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Model of Computation
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Model of Computation
 In system design, intended system behavior is translated 

into physical implementation
 The physical implementation can be in hardware or software, 

in silicon or non-silicon (e.g., living cells) 
 How a system behaves or interacts with its environmental 

stimuli must be specified formally

 Model of computation (MoC) can be seen as the subject of 
devising/selecting effective “data structures” in describing 
system behaviors precisely and concisely

 MoC gives a formal way of describing system behaviors 
 It is useful in the specification, synthesis and verification of 

systems
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Model of Computation

Outline
 State transition systems

Finite automata / finite state machines
 Real-time systems

Timed automata 
 Hybrid systems

Hybrid automata for hybrid systems, which exhibits both 
discrete and continuous dynamic behavior

 Asynchronous systems
Petri nets for asynchronous handshaking

 Signal processing systems
Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)
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Modeling State Transition
 Finite automata A = (Q, q0, F, , )

 Q: states; q0: initial state; F: accepting states; : input 
alphabet; : QQ transition 

 Can be alternatively represented in state diagram

 Finite automata are used as the recognizer of regular 
language
 Example

 The finite automaton accepts all binary strings ended in a “1”, i.e., 
which form the language: (0*1*)*1 or {0,1}*1

1

1

0

0

q0 q1
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Modeling State Transition (cont’d)
 Finite state machine (FSM) M = (Q, I, , , , )

 Q: states; I: initial states; : input alphabet;  : output alphabet; : 
QQ transition function; : Q (respectively : Q) output 
function for Mealy (respectively Moore) FSM

 Can be alternatively represented in state transition graph (STG) or 
state transition table (STG) 

 E.g., vending machine, traffic light controller, elevator controller, 
Rubik’s cube!, etc.



 1

1

1

00

0  Q    Q’ 

0    G    G     go
0    Y     Y     yield
0    R     R     stop
1    G     Y     go
1    Y     R     yield
1    R     G     stop
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Modeling State Transition (cont’d)

FSMs are often used as controllers in 
digital systems
 E.g. data flow controller, ALU (arithmetic logic 

unit) controller, etc.

Variants of FSM
Hierarchical FSM
Communicating FSM 
…
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Modeling Real-Time Systems

 Timed automata
 Example

push |  x  2  |  x:=0, y:=0

click | y  9  |  x:=0

qoff qon

light switch controller

push | x  2  |  x:=0

x and y are clock variables

- Switch may be turned on whenever at least 2 time units has elapsed since last turn off
- Light switches off automatically after 9 time units

action

gard

reset
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Modeling Hybrid Systems

 Hybrid automata
 Example

( , )onT f T x ( , )offT f T x

T > Thigh

T < Tlow

temperature control system

qon qoff

10

Modeling Asynchronous Systems

 Petri net P = (G, M0)
 Petri net graph G is a bipartite weighted directed graph:

Two types of nodes: places in circles and transitions in 
boxes

Arcs: arrows labeled with weights indicating how many 
tokens are consumed or produced

Tokens: black dots in places
 Initial marking M0

Initial token positions

t1p1

p2

t2

p3

t3

p4

1

1

1

1

2

4

1

1

ref: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 In a Petri net graph G,
 places: represent distributed state by holding tokens

marking (state) M is an vector (m1, m2, …, mn), where mi is the non-
negative number of tokens in place pi

 initial marking M0 is initial state

 transitions: represent actions/events
 enabled transition: enough tokens in predecessors

 firing transition: modifies marking

t1p1

p2

t2

p3

t3

p4

1

1

1

1

2

4

1

1

ref: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 A marking is changed according to the following rules:
 A transition is enabled if there are enough tokens in each input place

 An enabled transition may or may not fire (i.e. non-deterministic)

 The firing of a transition modifies marking by consuming tokens from 
the input places and producing tokens in the output places

2
2

2
2

ref: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley

16

Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley
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Modeling Asynchronous Systems 
(cont’d)

 Example
communication protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

source: EE249 lecture notes, UC Berkeley
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Modeling Signal Processing
 Data-flow process network

 Nodes represent actors; arcs represent FIFO queues
 Firing rules are specified on arcs
 Actors respect firing rules that specify how many tokens must be

available on every input for an actor to fire. When an actor fires, it 
consumes a finite number of tokens and produces also a finite 
number of output tokens. 

1

1

2

2

1

1

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html
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MoC in System Construction

 There are many other models of computation 
tailored for specific applications
 Can you devise a new computation model in some 

domain?

 Hierarchical modeling combined with several 
different models of computation is often 
necessary

 By using a proper MoC, a system can be specified 
formally, and further synthesized and verified
 In the sequel of this course, we will be focusing on FSMs

mainly
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High Level Synthesis

Logic synthesis

High-level synthesis

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang
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High Level Synthesis

Course contents
Hardware modeling
Data flow
Scheduling/allocation/assignment

Reading
Chapter 5
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High Level Synthesis
 Hardware-description language (HDL) synthesis

 Starts from a register-transfer level (RTL) description; 
circuit behavior in each clock cycle is fixed

 Uses logic synthesis techniques to optimize the design
 Generates a netlist

 High-level synthesis (HLS), also called architectural or 
behavioral synthesis
 Starts from an abstract behavioral description
 Generates an RTL description
 It normally has to perform the trade-off between the

number of cycles and the hardware resources to fulfill a 
task

24

HL Synthesis  vs. RTL Synthesis

 RTL synthesis 
implements all 
functionality within a 
single clock cycle

 HL synthesis 
automatically allocates 
the functionality 
across multiple clock 
cycles



25

Output of High Level Synthesis
 Behavioral Compiler creates a design that consists of a 

datapath, memory I/O and a control FSM
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Benefits of High Level Synthesis (1)
 Quick specification and verification

 Specify behavioral HDL easily, since it's intuitive and natural to 
write

 Save time -- behavioral HDL code is up to 10 times shorter 
than equivalent RTL

 Simulate orders of magnitude faster because of the higher 
level of abstraction

 Reuse designs more readily by starting with a more abstract 
description

 Reduce design time
 Model hardware and software components of system 

concurrently
 Easily implement algorithms in behavioral HDL and generate 

RTL code with a behavioral compiler
 Verify hardware in system context at various levels of 

abstraction



27

Benefits of High Level Synthesis (2)

 Explore architectural trade-offs
 Create multiple architectures from a single specification 
 Trade-off throughput and latency using high-level 

constraints
 Analyze various combinations of technology-specific 

datapath and memory resources
 Evaluate cost/performance of various implementations 

rapidly
 Automatically infer memory and generate FSM

 Specify memory reads and writes
 Schedule memory I/O, resolve conflicts by building 

control FSM
 Trade-off single-ported (separate registers) vs. multi-

ported memories (register files)
 Generate a new FSM
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Hardware Models for HL Synthesis
 All HLS systems need to restrict the target hardware 

 Otherwise search space is too large
 All synthesis systems have their own peculiarities, but most 

systems generate synchronous hardware and build it with 
functional units:
 A functional unit can perform one or more computations, 

e.g., addition, multiplication, comparison, ALU
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Hardware Models

 Registers: they store 
inputs, intermediate 
results and outputs; 
sometimes several 
registers are taken 
together to form a 
register file

Multiplexers: from 
several inputs, one is 
passed to the output
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Hardware Models (cont’d)

 Buses: a connection 
shared between 
several hardware 
elements, such that 
only one element can 
write data at a specific 
time

 Tri-state drivers:
control the exclusive 
writing on the bus
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Hardware Models (cont’d)

 Parameters defining the hardware model for the 
synthesis problem:
Clocking strategy: e.g. single or multiple 

phase clocks
 Interconnect: e.g. allowing or disallowing 

buses
Clocking of functional units: allowing or 

disallowing
multicycle operations
operation chaining (multiple operations in 

one cycle)
pipelined units

32

Chaining, Multicycle Operation, 
Pipelining
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Example of a HLS Hardware Model
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Hardware Concepts: Data Path + 
Control

 Hardware is normally partitioned into two parts:
 Data path: a network of functional units, registers, 

multiplexers and buses
The actual ‘‘computation’’ takes place in the data path

 Control: the part of the hardware that takes care of 
having the data present at the right place at a specific 
time, of presenting the right instructions to a 
programmable unit, etc.

 High-level synthesis often concentrates on data-path 
synthesis
 The control part is then realized as a finite state 

machine or in microcode



35

Steps of High Level Synthesis
 Preprocess the design with high-level optimization

 Code motion
 Common subexpression elimination
 Loop unrolling
 Constant propagation
 Modifications taking advantage of associativity and distributivity, etc.

 Transform the optimized design into intermediate format 
(internal representation) which reveals more structural 
characteristics of the design

 Optimize the intermediate format
 Tree height reduction
 Behavior retiming

 Allocate the required resources to implement the design
 Also called module selection

 Schedule each operation to be performed at certain time such 
that no precedence constraint is violated

 Assign (bind) each operation to a specific functional unit and 
each variable to a register

36

HLS Optimization Criteria

 Typically, in terms of speed, area, and power 
consumption

Optimization is often constrained
 Optimize area when the minimum speed is given 

time-constrained synthesis
 Optimize speed when a maximum for each resource type 

is given  resource-constrained synthesis
E.g. power-constrained synthesis

 Minimize power dissipation for a given speed and area 
requirement  time- and area- constrained synthesis
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Input Format

 The algorithm, which is the input to a high-level 
synthesis system, is often provided in textual 
form either
 in a conventional programming language, such 

as C, C++, SystemC, or
 in a hardware description language (HDL), 

which is more suitable to express the 
parallelism present in hardware.

 The description has to be parsed and transformed 
into an internal representation and thus 
conventional compiler techniques can be used.
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Example of HL Optimization

 Applying the distributive law to reduce resource  
requirement
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Internal Representation

Most systems use 
some form of a data-
flow graph (DFG)
 A DFG may or may not 

contain information on 
control flow

 A data-flow graph is 
built from
 vertices (nodes): 

representing 
computation, and

 edges: representing 
precedence relations
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Token Flow in a DFG

 A node in a DFG fires when all tokens are present 
at its inputs

 The input tokens are consumed and an output 
token is produced (like in Petri nets)

A token

Firing 
a node

Generate 
a token 
after 
firing
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Conditional Data Flow

 Conditional data flow by means of two special 
nodes:
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Explicit Iterative Data Flow

 Selector and 
distributor nodes can 
be used to describe 
iteration
 Example

 Loops require careful 
placement of initial 
tokens on edges

while (a > b)
a  a – b;
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Implicit Iterative Data Flow

 Iteration implied by regular input stream of 
tokens

 Initial tokens act as buffers
 Delay elements instead of initial tokens
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Iterative DFG Example

a second-order filter section
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Optimization of Internal Representation

Restructuring data 
and control flow 
graphs prior to the 
actual mapping 
onto hardware
 Examples:

Replacing chain of 
adders by a tree

Behavior retiming

Tree height reduction
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Behavior Retiming (BRT)

 By moving registers 
through logic and 
hierarchical 
boundaries, BRT 
reduces the clock 
period with minimum 
area impact
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Effectiveness of Behavior Retiming 

 RTL designs have a single clock net and were synthesized into gates using 
Synopsys Design Compiler

 Design type: dataflow implies significant number of operators; control 
implies state machine dominated

Synopsys exp:
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HLS Subtasks: Allocation, Scheduling, 
Assignment

 Subtasks in high-level synthesis
 Allocation (Module selection): specify the hardware 

resources that will be necessary
 Scheduling: determine for each operation the time at which it 

should be performed such that no precedence constraint is 
violated

 Assignment (Binding): map each operation to a specific 
functional unit and each variable to a register

 Remarks:
 Though the subproblems are strongly interrelated, they are 

often solved separately. However, to attain a better solution, 
an iterative process executing these three subtasks must be 
performed.

 Most scheduling problems are NP-complete  heuristics are 
used
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Example of High Level Synthesis
 The following couple of slides shows an example of 

scheduling and binding of a design with given resource 
allocation

 Given the second-order filter which is first made acyclic:
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Example of Scheduling

 The schedule and operation assignment with an 
allocation of one adder and one multiplier:
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Binding for Data Path Generation
 The resulting data path after register assignment

 The specification of a controller would complete the 
design

Multiplier Adder
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Resource Allocation Problem
 This problem is relatively simple. It simply decides the 

kinds of hardware resources (hardware implementation for 
certain functional units such as adder, multiplier, etc.)  and 
the quantity of these resources.
 For example two adders, one multiplier, 4 32-bit registers, etc. 

for a certain application

 The decision made in this step has a profound influence on 
the scheduling which under the given resource constraints 
decides the time when an operation should be executed by 
a functional unit

 This step set an upper bound on the attainable performance.
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Problem Formulation of Scheduling
 Input consists of a DFG G(V, E) and a library     of resource 

types
 There is a fixed mapping from each v V to some r  ;

the execution delay (v) for each operation is therefore 
known

 The problem is time-constrained; the available execution 
times are in the set

 A schedule :VT maps each operation to its starting time; 
for each edge (vi, vj)  E, a schedule should respect: (vj) 
(vi) + (vi).

 Given the resource type cost (r) and the requirement 
function Nr(), the cost of a schedule  is given by:
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ASAP Scheduling

As soon as possible (ASAP) 
scheduling maps an operation to the 
earliest possible starting time not violating 
the precedence constraints

Properties:
It is easy to compute by finding the 

longest paths in a directed acyclic graph
It does not make any attempt to 

optimize the resource cost
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Graph for ASAP Scheduling
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Mobility Based Scheduling

Compute both the ASAP and ALAP (as late 
as possible) schedules S and L

For each v  V, determine the scheduling 
range [S(v) , L(v)]

L(v) - S(v) is called the mobility of v

Mobility-based scheduling tries to find the 
best position within its scheduling range 
for each operation
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Simple Mobility Based Scheduling

 A partial schedule        assigns a 
scheduling range to each vV,

 Finding a schedule can be seen as the generation 
of a sequence of  partial schedules 
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List Scheduling

 A resource-constrained scheduling method
 Start at time zero and increase time until all 

operations have been scheduled
Consider the precedence constraint

 The ready list Lt contains all operations that can 
start their execution at time t or later

 If more operations are ready than there are 
resources available, use some priority function to 
choose, e.g. the longest-path to the output node 
 critical-path list scheduling
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List Scheduling Example

p1

p2

p3
o3

o2

o1
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Assignment Problem

Subtasks in assignment:
 operation-to-FU assignment
 value grouping
 value-to-register assignment
 transfer-to-wire assignment
wire to FU-port assignment

In general: task-to-agent assignment
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Compatibility and Conflict Graphs

Clique partitioning
gives an 
assignment in a 
compatibility graph

Graph coloring
gives an 
assignment in the 
complementary 
conflict graph
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Assignment Problem
 Assumption: assignment 

follows scheduling.
 The claim of a task on an 

agent is an interval 
minimum resource 
utilization can be found by 
left-edge algorithm.

 In case of iterative 
algorithm, interval graph 
becomes circular-arc graph 
 optimization is NP-
complete.
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Tseng and Sieworek’s Algorithm
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Clique-Partitioning Example
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Example of Behavior Optimization

Behavior Optimization of Arithmetic Circuit (BOA)
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Effectiveness of BOA
Synopsys example


