

Introduction to Electronic Design Automation

Jie-Hong Roland Jiang

江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

1

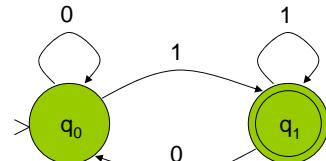
Model of Computation

Model of Computation

- In system design, intended system behavior is translated into physical implementation
 - The physical implementation can be in hardware or software, in silicon or non-silicon (e.g., living cells)
 - How a system behaves or interacts with its environmental stimuli must be specified *formally*
- Model of computation (MoC) can be seen as the subject of devising/selecting effective “data structures” in describing system behaviors precisely and concisely
- MoC gives a **formal** way of describing system behaviors
 - It is useful in the **specification**, **synthesis** and **verification** of systems

3

Model of Computation

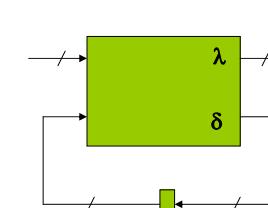

- Outline
 - State transition systems
 - Finite automata / finite state machines
 - Real-time systems
 - Timed automata
 - Hybrid systems
 - Hybrid automata for hybrid systems, which exhibits both discrete and continuous dynamic behavior
 - Asynchronous systems
 - Petri nets for asynchronous handshaking
 - Signal processing systems
 - Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)

4

Modeling State Transition

- Finite automata $A = (Q, q_0, F, \Sigma, \delta)$
 - Q : states; q_0 : initial state; F : accepting states; Σ : input alphabet; $\delta: \Sigma \times Q \rightarrow Q$ transition
 - Can be alternatively represented in *state diagram*
- Finite automata are used as the recognizer of *regular language*
 - Example



- The finite automaton accepts **all** binary strings ended in a "1", i.e., which form the language: $(0^*1^*)^*1$ or $\{0,1\}^*1$

5

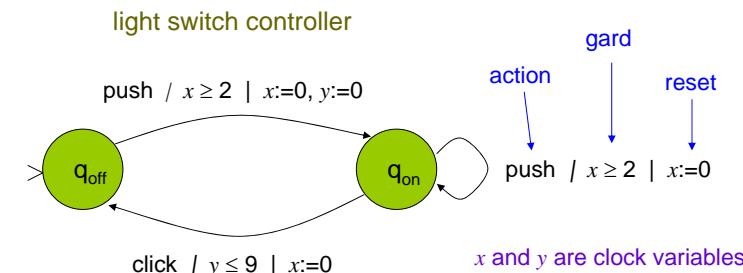
Modeling State Transition (cont'd)

- Finite state machine (FSM) $M = (Q, I, \Sigma, \Omega, \delta, \lambda)$
 - Q : states; I : initial states; Σ : input alphabet; Ω : output alphabet; $\delta: \Sigma \times Q \rightarrow Q$ transition function; $\lambda: \Sigma \times Q \rightarrow \Omega$ (respectively $\lambda: Q \rightarrow \Omega$) output function for Mealy (respectively Moore) FSM
 - Can be alternatively represented in *state transition graph* (STG) or *state transition table* (STT)
 - E.g., vending machine, traffic light controller, elevator controller, Rubik's cube!, etc.

Σ	Q	Q'	Ω
0	G	G	go
0	Y	Y	yield
0	R	R	stop
1	G	Y	go
1	Y	R	yield
1	R	G	stop

6

Modeling State Transition (cont'd)

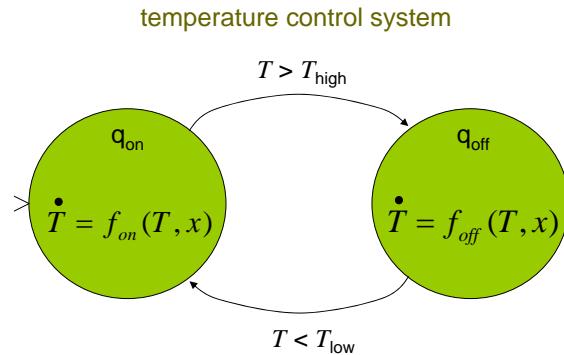

- FSMs are often used as controllers in digital systems
 - E.g. data flow controller, ALU (arithmetic logic unit) controller, etc.

- Variants of FSM
 - Hierarchical FSM
 - Communicating FSM
 - ...

7

Modeling Real-Time Systems

- Timed automata
 - Example

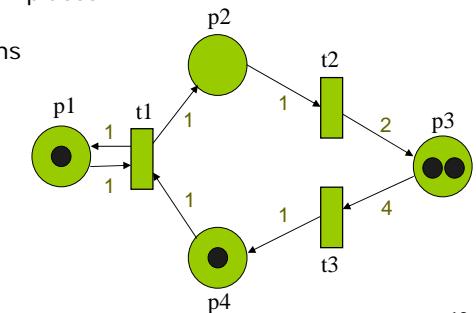


- Switch may be turned on whenever at least 2 time units has elapsed since last turn off
- Light switches off automatically after 9 time units

8

Modeling Hybrid Systems

- Hybrid automata
 - Example

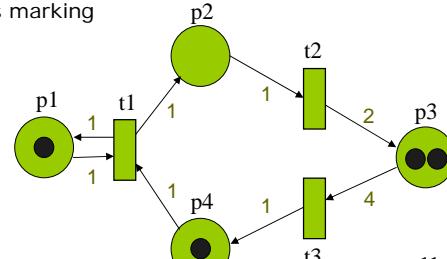

9

Modeling Asynchronous Systems

- Petri net $P = (G, M_0)$

- Petri net graph G is a bipartite weighted directed graph:
 - Two types of nodes: *places* in circles and *transitions* in boxes
 - Arcs: arrows labeled with weights indicating how many tokens are consumed or produced
 - Tokens: black dots in places

- Initial marking M_0
 - Initial token positions

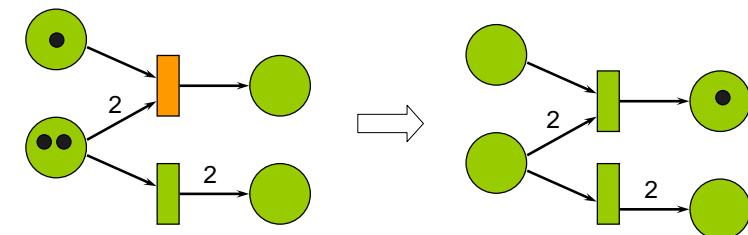

ref: EE249 lecture notes, UC Berkeley

10

Modeling Asynchronous Systems (cont'd)

- In a Petri net graph G ,

- **places**: represent distributed state by holding tokens
 - marking (state) M is a vector (m_1, m_2, \dots, m_n) , where m_i is the non-negative number of tokens in place p_i
 - initial marking M_0 is initial state
- **transitions**: represent actions/events
 - enabled transition: enough tokens in predecessors
 - firing transition: modifies marking

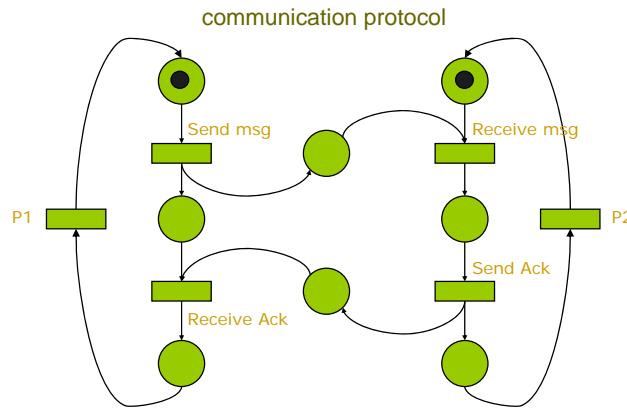


11

Modeling Asynchronous Systems (cont'd)

- A marking is changed according to the following rules:

- A transition is **enabled** if there are enough tokens in each input place
- An enabled transition **may or may not** fire (i.e. non-deterministic)
- The **firing** of a transition modifies marking by **consuming** tokens from the input places and **producing** tokens in the output places

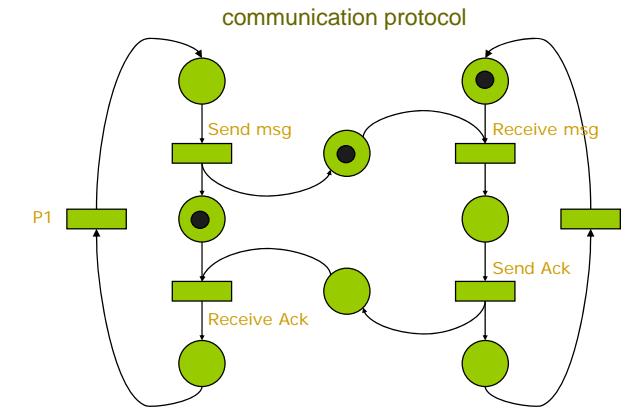


ref: EE249 lecture notes, UC Berkeley

12

Modeling Asynchronous Systems (cont'd)

□ Example

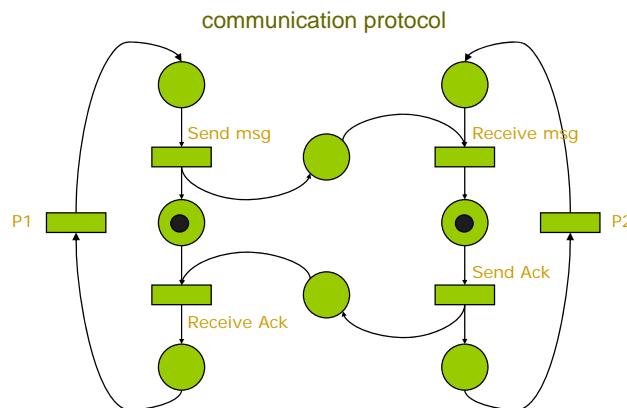


source: EE249 lecture notes, UC Berkeley

13

Modeling Asynchronous Systems (cont'd)

□ Example

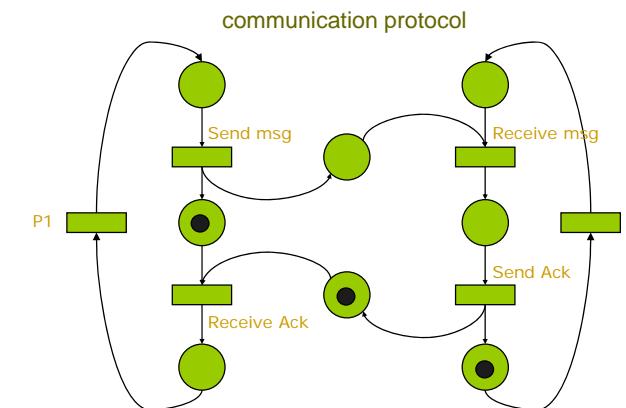


source: EE249 lecture notes, UC Berkeley

14

Modeling Asynchronous Systems (cont'd)

□ Example

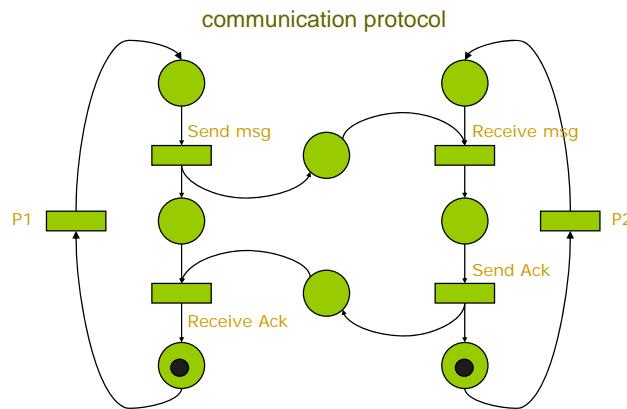


source: EE249 lecture notes, UC Berkeley

15

Modeling Asynchronous Systems (cont'd)

□ Example

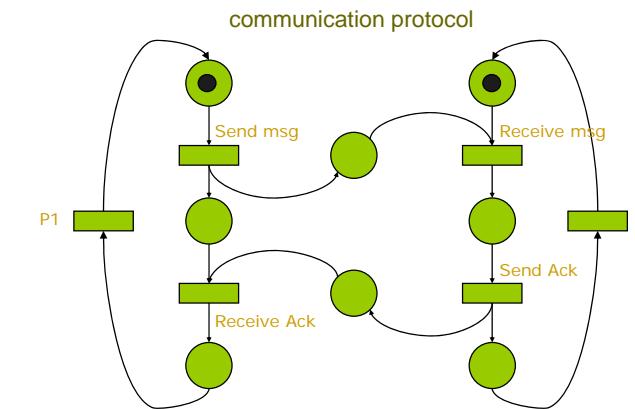


source: EE249 lecture notes, UC Berkeley

16

Modeling Asynchronous Systems (cont'd)

□ Example

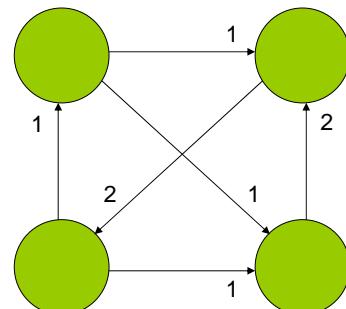


source: EE249 lecture notes, UC Berkeley

17

Modeling Asynchronous Systems (cont'd)

□ Example


source: EE249 lecture notes, UC Berkeley

18

Modeling Signal Processing

□ Data-flow process network

- Nodes represent **actors**; arcs represent **FIFO queues**
 - **Firing rules** are specified on arcs
 - Actors respect firing rules that specify how many tokens must be available on every input for an actor to fire. When an actor fires, it consumes a finite number of tokens and produces also a finite number of output tokens.

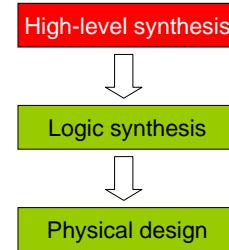
ref: <http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html>

19

MoC in System Construction

□ There are many other models of computation tailored for specific applications

- Can you devise a new computation model in some domain?


□ Hierarchical modeling combined with several different models of computation is often necessary

□ By using a proper MoC, a system can be specified formally, and further synthesized and verified

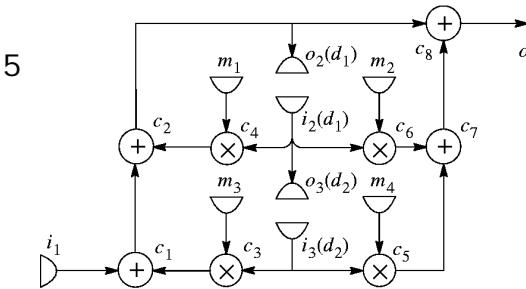
- In the sequel of this course, we will be focusing on FSMs mainly

20

High Level Synthesis

Slides are by Courtesy of Prof. Y.-W. Chang

21


High Level Synthesis

Course contents

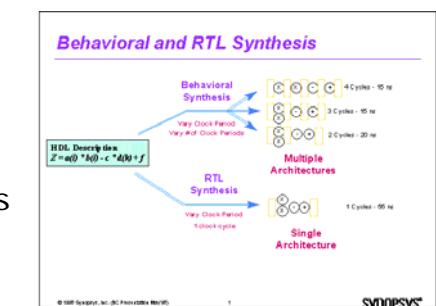
- Hardware modeling
- Data flow
- Scheduling/allocation/assignment

Reading

- Chapter 5

22

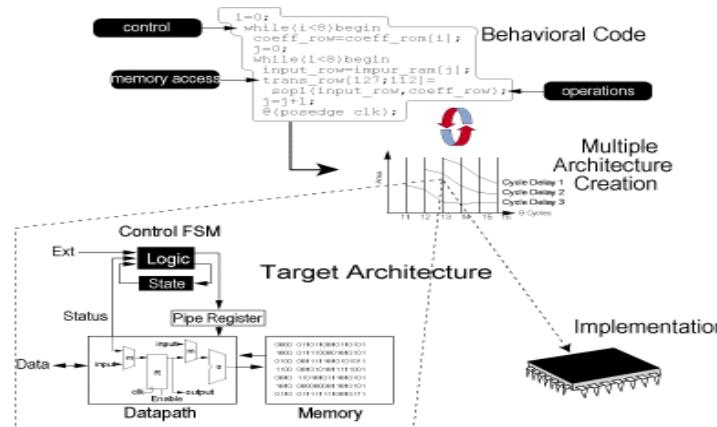
High Level Synthesis


- Hardware-description language (HDL) synthesis
 - Starts from a **register-transfer level (RTL)** description; **circuit behavior in each clock cycle is fixed**
 - Uses logic synthesis techniques to optimize the design
 - Generates a netlist
- High-level synthesis (HLS), also called architectural or behavioral synthesis
 - Starts from an abstract behavioral description
 - Generates an RTL description
 - It normally has to perform the trade-off between the **number of cycles** and the **hardware resources** to fulfill a task

23

HL Synthesis vs. RTL Synthesis

- RTL synthesis implements all functionality within a single clock cycle


- HL synthesis automatically allocates the functionality across multiple clock cycles

24

Output of High Level Synthesis

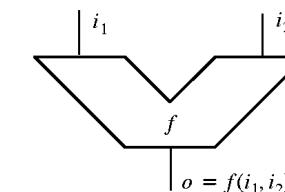
- ❑ Behavioral Compiler creates a design that consists of a datapath, memory I/O and a control FSM

25

Benefits of High Level Synthesis (1)

- ❑ Quick specification and verification
 - ❑ Specify behavioral HDL easily, since it's intuitive and natural to write
 - ❑ Save time -- behavioral HDL code is up to 10 times shorter than equivalent RTL
 - ❑ Simulate orders of magnitude faster because of the higher level of abstraction
 - ❑ Reuse designs more readily by starting with a more abstract description
- ❑ Reduce design time
 - ❑ Model hardware and software components of system concurrently
 - ❑ Easily implement algorithms in behavioral HDL and generate RTL code with a behavioral compiler
 - ❑ Verify hardware in system context at various levels of abstraction

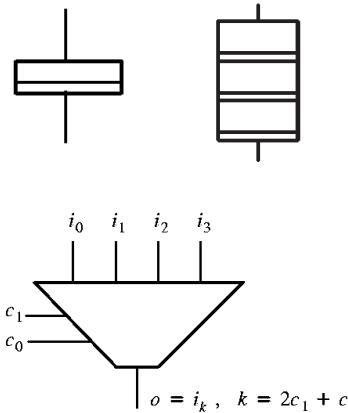
26


Benefits of High Level Synthesis (2)

- ❑ Explore architectural trade-offs
 - ❑ Create multiple architectures from a single specification
 - ❑ Trade-off throughput and latency using high-level constraints
 - ❑ Analyze various combinations of technology-specific datapath and memory resources
 - ❑ Evaluate cost/performance of various implementations rapidly
- ❑ Automatically infer memory and generate FSM
 - ❑ Specify memory reads and writes
 - ❑ Schedule memory I/O, resolve conflicts by building control FSM
 - ❑ Trade-off single-ported (separate registers) vs. multi-ported memories (register files)
 - ❑ Generate a new FSM

27

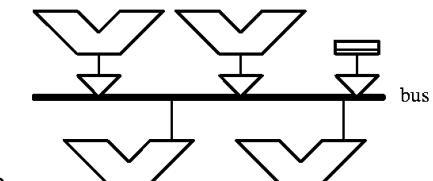
Hardware Models for HL Synthesis


- ❑ All HLS systems need to restrict the target hardware
 - ❑ Otherwise search space is too large
- ❑ All synthesis systems have their own peculiarities, but most systems generate **synchronous** hardware and build it with **functional units**:
 - ❑ A functional unit can perform one or more computations, e.g., addition, multiplication, comparison, ALU

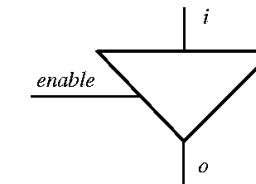
28

Hardware Models

- Registers: they store inputs, intermediate results and outputs; sometimes several registers are taken together to form a register file



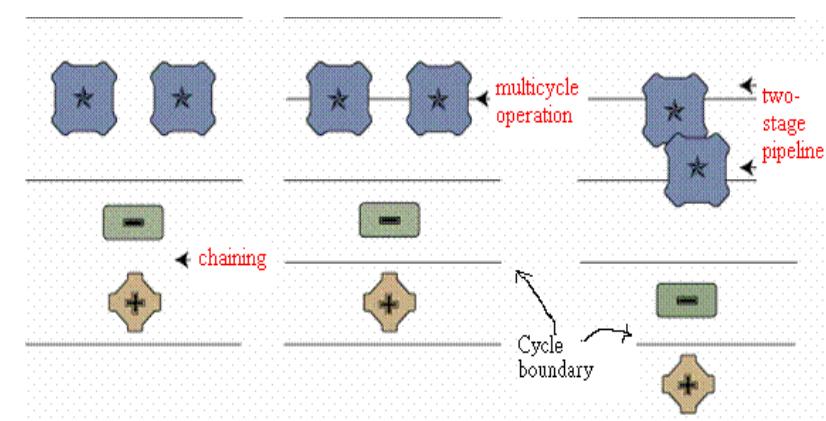
- Multiplexers: from several inputs, one is passed to the output


29

Hardware Models (cont'd)

- Buses: a connection shared between several hardware elements, such that only one element can write data at a specific time

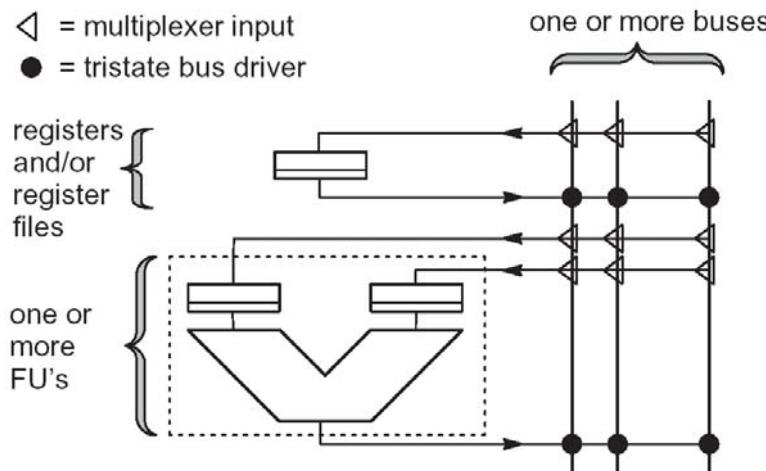
- Tri-state drivers: control the exclusive writing on the bus


30

Hardware Models (cont'd)

- Parameters defining the hardware model for the synthesis problem:
 - Clocking strategy:** e.g. single or multiple phase clocks
 - Interconnect:** e.g. allowing or disallowing buses
 - Clocking of functional units:** allowing or disallowing
 - multicycle operations
 - operation chaining (multiple operations in one cycle)
 - pipelined units

31


Chaining, Multicycle Operation, Pipelining

32

Example of a HLS Hardware Model

- △ = multiplexer input
- = tristate bus driver

33

Hardware Concepts: Data Path + Control

- Hardware is normally partitioned into two parts:
 - Data path:** a network of functional units, registers, multiplexers and buses
 - The actual “computation” takes place in the data path
 - Control:** the part of the hardware that takes care of having the data present at the right place at a specific time, of presenting the right instructions to a programmable unit, etc.
- High-level synthesis often concentrates on data-path synthesis
 - The control part is then realized as a finite state machine or in microcode

34

Steps of High Level Synthesis

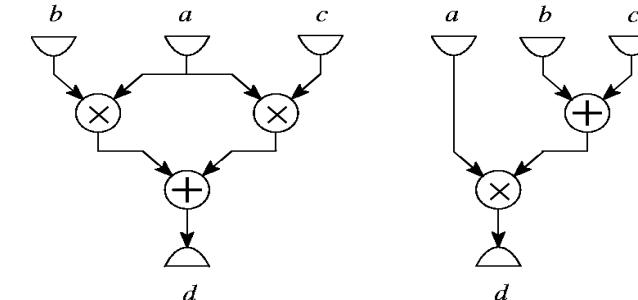
- Preprocess** the design with high-level optimization
 - Code motion
 - Common subexpression elimination
 - Loop unrolling
 - Constant propagation
 - Modifications taking advantage of associativity and distributivity, etc.
- Transform** the optimized design into intermediate format (internal representation) which reveals more structural characteristics of the design
- Optimize** the intermediate format
 - Tree height reduction
 - Behavior retiming
- Allocate** the required resources to implement the design
 - Also called module selection
- Schedule** each operation to be performed at certain time such that no precedence constraint is violated
- Assign (bind)** each operation to a specific functional unit and each variable to a register

35

HLS Optimization Criteria

- Typically, in terms of speed, area, and power consumption
- Optimization is often constrained
 - Optimize area when the minimum speed is given ⇒ time-constrained synthesis
 - Optimize speed when a maximum for each resource type is given ⇒ resource-constrained synthesis
 - E.g. power-constrained synthesis
 - Minimize power dissipation for a given speed and area requirement ⇒ time- and area- constrained synthesis

36

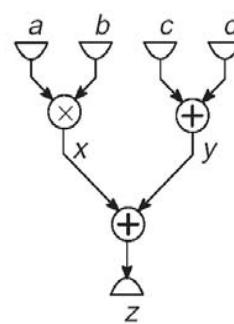

Input Format

- The algorithm, which is the input to a high-level synthesis system, is often provided in textual form either
 - in a conventional programming language, such as C, C++, SystemC, or
 - in a hardware description language (HDL), which is more suitable to express the parallelism present in hardware.
- The description has to be parsed and transformed into an internal representation and thus conventional compiler techniques can be used.

37

Example of HL Optimization

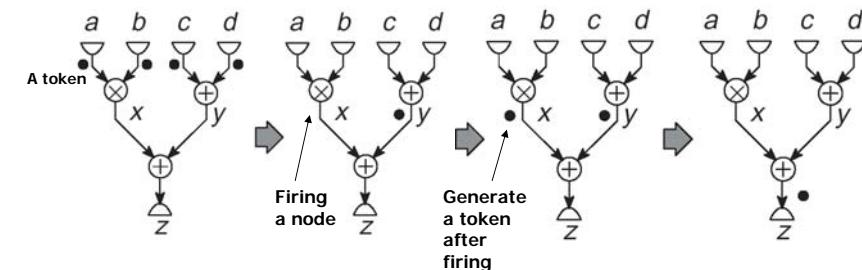
- Applying the distributive law to reduce resource requirement



38

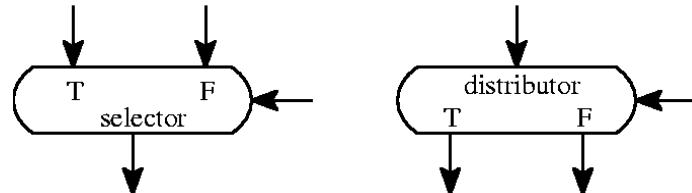
Internal Representation

- Most systems use some form of a **data-flow graph (DFG)**
 - A DFG may or may not contain information on control flow
- A data-flow graph is built from
 - vertices (nodes): representing computation, and
 - edges: representing **precedence** relations


$x := a * b; y := c + d;$
 $z := x + y;$

39

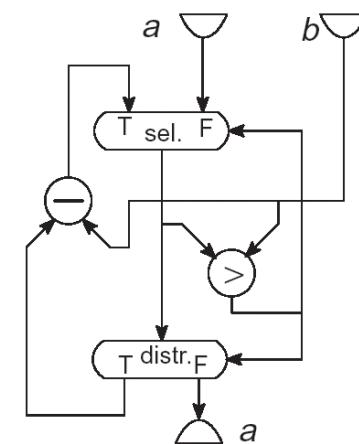
Token Flow in a DFG


- A node in a DFG **fires** when all **tokens** are present at its inputs
- The input tokens are consumed and an output token is produced (like in Petri nets)

40

Conditional Data Flow

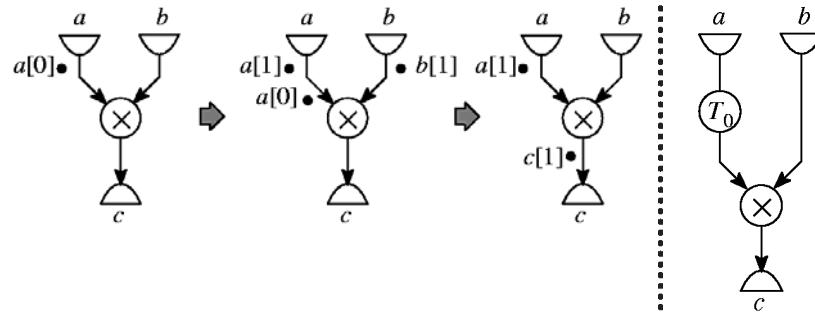
- Conditional data flow by means of two special nodes:


41

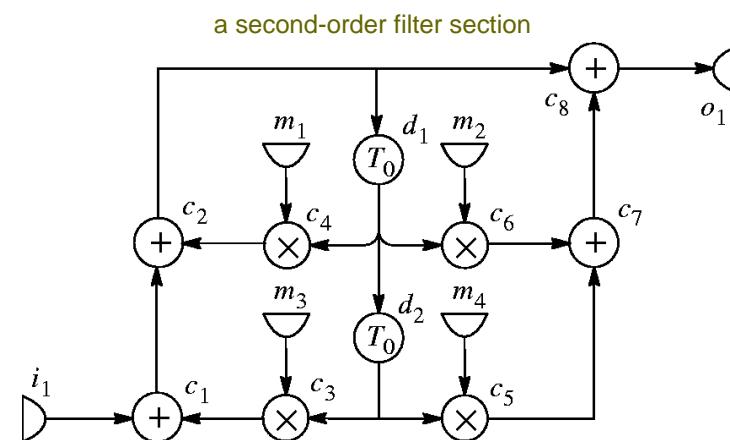
Explicit Iterative Data Flow

- Selector and distributor nodes can be used to describe iteration
- Example

```
while (a > b)
    a ← a - b;
```


- Loops require careful placement of initial tokens on edges

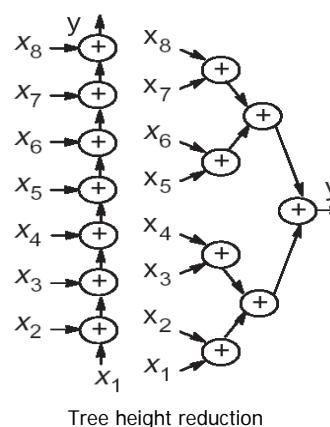
42


Implicit Iterative Data Flow

- Iteration implied by regular input stream of tokens
- Initial tokens act as buffers
- Delay elements instead of initial tokens

43

Iterative DFG Example


44

Optimization of Internal Representation

- ❑ Restructuring data and control flow graphs prior to the actual mapping onto hardware

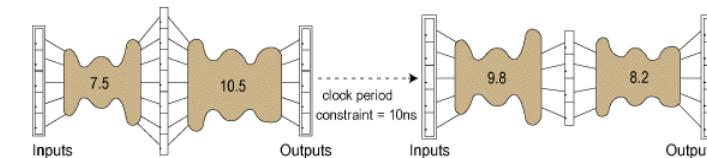
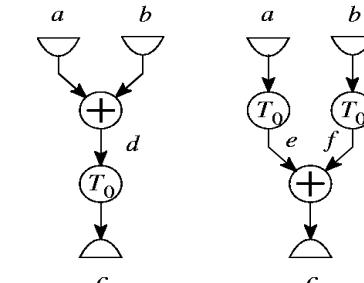
❑ Examples:

- ❑ Replacing chain of adders by a tree
- ❑ Behavior retiming

45

Effectiveness of Behavior Retiming

Synopsys exp:



DESIGN TYPE	RTL DESIGN		BEHAVIORAL RETIMING		SUMMARY
	SPEED (Clock Period)	GATES	SPEED (Clock Period)	GATES	
Control	44 ns	10,913-gates	30.6 ns	11,313 gates	30% faster, 4% more area
Control	23.1 ns	3,598-gates	19.6 ns	4,575 gates	15% faster, 27% more area
Control	28.6 ns	3,585-gates	28.6 ns	3,359 gates	same speed, 6% less area
Dataflow&Control	17 ns	28,900-gates	12.5 ns	30,100 gates	26% faster, 4% more area
Dataflow&Control	16 ns	7,620-gates	13 ns	8,019 gates	20% faster, 5% more area
Dataflow	22 ns	4,990-gates	18.5 ns	5,109 gates	16% faster, 2% more area
Dataflow	28 ns	31,226-gates	26 ns	32,032 gates	8% faster, 2% more area
Dataflow	26.2 ns	14,351-gates	23.6 ns	13,847 gates	10% faster, 4% less area
Dataflow	25.9 ns	16,798-gates	20.8 ns	15,550 gates	20% faster, 7% less area
Dataflow	45 ns	28,705-gates	26 ns	30,987 gates	42% faster, 8% more area

- ❑ RTL designs have a single clock net and were synthesized into gates using Synopsys Design Compiler
- ❑ Design type: dataflow implies significant number of operators; control implies state machine dominated

47

Behavior Retiming (BRT)

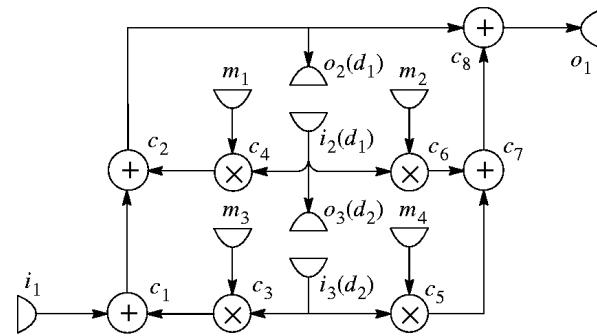
- ❑ By moving registers through logic and hierarchical boundaries, BRT reduces the clock period with minimum area impact

46

HLS Subtasks: Allocation, Scheduling, Assignment

- ❑ Subtasks in high-level synthesis

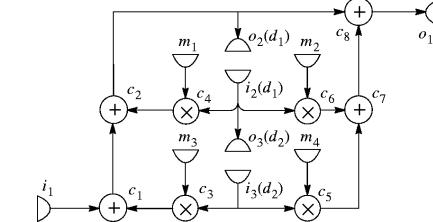
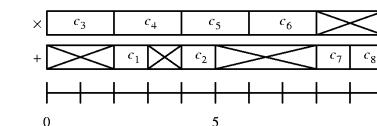
- ❑ **Allocation (Module selection):** specify the hardware resources that will be necessary
- ❑ **Scheduling:** determine for each operation the time at which it should be performed such that no precedence constraint is violated
- ❑ **Assignment (Binding):** map each operation to a specific functional unit and each variable to a register


- ❑ Remarks:

- ❑ Though the subproblems are strongly interrelated, they are often solved separately. However, to attain a better solution, an iterative process executing these three subtasks must be performed.
- ❑ Most scheduling problems are NP-complete \Rightarrow heuristics are used

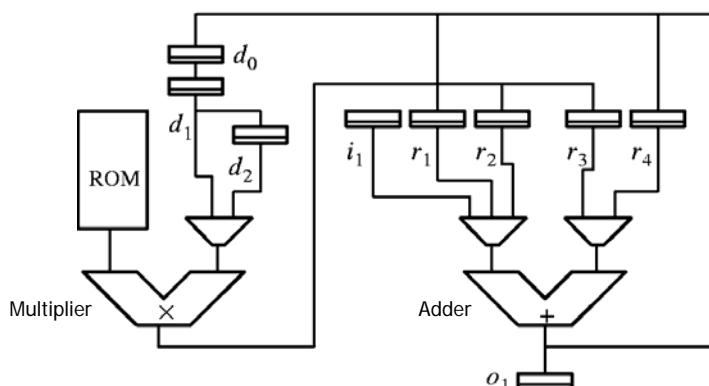
48

Example of High Level Synthesis



- The following couple of slides shows an example of scheduling and binding of a design with given resource allocation
- Given the second-order filter which is first made acyclic:

49

Example of Scheduling


- The schedule and operation assignment with an allocation of one adder and one multiplier:

50

Binding for Data Path Generation

- The resulting data path after register assignment
 - The specification of a controller would complete the design

51

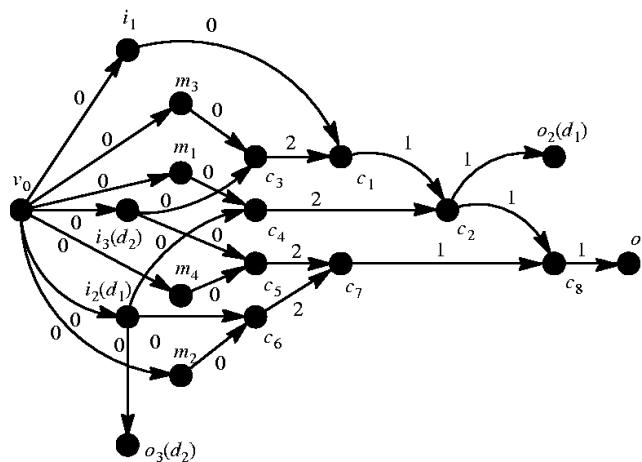
Resource Allocation Problem

- This problem is relatively simple. It simply decides the kinds of hardware resources (hardware implementation for certain functional units such as adder, multiplier, etc.) and the quantity of these resources.
 - For example two adders, one multiplier, 4 32-bit registers, etc. for a certain application
- The decision made in this step has a profound influence on the scheduling which under the given resource constraints decides the time when an operation should be executed by a functional unit
- This step set an upper bound on the attainable performance.

52

Problem Formulation of Scheduling

- Input consists of a DFG $G(V, E)$ and a library \mathcal{R} of resource types
- There is a fixed mapping from each $v \in V$ to some $r \in \mathcal{R}$; the execution delay $\delta(v)$ for each operation is therefore known
- The problem is time-constrained; the available execution times are in the set


$$\mathcal{T} = \{0, 1, \dots, T_0 - 1\}.$$

- A schedule $\sigma: V \rightarrow \mathcal{T}$ maps each operation to its starting time; for each edge $(v_i, v_j) \in E$, a schedule should respect: $\sigma(v_j) \geq \sigma(v_i) + \delta(v_i)$.
- Given the resource type cost $\omega(r)$ and the requirement function $N_r(\sigma)$, the cost of a schedule σ is given by:

$$\sum_{r \in \mathcal{R}} \omega(r) N_r(\sigma).$$

53

Graph for ASAP Scheduling

55

ASAP Scheduling

- As soon as possible (ASAP) scheduling** maps an operation to the earliest possible starting time not violating the precedence constraints

Properties:

- It is easy to compute by finding the longest paths in a directed acyclic graph
- It does not make any attempt to optimize the resource cost

54

Mobility Based Scheduling

- Compute both the ASAP and **ALAP (as late as possible)** schedules σ_S and σ_L
- For each $v \in V$, determine the scheduling range $[\sigma_S(v), \sigma_L(v)]$
- $\sigma_L(v) - \sigma_S(v)$ is called the **mobility** of v
- Mobility-based scheduling tries to find the best position within its scheduling range for each operation

56

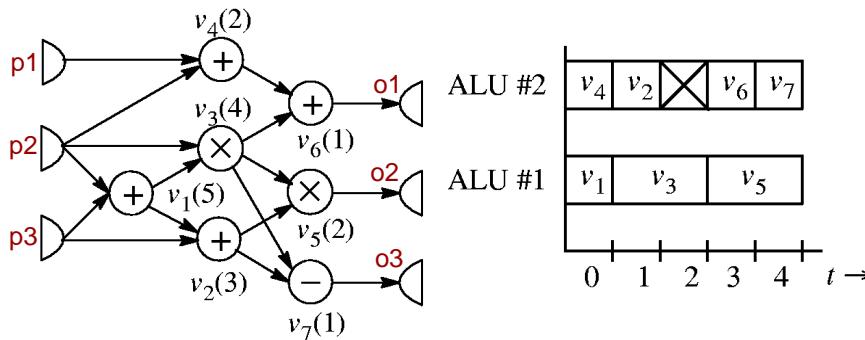
Simple Mobility Based Scheduling

- A partial schedule $\tilde{\sigma} : V \rightarrow [\mathcal{T}, \mathcal{T}]$ assigns a scheduling range to each $v \in V$,

$$\tilde{\sigma}(v) = [\tilde{\sigma}_{\min}(v), \tilde{\sigma}_{\max}(v)]$$

- Finding a schedule can be seen as the generation of a sequence of partial schedules $\tilde{\sigma}^{(0)}, \dots, \tilde{\sigma}^{(n)}$.

“determine $\tilde{\sigma}^{(0)}$ by computing σ_S and σ_L ”;
 $k \leftarrow 0$;
while (“there are unscheduled operations”) {
 $v \leftarrow$ “one of the nodes with lowest mobility”;
 “schedule v at some time that optimizes the current resource utilization”;
 “determine $\tilde{\sigma}^{(k+1)}$ by updating the scheduling ranges
 of the unscheduled nodes”;
 $k \leftarrow k + 1$
}


57

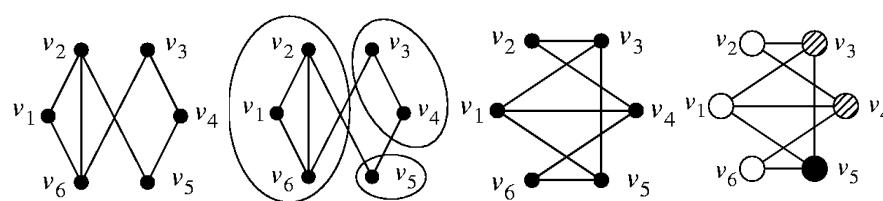
List Scheduling

- A resource-constrained scheduling method
- Start at time zero and increase time until all operations have been scheduled
 - Consider the precedence constraint
- The ready list L_t contains all operations that can start their execution at time t or later
- If more operations are ready than there are resources available, use some priority function to choose, e.g. the longest-path to the output node
⇒ critical-path list scheduling

58

List Scheduling Example

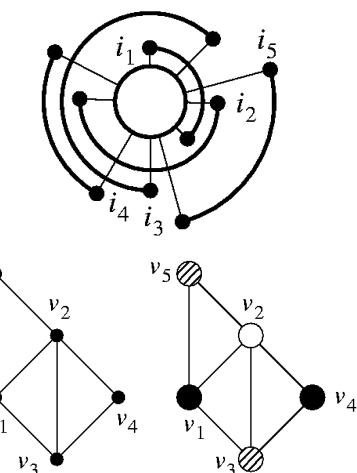
59


Assignment Problem

- Subtasks in assignment:
 - operation-to-FU assignment
 - value grouping
 - value-to-register assignment
 - transfer-to-wire assignment
 - wire to FU-port assignment
- In general: task-to-agent assignment

60

Compatibility and Conflict Graphs

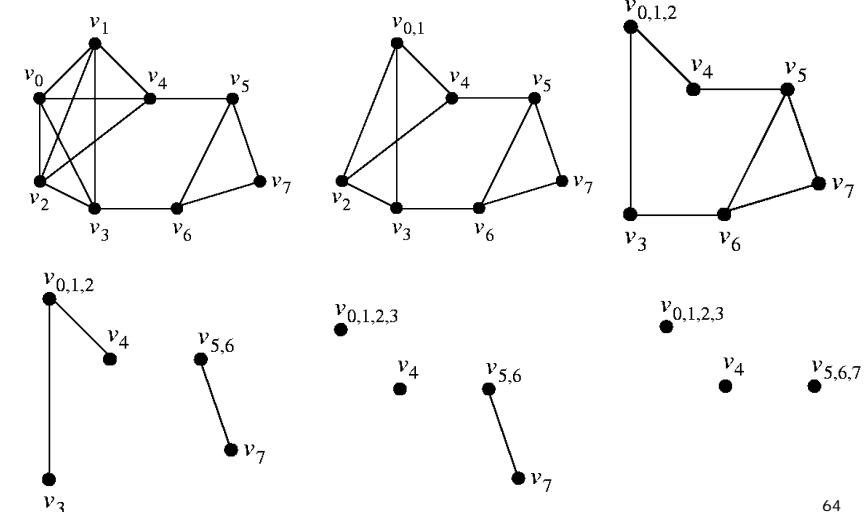

❑ Clique partitioning gives an assignment in a compatibility graph

61

Assignment Problem

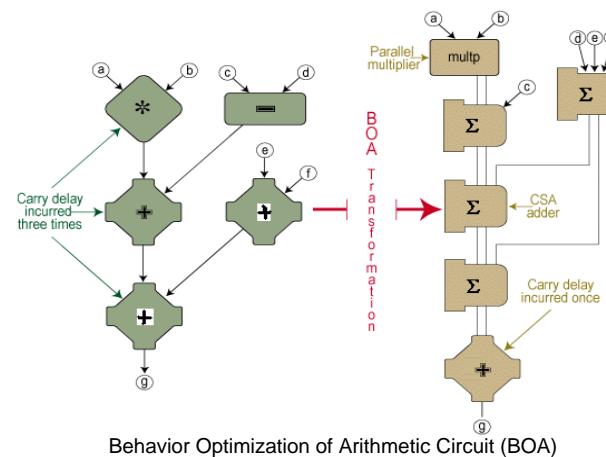
- ❑ Assumption: assignment follows scheduling.
- ❑ The claim of a task on an agent is an interval \Rightarrow minimum resource utilization can be found by left-edge algorithm.
- ❑ In case of iterative algorithm, interval graph becomes circular-arc graph \Rightarrow optimization is NP-complete.

62


Tseng and Siewiorek's Algorithm

```

 $k \leftarrow 0;$ 
 $G_c^k(V_c^k, E_c^k) \leftarrow G_c(V_c, E_c);$ 
 $\text{while } (E_c^k \neq \emptyset) \{$ 
    "find  $(v_i, v_j) \in E_c^k$  with largest set of common neighbors";
     $N \leftarrow$  "set of common neighbors of  $v_i$  and  $v_j$ ";
     $s \leftarrow i \cup j;$ 
     $V_c^{k+1} \leftarrow V_c^k \cup \{v_s\} \setminus \{v_i, v_j\};$ 
     $E_c^{k+1} \leftarrow \emptyset;$ 
     $\text{for each } (v_m, v_n) \in E_c^k$ 
         $\text{if } (v_m \neq v_i \wedge v_m \neq v_j \wedge v_n \neq v_i \wedge v_n \neq v_j)$ 
             $E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_m, v_n)\};$ 
     $\text{for each } v_n \in N$ 
         $E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_n, v_s)\};$ 
     $k \leftarrow k + 1;$ 
}
```


63

Clique-Partitioning Example

64

Example of Behavior Optimization

65

Effectiveness of BOA

Synopsis example

DESIGN TYPE	RTL DESIGN	BOA	SUMMARY
Motion estimation	23.6 ns 12,793 gates	20.2 ns 12,215 gates	14% faster, 5% less area
Graphics interpolation	19.2 ns 3,507 gates	17.5 ns 2,952 gates	9% faster, 16% less area
Color space conversion and scaling	16 ns 35,866 gates (manual CSA implementation)	14.9 ns 34,397 gates	7% faster, 4% less area
Sum of 9 operands	7.7 ns 1,418 gates	5.3 ns 1,307 gates	31% faster, 8% less area
$a * b + 1$	11.6 ns 2,577 gates	9.3 ns 2,524 gates	20% faster, 2% less area
$a * 4104$ (0100001000000100)	4.4 ns 759 gates	3.1 ns 449 gates	30% faster, 40% less area
$a * 3E3E$ (001111100111110)	5.7 ns 927 gates	4.6 ns 709 gates	19% faster, 23% less area
$a * b + c$	11.0 ns 2,707 gates	10.0 ns 2,689 gates	9% faster, same area
$a * b + c * d + e * f$	14.2 ns 7,405 gates	12.8 ns 7,110 gates	10% faster, 4% less area
Sum of 16 operands	8.1 ns 2,836 gates	6.7 ns 2,123 gates	17% faster, 25% less area

66