Introduction to Electronic
Design Automation I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2011

Model of Computation I

Model of Computation

O In system design, intended system behavior is translated
into physical implementation
B The physical implementation can be in hardware or software,
in silicon or non-silicon (e.g., living cells)
B How a system behaves or interacts with its environmental
stimuli must be specified formally

0 Model of computation (MoC) can be seen as the subject of
devising/selecting effective “data structures” in describing
system behaviors precisely and concisely

O MoC gives a formal way of describing system behaviors

B It is useful in the specification, synthesis and verification of
systems

Model of Computation

O Outline

B State transition systems

O Finite automata / finite state machines
B Real-time systems

OTimed automata
B Hybrid systems

O Hybrid automata for hybrid systems, which exhibits both
discrete and continuous dynamic behavior

B Asynchronous systems
O Petri nets for asynchronous handshaking
B Signal processing systems
O Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)

Modeling State Transition

O Finite automata A = (Q, q,, F, 2, 8)
B Q: states; q,: initial state; F: accepting states; >.: input
alphabet; &: >xQ—Q transition
B Can be alternatively represented in state diagram

O Finite automata are used as the recognizer of regular
language

B Example 0 1

O The finite automaton accepts all binary strings ended in a “1”, i.e.,
which form the language: (0*1*)*1 or {0,1}*1

Modeling State Transition (cont'd)

[0 Finite state machine (FSM) M = (Q, I, X, Q, §, 1)
B Q: states; I: initial states; >.: input alphabet; Q : output alphabet; 6:
2.xQ—Q transition function; A: >xQ—>Q (respectively A: Q—Q) output
function for Mealy (respectively Moore) FSM

B Can be alternatively represented in state transition graph (STG) or
state transition table (STG)

B E.g., vending machine, traffic light controller, elevator controller,
Rubik’s cube!, etc.

o
!
Q
@)

go
yield
stop
go
yield
stop

P FRPPFPOOO
T<OIUV<O | O
OIU<xu<®

Modeling State Transition (cont'd)
CO0FSMs are often used as controllers in
digital systems

M E.g. data flow controller, ALU (arithmetic logic
unit) controller, etc.

CVariants of FSM
M Hierarchical FSM

B Communicating FSM
__

Modeling Real-Time Systems

O Timed automata

B Example
light switch controller
gard
push | x>2 | x:=0, y:=0 aCt'En { reset

click | y<9 | x:=0 x and y are clock variables

Modeling Hybrid Systems

0 Hybrid automata
B Example
temperature control system
T > Thign
T< Tlow
Modeling Asynchronous Systems

O Petri net P = (G, M,)
B Petri net graph G is a bipartite weighted directed graph:

CO0Two types of nodes: places in circles and transitions in
boxes

0 Arcs: arrows labeled with weights indicating how many
tokens are consumed or produced

O Tokens: black dots in places
B Initial marking M,
O Initial token positions

ref: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems
(cont'd)

O In a Petri net graph G,

B places: represent distributed state by holding tokens

O marking (state) M is an vector (m;, m,, ..., m,), where m, is the non-
negative number of tokens in place p;

O initial marking M, is initial state

B transitions: represent actions/events
O enabled transition: enough tokens in predecessors
O firing transition: modifies marking p2

pl

ref: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems
(cont'd)

O A marking is changed according to the following rules:
B A transition is enabled if there are enough tokens in each input place

B An enabled transition fire (i.e. non-deterministic)
B The firing of a transition modifies marking by tokens from
the input places and tokens in the output places

e _ %5 0
- [EP

ref: EE249 lecture notes, UC Berkeley 12

Modeling Asynchronous Systems
(cont’'d)

0 Example
communication protocol
Send msg Receive ms$g
P1 P2
Send Ack
Receive Ack
source: EE249 lecture notes, UC Berkeley 13
Modeling Asynchronous Systems
b}
(cont'd)
0 Example
communication protocol
Send msg Receive ms$g
P1 P2

Send Ack

Receive Ack

source: EE249 lecture notes, UC Berkeley 14

Modeling Asynchronous Systems
(cont’'d)

0 Example
communication protocol
Send msg Receive ms$g
P1 P2
Send Ack
Receive Ack
source: EE249 lecture notes, UC Berkeley 15
Modeling Asynchronous Systems
b}
(cont'd)
0 Example
communication protocol
Send msg Receive ms$g
P1 P2

Send Ack

Receive Ack

source: EE249 lecture notes, UC Berkeley 16

Modeling Asynchronous Systems
(cont’'d)

0 Example
communication protocol
Send msg Receive ms$g
P1 P2
Send Ack
Receive Ack
source: EE249 lecture notes, UC Berkeley 17
Modeling Asynchronous Systems
b}
(cont'd)
0 Example
communication protocol
Send msg Receive ms$g
P1 P2

Send Ack

Receive Ack

source: EE249 lecture notes, UC Berkeley 18

Modeling Signal Processing

OO0 Data-flow process network

B Nodes represent actors; arcs represent FIFO queues
O Firing rules are specified on arcs
O Actors respect firing rules that specify how many tokens must be
available on every input for an actor to fire. When an actor fires, it

consumes a finite number of tokens and produces also a finite
number of output tokens.

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html 19

MoC in System Construction

0 There are many other models of computation
tailored for specific applications

® Can you devise a new computation model in some
domain?

] Hierarchical modeling combined with several
different models of computation is often
necessary

0 By using a proper MoC, a system can be specified
formally, and further synthesized and verified

B In the sequel of this course, we will be focusing on FSMs
mainly

20

High Level Synthesis

High-level synthesis

Logic synthesis

U

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang

21

High Level Synthesis

0 Course contents

® Hardware modeling

®m Data flow

B Scheduling/allocation/assignment
COReading

M Chapter 5

22

High Level Synthesis

[0 Hardware-description language (HDL) synthesis

B Starts from a register-transfer level (RTL) description;
circuit behavior in each clock cycle is fixed

B Uses logic synthesis techniques to optimize the design
B Generates a netlist

O High-level synthesis (HLS), also called architectural or
behavioral synthesis

B Starts from an abstract behavioral description
B Generates an RTL description

® It normally has to perform the trade-off between the
number of cycles and the hardware resources to fulfill a
task

23

HL Synthests vs. RTL Synthesis

0 RTL synthesis
implements all
functionality within a Behavioral and RTL Synthesis
single clock cycle

Behavioral @ @ C @ ACyeles - 15 rs
Synthesis

et (B QO] 2erm-me
O HL synthesis
automatically allocates \=> Do revrn
the functionality T e

across multiple clock

cycles o SYOPSYS

24

Output of High Level Synthesis

O Behavioral Compiler creates a design that consists of a
datapath, memory 1I/0 and a control FSM

Behavioral Code
e Co=rations

Multiple
Architecture
cyeeoser 1 (Creation

Cycie Claimy 7
Cyrim Chutmy 5

" Control ESM

Exl — o : :
Emm | Target Architecture
T ' :
labus Ppeﬁfg-ﬁ‘-ef. . Implementation

: ey = it ; «
Trata - e T _!"- . S : Mﬂ
e ot EH ; Fge vy

25

Benefits of High Level Synthesis (1)

O Quick specification and verification

B Specify behavioral HDL easily, since it's intuitive and natural to
write

B Save time -- behavioral HDL code is up to 10 times shorter
than equivalent RTL

B Simulate orders of magnitude faster because of the higher
level of abstraction

B Reuse designs more readily by starting with a more abstract
description

0 Reduce design time

B Model hardware and software components of system
concurrently

B Easily implement algorithms in behavioral HDL and generate
RTL code with a behavioral compiler

B Verify hardware in system context at various levels of
abstraction

26

Benefits of High Level Synthesis (2)

0 Explore architectural trade-offs
B Create multiple architectures from a single specification

B Trade-off throughput and latency using high-level
constraints

B Analyze various combinations of technology-specific
datapath and memory resources

B Evaluate cost/performance of various implementations
rapidly
0 Automatically infer memory and generate FSM
B Specify memory reads and writes

B Schedule memory 1/0, resolve conflicts by building
control FSM

B Trade-off single-ported (separate registers) vs. multi-
ported memories (register files)

B Generate a new FSM

27

Hardware Models for HI. Synthesis

O All HLS systems need to restrict the target hardware
B Otherwise search space is too large

O All synthesis systems have their own peculiarities, but most
systems generate synchronous hardware and build it with
functional units:

B A functional unit can perform one or more computations,
e.g., addition, multiplication, comparison, ALU

28

Hardware Models

] Registers: they store |
inputs, intermediate
results and outputs;
sometimes several
registers are taken |
together to form a
register file

0 Multiplexers: from
several inputs, one is
passed to the output

29

Hardware Models (cont'd)

J Buses: a connection

shared between NV NV

several hardware

elements, such that bus
only one element can V4 \

write data at a specific _/ v

time

| i

O Tri-state drivers:
control the exclusive
writing on the bus

enable

30

Hardware Models (cont'd)

[0 Parameters defining the hardware model for the
synthesis problem:

® Clocking strategy: e.g. single or multiple
phase clocks

B Interconnect: e.g. allowing or disallowing
buses

B Clocking of functional units: allowing or
disallowing

CImulticycle operations

Cloperation chaining (multiple operations in
one cycle)

Clpipelined units

31

Chaining, Multicycle Operation,
Pipelining

multicycle
Operation

)

Cycle -

boundary

32

Example of a HLS Hardware Model

<] = multiplexer input one or more buses
A

P —/ NT Y

@® = tristate bus driver F 3

registers
and/or {
register

files

one or
more
FU’s

33

Hardware Concepts: Data Path +
Control

0 Hardware is normally partitioned into two parts:
B Data path: a network of functional units, registers,
multiplexers and buses
OThe actual “computation” takes place in the data path

B Control: the part of the hardware that takes care of
having the data present at the right place at a specific
time, of presenting the right instructions to a
programmable unit, etc.

0 High-level synthesis often concentrates on data-path
synthesis

B The control part is then realized as a finite state
machine or in microcode

34

Steps of High Level Synthesis

0 Preprocess the design with high-level optimization
B Code motion
B Common subexpression elimination
B Loop unrolling
B Constant propagation
B Modifications taking advantage of associativity and distributivity, etc.
O Transform the optimized design into intermediate format
(internal representation) which reveals more structural
characteristics of the design
O Optimize the intermediate format
B Tree height reduction
B Behavior retiming
OO0 Allocate the required resources to implement the design
B Also called module selection
O Schedule each operation to be performed at certain time such
that no precedence constraint is violated

O Assign (bind) each operation to a specific functional unit and
each variable to a register

35

HLS Optimization Criteria

O Typically, in terms of speed, area, and power
consumption

] Optimization is often constrained

B Optimize area when the minimum speed is given =
time-constrained synthesis

B Optimize speed when a maximum for each resource type
IS given = resource-constrained synthesis

O E.g. power-constrained synthesis

B Minimize power dissipation for a given speed and area
requirement = time- and area- constrained synthesis

36

Input Format

0 The algorithm, which is the input to a high-level
synthesis system, is often provided in textual
form either

¥ in a conventional programming language, such
as C, C++, SystemC, or

M in a hardware description language (HDL),
which is more suitable to express the
parallelism present in hardware.

0 The description has to be parsed and transformed
into an internal representation and thus
conventional compiler techniques can be used.

37

Example of HL. Optimization

O Applying the distributive law to reduce resource
requirement

38

Internal Representation

0 Most systems use

some form of a data- X i=a*biy:=c+d
flow graph (DFG) S £
B A DFG may or may not a b c d
contain information on
control flow
0 A data-flow graph is X y

built from

M vertices (nodes):
representing
computation, and

M edges: representing 7
precedence relations

39

Token Flow in 2a DFG

0 A node in a DFG fires when all tokens are present
at its inputs

0 The input tokens are consumed and an output
token is produced (like in Petri nets)

a b ¢c d a b c¢c d a b c d

[. X)4
/ /
Firing Generate L
a node Z a token
Z Z

after
firing

40

Conditional Data Flow

0 Conditional data flow by means of two special
nodes:

v v .
Coe G
¢ v

41

Explicit Iterative Data Flow

] Selector and
distributor nodes can a b\
be used to describe
iteration
. T sel. F
Example

while (a > b)
a «< a— b; \ i

0 Loops require careful
placement of initial
tokens on edges

42

Implicit Iterative Data Flow

I Iteration implied by regular input stream of
tokens

I Initial tokens act as buffers
0 Delay elements instead of initial tokens

d

a b b a b E a b
al0]e allle e b[1] a[l]e :
a[0] ‘
D ’ B :
c[1]® :
c -
: c
4

C

3

Iterative DFG Example

a second-order filter section

44

Optimization of Internal Representation

CJRestructuring data
and control flow
graphs prior to the
actual mapping
onto hardware

B Examples:

COReplacing chain of
adders by a tree

COBehavior retiming

~(§-eeooee“

X4

Tree height reduction

45

Behavior Retiming (BR'T)

0 By moving registers
through logic and
hierarchical
boundaries, BRT
reduces the clock
period with minimum
area impact

-
_*/\-z"/-\L ~

DOutputs

]

clock period

constraint = 10ns ||

a b a b
<
+
d e f
D
£ N

46

Effectiveness ot Behavior Retiming

Synopsys exp:

DEsian TreE

Gotrdl | ddns | 10813gates | WEns | 11,313g2es | 0%dacter 4% more.area

: Control (23Ans | 3 590-gates 135613 4575 g2es | 16% faster 7% more area
Central- - | - 28Bns] 3 F86gates - Whns o) 3% gates | same-geed, B lessares
Dmﬂuw&ﬂna_mmi __1?ps _ ?B.SEIU-ga_tes: _12.5.:1; ; Sﬂ_iuuga_tes i ?.E“E:-..m;r\d%.mo.re-area
Distel owd Corfrol 1603 7 B20-gates 1313 803 gates - | 0% faster S%-more-srea
Datafiore: [-0 2hg | 4000.gates .. 185h0s - op - B100gaes. | 16%.baster, 2% mota.ares
Datafiow CLlns | W d26.gates (261 32032 g2tes. || 0% fader, 2% more ares
Datafloe Ja2ns 14,351 yates 236.ng 13,847 gates | 10% dacter 4% lessares
Diatafow H5ns 16 798-gates 20.5-ns 16,080 gtes | 0% Tacter 7% less aren

L Dataflow 503 28 7105 gates 2605 | 30,987 gales fi?%ﬁaﬁer,ﬁ%-mu?e-mﬂ

RTL designs have a single clock net and were synthesized into gates using
Synopsys Design Compiler

Design type: dataflow implies significant number of operators; control
implies state machine dominated

47

HLS Subtasks: Allocation, Scheduling,
Assignment

O Subtasks in high-level synthesis
B Allocation (Module selection): specify the hardware
resources that will be necessary

® Scheduling: determine for each operation the time at which it
should be performed such that no precedence constraint is
violated

B Assignment (Binding): map each operation to a specific
functional unit and each variable to a register

O Remarks:

B Though the subproblems are strongly interrelated, they are
often solved separately. However, to attain a better solution,
an iterative process executing these three subtasks must be
performed.

B Most scheduling problems are NP-complete = heuristics are
used

48

Example of High Level Synthesis

O The following couple of slides shows an example of
scheduling and binding of a design with given resource
allocation

OO0 Given the second-order filter which is first made acyclic:

49

Example ot Scheduling

0 The schedule and operation assignment with an
allocation of one adder and one multiplier:

50

Binding for Data Path Generation

O The resulting data path after register assignment

B The specification of a controller would complete the
design

==y
dl

l
1
d2

ROM

Multiplie\'x_/

51

Resource Allocation Problem

O This problem is relatively simple. It simply decides the
kinds of hardware resources (hardware implementation for
certain functional units such as adder, multiplier, etc.) and
the quantity of these resources.

B For example two adders, one multiplier, 4 32-bit registers, etc.
for a certain application

0 The decision made in this step has a profound influence on
the scheduling which under the given resource constraints
decides the time when an operation should be executed by
a functional unit

0 This step set an upper bound on the attainable performance.

52

Problem Formulation of Scheduling

O Input consists of a DFG G(V, E) and a library R of resource
types

O There is a fixed mapping from each v €V to some r e R, ;
the execution delay &(v) for each operation is therefore
known

O The problem is time-constrained; the available execution
times are in the set

g = {O, 1.....T{j} o 1}

O A schedule o:V—>T maps each operation to its starting time;
for each edge (v;, v;) € E, a schedule should respect: o(v;) >

o(vi) + &(v)).
O Given the resource type cost o(r) and the requirement
function N,(o), the cost of a schedule o is given by:

Z w(I)N(0).

re®

53

ASAP Scheduling

COAs soon as possible (ASAP)
scheduling maps an operation to the
earliest possible starting time not violating
the precedence constraints

ClProperties:

M|t is easy to compute by finding the
longest paths in a directed acyclic graph

¥ It does not make any attempt to
optimize the resource cost

54

Graph for ASAP Scheduling

55

Mobility Based Scheduling

C0Compute both the ASAP and ALAP (as late
as possible) schedules o5 and o;

ClFor each v € V, determine the scheduling
range [os(v) , o.(V)]

o (V) - o5(v) is called the mobility of v

CIMobility-based scheduling tries to find the
best position within its scheduling range
for each operation

56

Simple Mobility Based Scheduling

O A partial schedule ¢: 1V —[9,91 assigns a
scheduling range to each veV,

(V) = [0 pinV): Omax(V) |

O Finding a schedule can be seen as the aeneration
of a sequence of partial schedules 5" ;"

“determine & ©) by computing og and 67,”;
k<« Q;
while (“there are unscheduled operations™) {
v < “‘one of the nodes with lowest mobility™;
“schedule v at some time that optimizes the current resource utilization™;
“determine & *t1) by updating the scheduling ranges
of the unscheduled nodes™;
k<—k+1

57

List Scheduling

0 A resource-constrained scheduling method

] Start at time zero and increase time until all
operations have been scheduled

M Consider the precedence constraint

O The ready list L, contains all operations that can
start their execution at time t or later

I If more operations are ready than there are
resources available, use some priority function to
choose, e.g. the longest-path to the output node
= critical-path list scheduling

58

List Scheduling Example

ALU #2 | V4 V2D< Vel V7

ALU #1 | V¢ V3 Vs

59

Assignment Problem

C0Subtasks in assignment:
W operation-to-FU assignment
M value grouping
M value-to-register assignment
M transfer-to-wire assignment
M wire to FU-port assignment

ClIn general: task-to-agent assignment

60

Compatibility and Conflict Graphs

CIClique partitioning OGraph coloring
gives an gives an
assignment in a assignment in the
compatibility graph complementary

conflict graph

61

Assignment Problem

O Assumption: assignment
follows scheduling.

O The claim of a task on an
agent is an interval =
minimum resource
utilization can be found by
left-edge algorithm.

O In case of iterative
algorithm, interval graph Vs
becomes circular-arc graph
= optimization is NP-
complete.

62

Tseng and Sieworek's Algorithm

k<« 0O
G,g(vga Eg) < GC(VCa EC’);
while (EX + 7) {

“find (v;, v;) € E.f with largest set of common neighbors™;
N <« “‘set of common neighbors of v; and ”Uj”;
s < 1UjJ;
k+1
Vc—i' <« V§ Ulvsi N {vio vk
E,'ff'i'l <« i;
for each (v, vy) € Eck
if (U 7# Vi A U £ Vj AVp 7V At F Vj)
k+1 k+1)
£ < E:7 U{(um, va)ks
foreachv, € N
ESTD — EST U (o, ve));
k<« k+1;

63

Clique-Partitioning Example

Yo,1.2
Yo.1 7

V0.1.2

Vv v
0.1,2,3 0,1,2.3
v g o
5.6

Va 1)56 Yy

v 7
Vo

Vs 6.7
®

64

Example of Behavior Optimization

I
@D
@“ ll'#l‘-
z |
g b2
A BT
! .
Cory dely 2 Ly
three times *T T,
o
’ i
i L
0
n
X
%+ |
-
IC)
Behavior Optimization of Arithmetic Circuit (BOA)
65
Etfectiveness of BOA
I
Synopsys example
| sor | suwwen T

14% faster,
5% less area

202 ns
12 215 gates

236 ns

hiation estimation 12.79% gates

. . . 192 ns 17 5 ns 9% faster,
Graphics intempalation 2,507 gates 2,952 gates 16 % less area
16 na 149 ns 7% faster,

Color space conwersion

and scaling 35 BEE gates

trmarmal CSA implermentation)

34 3497 gates 4% less area

T7ns a.3ns 31 % faster,
Sum of4 operands 1,418 gates 1,307 gates 8% less area
a*b+1 116 ns 9.3 ns 20% faster,
2 57T gates 2,524 gates 2% less area
a* 404 4.4 ns 3.1 ns 30 % faster,
(04 000001000001a07% Ta9 gates 449 gates 40 % less area
a*3E3E a7 ns 46 ns 19 % faster,
(O 11300 14111073 927 gates T09 gates 23% less area
a*b+c 11.0 ns 100 ns 9% faster,
2 707 gates 2 689 gates same ared
. . . 142 ns 1z 8 ns 10% faster,
arb+crd+e*t T .4345 gates 7110 gates 4% less darea
8.1 ns 6.7 ns 17 % faster,
Sum of 16 vperands 2 836 gates 2 123 gates 25% less amea

A

66

