

Introduction to Electronic Design Automation

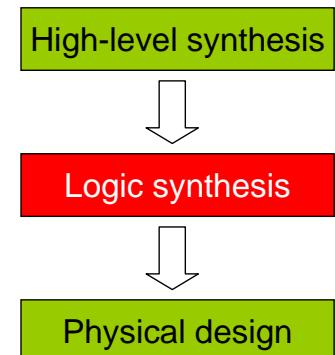
Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

1

Logic Synthesis



Part of the slides are by courtesy of Prof. Andreas Kuehlmann

2

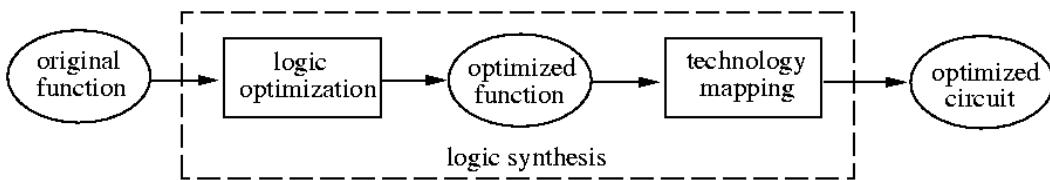
Logic Synthesis

□ Course contents

- Overview
- Boolean function representation
- Logic optimization
- Technology mapping

□ Reading

- Chapter 6



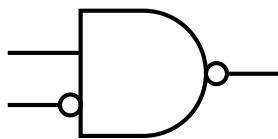
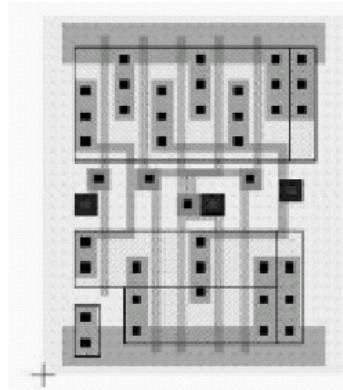
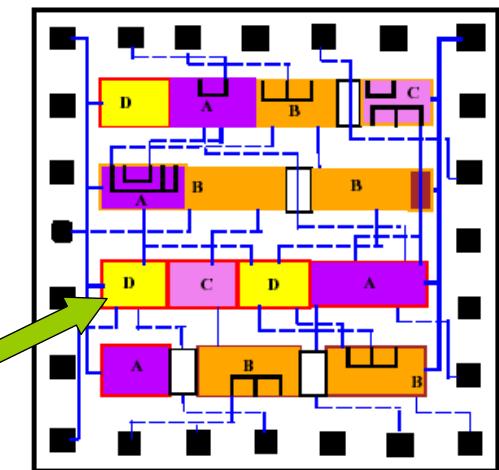
3

High-Level to Logic Synthesis

- Hardware is normally partitioned into two parts:
 - **Data path:** a network of functional units, registers, multiplexers and buses.
 - **Control:** the circuit that takes care of having the data present at the right place at a specific time (i.e. FSM), or of presenting the right instructions to a programmable unit (i.e. microcode).
- High-level synthesis often focuses on data-path optimization
 - The control part is then realized as an FSM
- Logic synthesis often focuses on control-logic optimization
 - Logic synthesis is widely used in application-specific IC (ASIC) design, where standard cell design style is most common

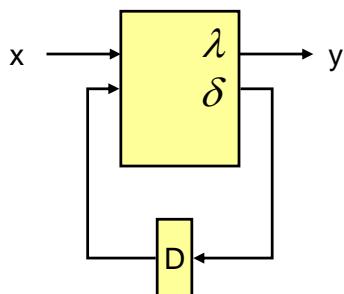
4

Standard-Cell Based Design



5

Transformation of Logic Synthesis



Given: Functional description of finite-state machine $F(Q, X, Y, \delta, \lambda)$ where:

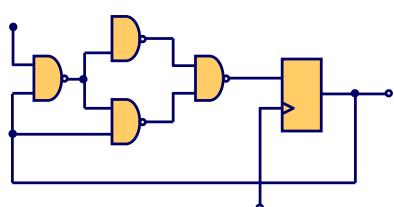
Q : Set of internal states

X : Input alphabet

Y : Output alphabet

$\delta: X \times Q \rightarrow Q$ (next state *function*)

$\lambda: X \times Q \rightarrow Y$ (output *function*)



Target: Circuit $C(G, W)$ where:

G : set of circuit components $g \in \{\text{gates, FFs, etc.}\}$

W : set of wires connecting G

6

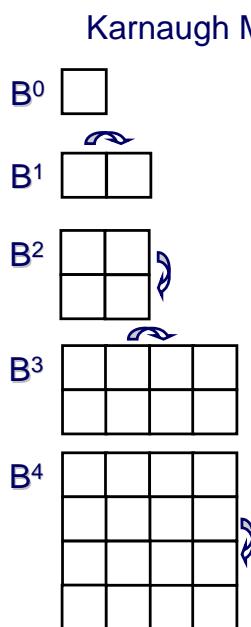
Boolean Function Representation

- Logic synthesis translates Boolean functions into circuits
- We need representations of Boolean functions for two reasons:
 - to represent and manipulate the actual circuit that we are implementing
 - to facilitate *Boolean reasoning*

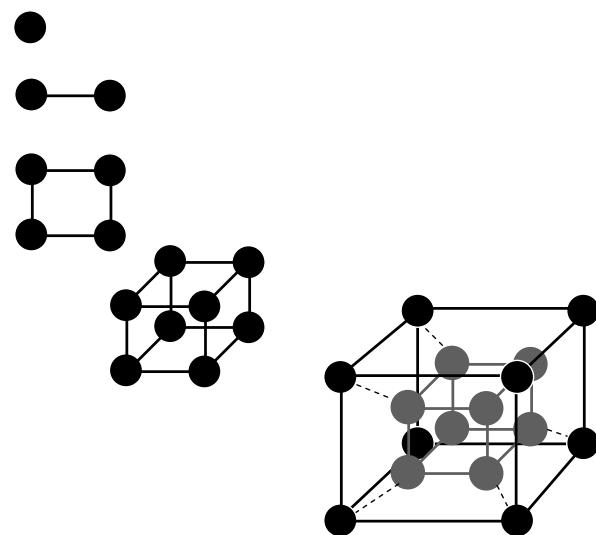
7

Boolean Space

- $B = \{0, 1\}$
- $B^2 = \{0, 1\} \times \{0, 1\} = \{00, 01, 10, 11\}$



Boolean Lattices:



8

Boolean Function

- A Boolean function f over input variables: x_1, x_2, \dots, x_m is a mapping $f: \mathbf{B}^m \rightarrow Y^n$, where $\mathbf{B} = \{0,1\}$ and $Y = \{0,1,d\}$
 - E.g.
 - The output value of $f(x_1, x_2, x_3)$, say, partitions \mathbf{B}^m into three sets:
 - **on-set** ($f=1$)
 - E.g. $\{010, 011, 110, 111\}$ (characteristic function $f^1 = x_2$)
 - **off-set** ($f=0$)
 - E.g. $\{100, 101\}$ (characteristic function $f^0 = x_1 \neg x_2$)
 - **don't-care set** ($f=d$)
 - E.g. $\{000, 001\}$ (characteristic function $f^d = \neg x_1 \neg x_2$)
- f is an **incompletely specified function** if the don't-care set is nonempty. Otherwise, f is a **completely specified function**
 - Unless otherwise said, a Boolean function is meant to be completely specified

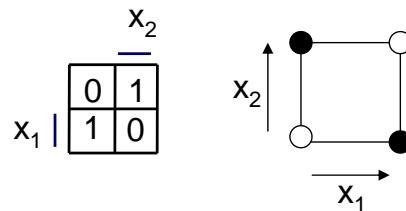
9

Boolean Function

- A Boolean function $f: \mathbf{B}^n \rightarrow \mathbf{B}$ over variables x_1, \dots, x_n maps each Boolean valuation (truth assignment) in \mathbf{B}^n to 0 or 1

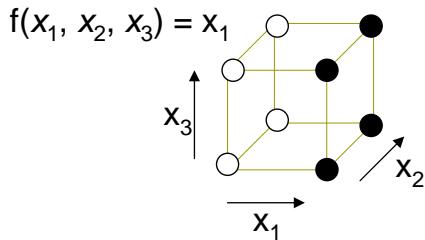
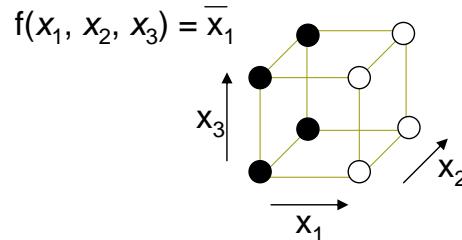
Example

$f(x_1, x_2)$ with $f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, f(1,1) = 0$



Boolean Function

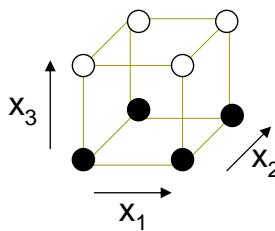
- **Onset** of f , denoted as f^1 , is $f^1 = \{v \in \mathbf{B}^n \mid f(v) = 1\}$
 - If $f^1 = \mathbf{B}^n$, f is a **tautology**
- **Offset** of f , denoted as f^0 , is $f^0 = \{v \in \mathbf{B}^n \mid f(v) = 0\}$
 - If $f^0 = \mathbf{B}^n$, f is **unsatisfiable**. Otherwise, f is **satisfiable**.
- f^1 and f^0 are sets, not functions!
- Boolean functions f and g are **equivalent** if $\forall v \in \mathbf{B}^n. f(v) = g(v)$ where v is a truth assignment or Boolean valuation
- A **literal** is a Boolean variable x or its negation x' (or $x, \neg x$) in a Boolean formula



11

Boolean Function

- There are 2^n vertices in \mathbf{B}^n
- There are 2^{2^n} distinct Boolean functions
 - Each subset $f^1 \subseteq \mathbf{B}^n$ of vertices in \mathbf{B}^n forms a distinct Boolean function f with onset f^1



$x_1 x_2 x_3$	f
0 0 0	1
0 0 1	0
0 1 0	1
0 1 1	0
1 0 0	$\Rightarrow 1$
1 0 1	0
1 1 0	1
1 1 1	0

12

Boolean Operations

Given two Boolean functions:

$$f : \mathbf{B}^n \rightarrow \mathbf{B}$$

$$g : \mathbf{B}^n \rightarrow \mathbf{B}$$

- $h = f \wedge g$ from **AND** operation is defined as

$$h^1 = f^1 \cap g^1; h^0 = \mathbf{B}^n \setminus h^1$$

- $h = f \vee g$ from **OR** operation is defined as

$$h^1 = f^1 \cup g^1; h^0 = \mathbf{B}^n \setminus h^1$$

- $h = \neg f$ from **COMPLEMENT** operation is defined as

$$h^1 = f^0; h^0 = f^1$$

13

Cofactor and Quantification

Given a Boolean function:

$f : \mathbf{B}^n \rightarrow \mathbf{B}$, with the input variable $(x_1, x_2, \dots, x_i, \dots, x_n)$

- **Positive cofactor on variable x_i**

$h = f_{x_i}$ is defined as $h = f(x_1, x_2, \dots, 1, \dots, x_n)$

- **Negative cofactor on variable x_i**

$h = f_{\neg x_i}$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n)$

- **Existential quantification over variable x_i**

$h = \exists x_i. f$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n) \vee f(x_1, x_2, \dots, 1, \dots, x_n)$

- **Universal quantification over variable x_i**

$h = \forall x_i. f$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n) \wedge f(x_1, x_2, \dots, 1, \dots, x_n)$

- **Boolean difference over variable x_i**

$h = \partial f / \partial x_i$ is defined as $h = f(x_1, x_2, \dots, 0, \dots, x_n) \oplus f(x_1, x_2, \dots, 1, \dots, x_n)$

14

Boolean Function Representation

- Some common representations:
 - Truth table
 - Boolean formula
 - SOP (sum-of-products, or called disjunctive normal form, DNF)
 - POS (product-of-sums, or called conjunctive normal form, CNF)
 - BDD (binary decision diagram)
 - Boolean network (consists of nodes and wires)
 - Generic Boolean network
 - Network of nodes with generic functional representations or even subcircuits
 - Specialized Boolean network
 - Network of nodes with SOPs (PLAs)
 - And-Inv Graph (AIG)
- Why different representations?
 - Different representations have their own strengths and weaknesses (no single data structure is best for all applications)

15

Boolean Function Representation Truth Table

- Truth table (function table for multi-valued functions):

The **truth table** of a function $f : \mathbf{B}^n \rightarrow \mathbf{B}$ is a tabulation of its value at each of the 2^n vertices of \mathbf{B}^n .

In other words the truth table lists all **mintems**

Example: $f = a'b'c'd + a'b'cd + a'bc'd + ab'c'd + ab'cd + abc'd + abcd' + abcd$

The truth table representation is

- impractical for large n
- canonical

If two functions are the equal, then their **canonical** representations are isomorphic.

	abcd	f		abcd	f
0	0000	0	8	1000	0
1	0001	1	9	1001	1
2	0010	0	10	1010	0
3	0011	1	11	1011	1
4	0100	0	12	1100	0
5	0101	1	13	1101	1
6	0110	0	14	1110	1
7	0111	0	15	1111	1

16

Boolean Function Representation

Boolean Formula

- A **Boolean formula** is defined inductively as an expression with the following formation rules (syntax):

formula ::=	'(' formula ')	
	Boolean constant	(true or false)
	<Boolean variable>	
	formula "+" formula	(OR operator)
	formula "." formula	(AND operator)
	\neg formula	(complement)

Example

$$f = (x_1 \cdot x_2) + (x_3) + \neg(\neg(x_4 \cdot \neg x_1))$$

typically “.” is omitted and ‘(,)’ are omitted when the operator priority is clear, e.g., $f = x_1 x_2 + x_3 + x_4 \neg x_1$

17

Boolean Function Representation

Boolean Formula in SOP

- Any function can be represented as a **sum-of-products (SOP)**, also called **sum-of-cubes** (a **cube** is a product term), or **disjunctive normal form (DNF)**

Example

$$\varphi = ab + a'c + bc$$

18

Boolean Function Representation Boolean Formula in POS

- Any function can be represented as a **product-of-sums (POS)**, also called **conjunctive normal form (CNF)**
 - Dual of the SOP representation

Example

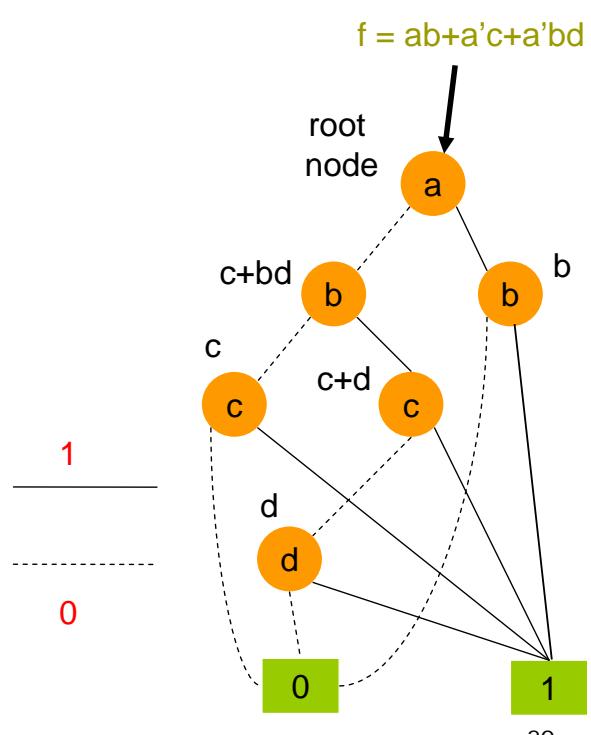
$$\varphi = (a+b'+c) (a'+b+c) (a+b'+c') (a+b+c)$$

- Exercise: Any Boolean function in POS can be converted to SOP using De Morgan's law and the distributive law, and vice versa

19

Boolean Function Representation Binary Decision Diagram

- BDD – a graph representation of Boolean functions
 - A **leaf node** represents constant 0 or 1
 - A **non-leaf node** represents a decision node (multiplexer) controlled by some variable
 - Can make a BDD representation **canonical** by imposing the **variable ordering** and **reduction** criteria (ROBDD)



20

Boolean Function Representation

Binary Decision Diagram

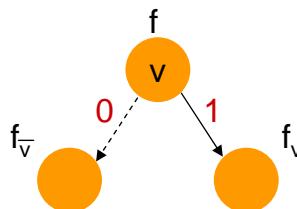
- Any Boolean function f can be written in term of **Shannon expansion**

$$f = v f_v + \neg v f_{\neg v}$$

- Positive cofactor: $f_{x_i} = f(x_1, \dots, x_i=1, \dots, x_n)$
- Negative cofactor: $f_{\neg x_i} = f(x_1, \dots, x_i=0, \dots, x_n)$

- BDD is a compressed Shannon cofactor tree:

- The two children of a node with function f controlled by variable v represent two sub-functions f_v and $f_{\neg v}$



21

Boolean Function Representation

Binary Decision Diagram

- Reduced and ordered BDD (ROBDD) is a **canonical** Boolean function representation

- Ordered:

- cofactor variables are in the **same order along all paths**

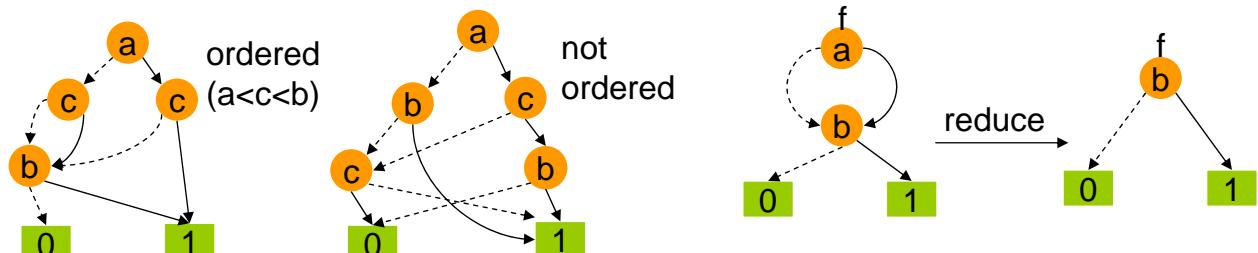
$$x_{i_1} < x_{i_2} < x_{i_3} < \dots < x_{i_n}$$

- Reduced:

- any node with two identical children is removed

- two nodes with isomorphic BDD's are merged

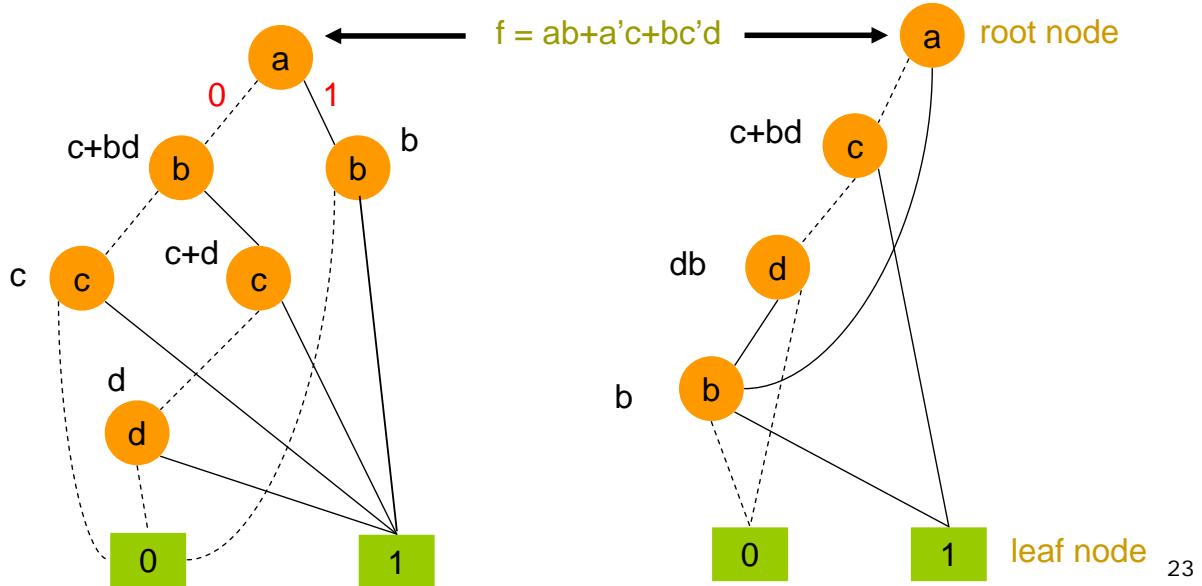
These two rules make any node in an ROBDD represent a distinct logic function



22

Boolean Function Representation Binary Decision Diagram

- For a Boolean function,
 - ROBDD is unique with respect to a given variable ordering
 - Different orderings may result in different ROBDD structures



23

Boolean Function Representation Boolean Network

- A **Boolean network** is a directed graph $C(G, N)$ where G are the gates and $N \subseteq (G \times G)$ are the directed edges (nets) connecting the gates.

Some of the vertices are designated:

Inputs: $I \subseteq G$

Outputs: $O \subseteq G$

$$I \cap O = \emptyset$$

Each gate g is assigned a Boolean function f_g which computes the output of the gate in terms of its inputs.

24

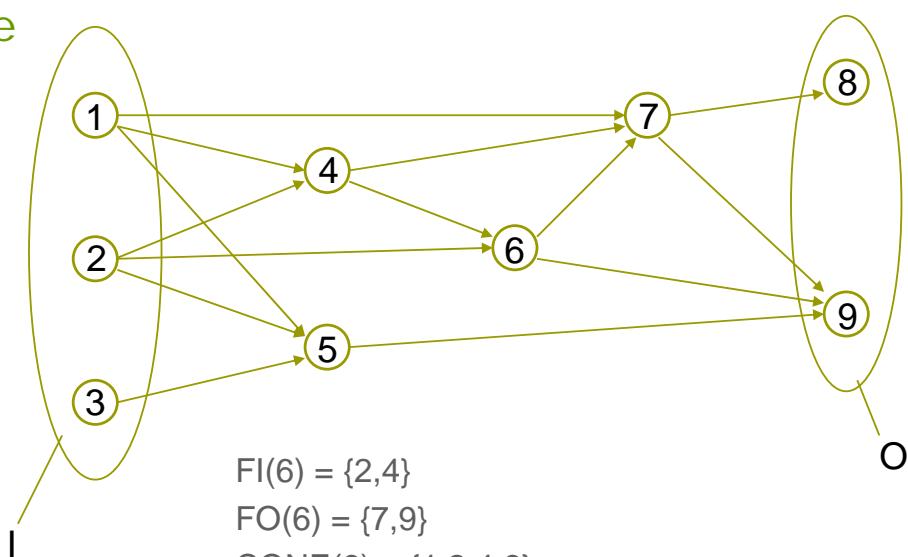
Boolean Function Representation Boolean Network

- The **fanin** $FI(g)$ of a gate g are the predecessor gates of g :
 $FI(g) = \{g' \mid (g',g) \in N\}$ (N : the set of nets)
- The **fanout** $FO(g)$ of a gate g are the successor gates of g :
 $FO(g) = \{g' \mid (g,g') \in N\}$
- The **cone** $CONE(g)$ of a gate g is the **transitive fanin** (TFI) of g and g itself
- The **support** $SUPPORT(g)$ of a gate g are all inputs in its cone:
 $SUPPORT(g) = CONE(g) \cap I$

25

Boolean Function Representation Boolean Network

Example

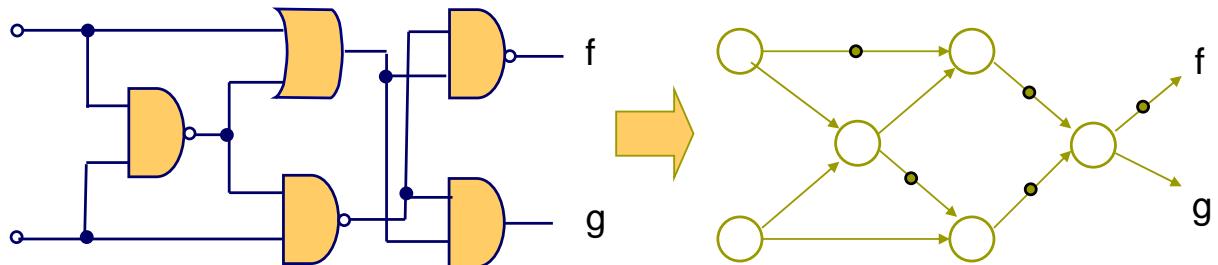


Every node may have its own function

26

Boolean Function Representation And-Inverter Graph

- AND-INVERTER graphs (AIGs)
 - vertices: 2-input AND gates
 - edges: interconnects with (optional) dots representing INVs
- Hash table to identify and reuse structurally isomorphic circuits



27

Boolean Function Representation

- A **canonical form** of a Boolean function is a **unique** representation of the function
 - It can be used for verification purposes
- Example**
 - Truth table is canonical
 - It grows exponentially with the number of input variables
 - ROBDD is canonical
 - It is of practical interests because it may represent many Boolean functions compactly
 - SOP, POS, Boolean networks are NOT canonical

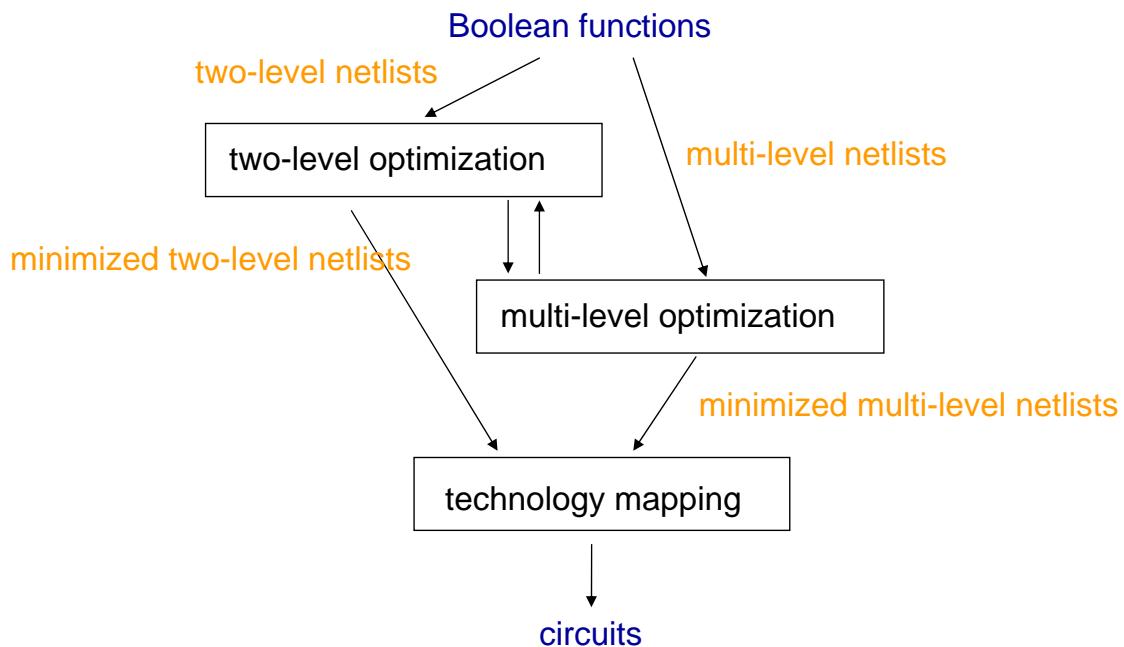
28

Boolean Function Representation

- ❑ Truth table
 - Canonical
 - Useful in representing small functions
- ❑ SOP
 - Useful in two-level logic optimization, and in representing local node functions in a Boolean network
- ❑ POS
 - Useful in SAT solving and Boolean reasoning
 - Rarely used in circuit synthesis (due to the asymmetric characteristics of NMOS and PMOS)
- ❑ ROBDD
 - Canonical
 - Useful in Boolean reasoning
- ❑ Boolean network
 - Useful in multi-level logic optimization
- ❑ AIG
 - Useful in multi-level logic optimization and Boolean reasoning

29

Logic Optimization



30

Two-Level Logic Minimization

- Any Boolean function can be realized using PLA in two levels: AND-OR (sum of products), NAND-NAND, etc.
 - Direct implementation of two-level logic using PLAs (programmable logic arrays) is not as popular as in the nMOS days
- Classic problem solved by the *Quine-McCluskey* algorithm
 - Popular cost function: #cubes and #literals in an SOP expression
 - #cubes – #rows in a PLA
 - #literals – #transistors in a PLA
 - The goal is to find a **minimal irredundant prime cover**

31

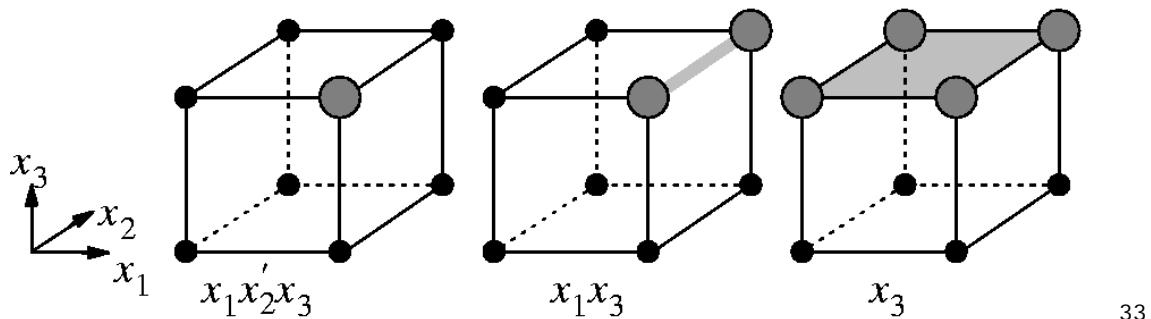
Two-Level Logic Minimization

- Exact algorithm
 - Quine-McCluskey's procedure
- Heuristic algorithm
 - Espresso

32

Two-Level Logic Minimization Minterms and Cubes

- A **minterm** is a product of **every** input variable or its negation
 - A minterm corresponds to a single point in \mathbf{B}^n
- A **cube** is a product of literals
 - The fewer the number of literals is in the product, the bigger the space is covered by the cube



33

Two-Level Logic Minimization Implicant and Cover

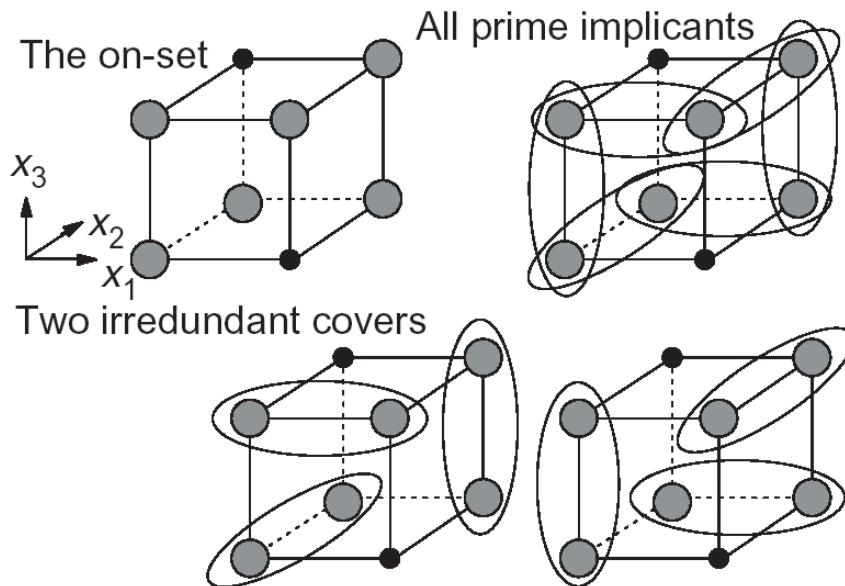
- An **implicant** is a cube whose points are either in the on-set or the dc-set.
- A **prime implicant** is an implicant that is not included in any other implicant.
- A set of prime implicants that together cover all points in the on-set (and some or all points of the dc-set) is called a **prime cover**.
 - A prime cover is **irredundant** when none of its prime implicants can be removed from the cover.
 - An irredundant prime cover is **minimal** when the cover has the minimal number of prime implicants.
(c.f. minimum vs. minimal)

34

Two-Level Logic Minimization Cover

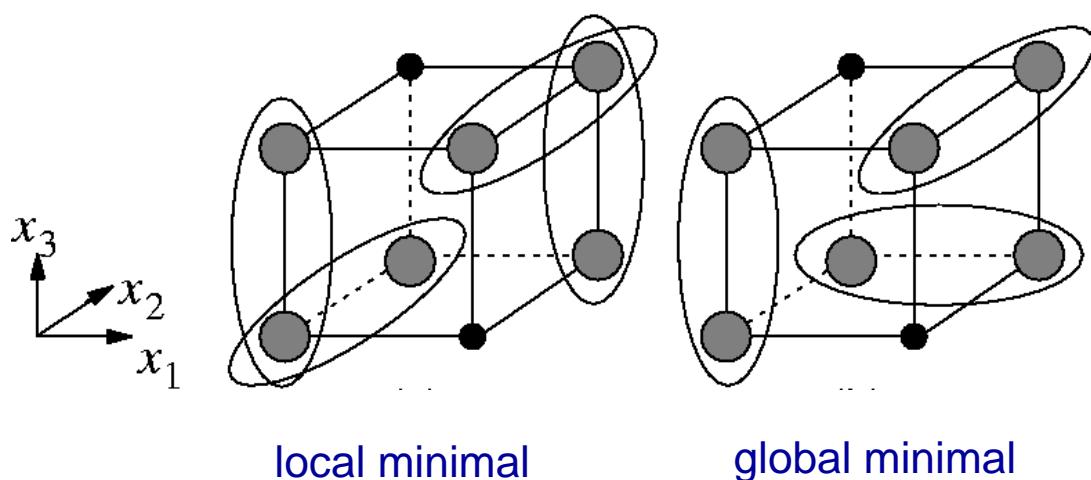
Example

- $f = \neg x_1 \neg x_3 + \neg x_2 x_3 + x_1 x_2$
- $f = \neg x_1 \neg x_2 + x_2 \neg x_3 + x_1 x_3$



Two-Level Logic Minimization Cover

Example



Two-Level Logic Minimization

Quine-McCluskey Procedure

- Given G and D (covers for $\mathfrak{I} = (f, d, r)$ and d , respectively), find a minimum cover G^* of primes where:

$$f \subseteq G^* \subseteq f+d \quad (G^* \text{ is a prime cover of } \mathfrak{I})$$
 - f is the onset, d don't-care set, and r offset
- Q-M Procedure:
 - Generate all primes of \mathfrak{I} , $\{P_j\}$ (i.e. primes of $(f+d) = G+D$)
 - Generate all minterms $\{m_i\}$ of $f = G \wedge \neg D$
 - Build Boolean matrix B where

$$B_{ij} = 1 \text{ if } m_i \in P_j$$

$$= 0 \text{ otherwise}$$
 - Solve the minimum column covering problem for B (unate covering problem)

37

Two-Level Logic Minimization

Quine-McCluskey Procedure

Generating Primes

Tabular method
(based on *consensus* operation):

- Start with all **minterm canonical form** of F
- Group *pairs* of adjacent minterms into cubes
- Repeat merging cubes until no more merging possible; mark (\checkmark) + remove all covered cubes.
- Result: set of *primes* of f .

Example

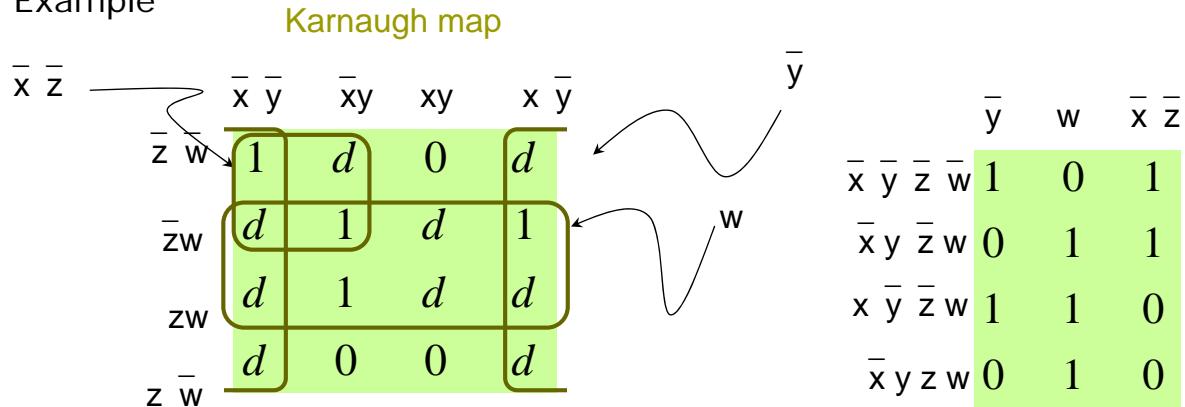
$$F = x'y' + wx'y + x'y'z' + w'y'z$$

$$F = x'y' + wx'y + x'y'z' + w'y'z$$

$w'x'y'z'$	\checkmark	$w'x'y'$	\checkmark	$x'y'$
		$w'x'z'$	\checkmark	$x'z'$
		$x'y'z'$	\checkmark	
$w'x'y'z$	\checkmark	$x'y'z$	\checkmark	
$w'x'y'z'$	\checkmark	$x'y'z'$	\checkmark	
$wx'y'z'$	\checkmark	$wx'y'$	\checkmark	
		$wx'z'$	\checkmark	
$wx'y'z$	\checkmark	$wy'z$		
$wx'y'z'$	\checkmark	wyz'		
$wxyz'$	\checkmark	wxy		
$wxy'z$	\checkmark	wxz		
$wxyz$	\checkmark			

Two-Level Logic Minimization Quine-McCluskey Procedure

Example



$$F = \bar{x} y z w + \bar{x} y \bar{z} w + x \bar{y} \bar{z} w + \bar{x} y z w \quad (\text{cover of } \mathfrak{J})$$

$$D = \bar{y} z + x y w + \bar{x} y z w + x \bar{y} w + \bar{x} y z w \quad (\text{cover of } d)$$

Primes: $\bar{y} + w + \bar{x} \bar{z}$

Covering Table

Solution: $\{1, 2\} \Rightarrow \bar{y} + w$ is a minimum prime cover (also $w + \bar{x} \bar{z}$)

39

Two-Level Logic Minimization Quine-McCluskey Procedure

Column covering of Boolean matrix

	\bar{y}	w	$\bar{x} \bar{z}$	Primes of $f+d$
$\bar{x} \bar{y} \bar{z} \bar{w}$	1	0	1	
$\bar{x} y \bar{z} w$	0	1	1	
$x \bar{y} \bar{z} w$	1	1	0	
$\bar{x} y z w$	0	1	0	Row singleton (essential minterm)

Essential prime

↑

Minterms of f

- Definition. An **essential prime** is a prime that covers an onset minterm of f not covered by any other primes.

40

Two-Level Logic Minimization

Quine-McCluskey Procedure

□ Row equality in Boolean matrix:

- In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.

■ Example

m_1	0101101
m_2	0101101

41

Two-Level Logic Minimization

Quine-McCluskey Procedure

□ Row dominance in Boolean matrix:

- A *row* i_1 whose set of primes is contained in the set of primes of *row* i_2 is said to **dominate** i_2 .

■ Example

i_1	011010
i_2	011110

□ i_1 dominates i_2

□ Can remove row i_2 because have to choose a prime to cover i_1 , and any such prime also covers i_2 . So i_2 is automatically covered.

42

Two-Level Logic Minimization

Quine-McCluskey Procedure

- Column dominance in Boolean matrix:
 - A *column* j_1 whose rows are a superset of another *column* j_2 is said to **dominate** j_2 .
 - Example
- | | j_1 | j_2 |
|---|-------|-------|
| 1 | 0 | |
| 0 | 0 | |
| 1 | 1 | |
| 0 | 0 | |
| 1 | 1 | |
- j_1 dominates j_2
- We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

43

Two-Level Logic Minimization

Quine-McCluskey Procedure

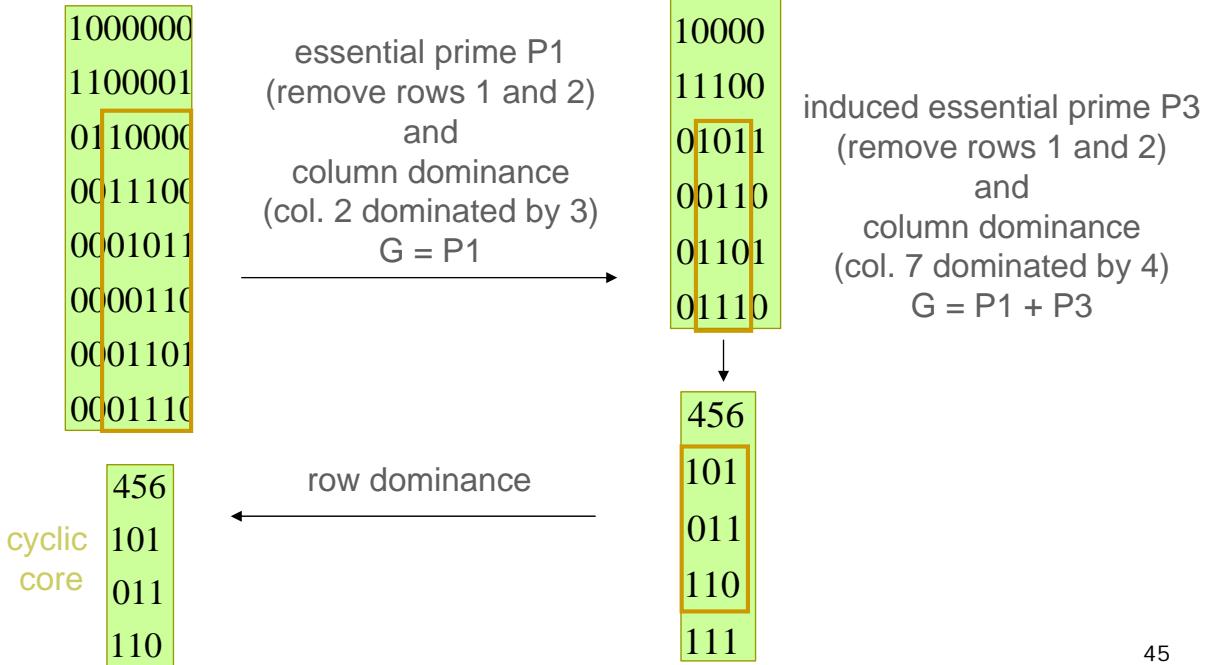
- Reducing Boolean matrix
 - 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G .
 - 2. Group identical rows together and remove dominated rows.
 - 3. Remove dominated columns. For equal columns, keep one prime to represent them.
 - 4. Newly formed row singletons define **induced essential primes**.
 - 5. Go to 1 if covering table decreased.
- The resulting reduced covering table is called the **cyclic core**. This has to be solved (**unate covering problem**). A minimum solution is added to G . The resulting G is a minimum cover.

44

Two-Level Logic Minimization

Quine-McCluskey Procedure

Example (reducing Boolean matrix)



45

Two-Level Logic Minimization

Quine-McCluskey Procedure

Solving cyclic core

- ❑ Best known method (for unate covering) is **branch and bound** with some clever bounding heuristics
- ❑ Independent Set Heuristic:
 - Find a maximum set I of “independent” rows. Two rows B_{i_1}, B_{i_2} are independent if **not** $\exists j$ such that $B_{i_1j} = B_{i_2j} = 1$. (They have no column in common.)

Example

A covering matrix B rearranged with independent sets first

$$B = \begin{array}{|c|c|c|c|} \hline & 1 & 1 & 1 \\ & & 1 & 1 & 1 & 1 \\ & & & 1 & 1 & & 0 \\ \hline & & & & & & \\ \hline & A & & & & C & \\ \hline \end{array} \quad \left. \right\} \text{Independent set } \mathcal{I} \text{ of rows}$$

46

Two-Level Logic Minimization Quine-McCluskey Procedure

Solving cyclic core

□ Heuristic algorithm:

- Let $\mathcal{J} = \{I_1, I_2, \dots, I_k\}$ be the independent set of rows
1. choose $j \in \mathcal{J}$ such that column j covers the most rows of A . Put P_j in G
 2. eliminate all rows covered by column j
 3. $\mathcal{J} \leftarrow \mathcal{J} \setminus \{I_j\}$
 4. go to 1 if $|\mathcal{J}| > 0$
 5. If B is empty, then done (in this case achieve minimum solution)
 6. If B is not empty, choose an independent set of B and go to 1

1 1 1	1 1 1 1	1 1	0
A			C

47

Two-Level Logic Minimization Quine-McCluskey Procedure

□ Summary

- Calculate all prime implicants (of the union of the onset and don't care set)
- Find the minimal cover of all minterms in the onset by prime implicants
 - Construct the covering matrix
 - Simplify the covering matrix by detecting **essential** columns, **row and column dominance**
 - What is left is the **cyclic core** of the covering matrix.
 - The covering problem can then be solved by a branch-and-bound algorithm.

48

Two-Level Logic Minimization Exact vs. Heuristic Algorithms

□ Quine-McCluskey Method:

1. Generate cover of all primes $G = p_1 + p_2 + \dots + p_{3^n/n}$
2. Make G irredundant (in optimum way)
 - Q-M is **exact**, i.e., it gives an exact minimum

□ Heuristic Methods:

1. Generate (somehow) a cover of \mathfrak{I} using some of the primes $G = p_{i_1} + p_{i_2} + \dots + p_{i_k}$
2. Make G irredundant (maybe not optimally)
3. Keep best result - try again (i.e. go to 1)

49

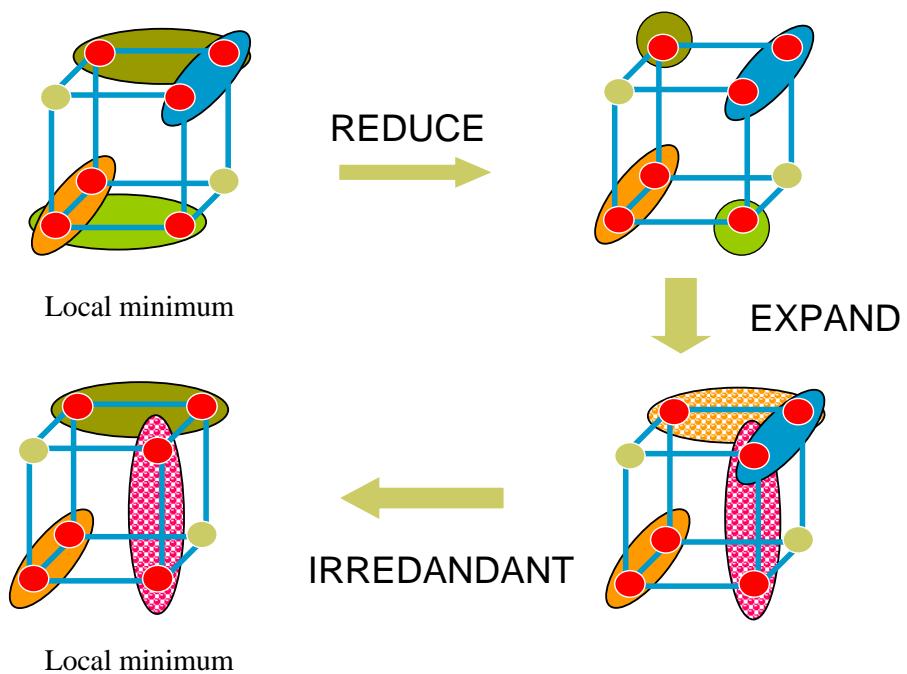
Two-Level Logic Minimization ESPRESSO

□ Heuristic two-level logic minimization ESPRESSO(\mathfrak{I})

```
{  
  (F,D,R) ← DECODE( $\mathfrak{I}$ )  
  F ← EXPAND(F,R)                                //LASTGASP  
  F ← IRREDUNDANT(F,D)  
  E ← ESSENTIAL_PRIMES(F,D)  
  F ← F-E; D ← D+E  
  do{  
    do{  
      F ← REDUCE(F,D)  
      F ← EXPAND(F,R)  
      F ← IRREDUNDANT(F,D)  
    } while fewer terms in F  
    F ← F+E; D ← D-E  
    LOWER_OUTPUT(F,D)  
    RAISE_INPUTS(F,R)  
    error ← ( $F_{\text{old}} \not\subset F$ ) or ( $F \not\subset F_{\text{old}} + D$ )  
  } return (F,error)  
}
```

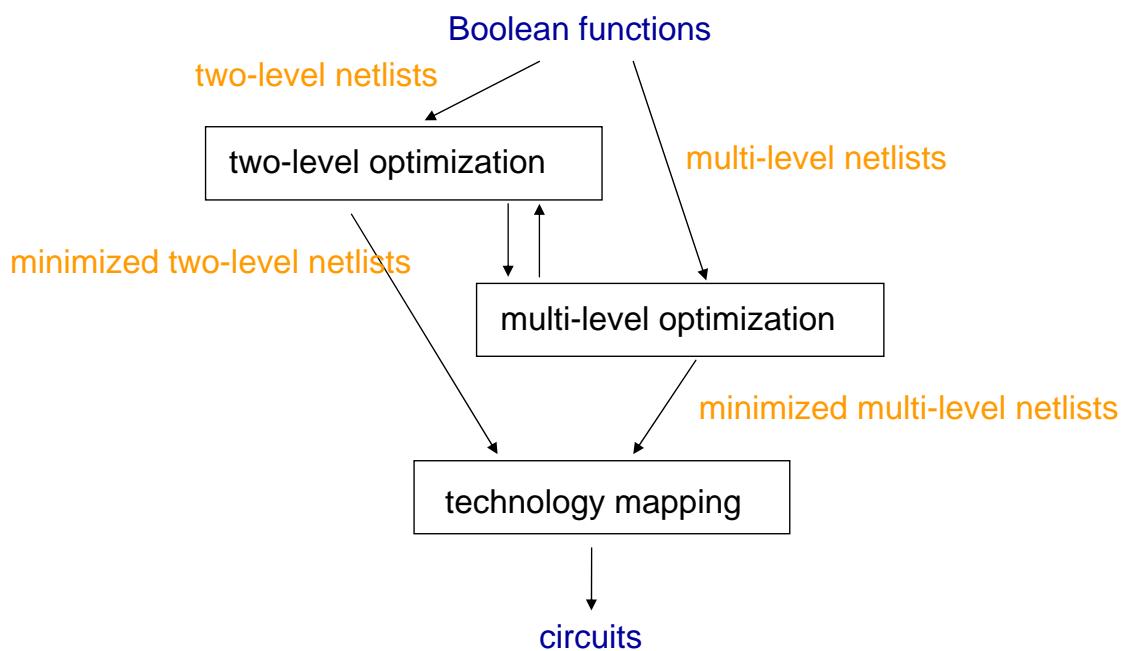
50

Two-Level Logic Minimization ESPRESSO



51

Logic Minimization



52