(v) , L(v)]

L(v) - S(v) is called the mobility of v

Mobility-based scheduling tries to find the
best position within its scheduling range
for each operation

57

Simple Mobility Based Scheduling

 A partial schedule assigns a
scheduling range to each vV,

 Finding a schedule can be seen as the generation
of a sequence of partial schedules

58

List Scheduling

 A resource-constrained scheduling method
 Start at time zero and increase time until all

operations have been scheduled
Consider the precedence constraint

 The ready list Lt contains all operations that can
start their execution at time t or later

 If more operations are ready than there are
resources available, use some priority function to
choose, e.g. the longest-path to the output node
 critical-path list scheduling

59

List Scheduling Example

p1

p2

p3
o3

o2

o1

60

Assignment Problem

Subtasks in assignment:
 operation-to-FU assignment
 value grouping
 value-to-register assignment
 transfer-to-wire assignment
wire to FU-port assignment

In general: task-to-agent assignment

61

Compatibility and Conflict Graphs

Clique partitioning
gives an
assignment in a
compatibility graph

Graph coloring
gives an
assignment in the
complementary
conflict graph

62

Assignment Problem
 Assumption: assignment

follows scheduling.
 The claim of a task on an

agent is an interval 
minimum resource
utilization can be found by
left-edge algorithm.

 In case of iterative
algorithm, interval graph
becomes circular-arc graph
 optimization is NP-
complete.

63

Tseng and Sieworek’s Algorithm

64

Clique-Partitioning Example

65

Example of Behavior Optimization

Behavior Optimization of Arithmetic Circuit (BOA)

66

Effectiveness of BOA
Synopsys example

