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Logic Synthesis

High-level synthesis

Logic synthesis

Physical design

Part of the slides are by courtesy of Prof. Andreas Kuehlmann
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Logic Synthesis

Course contents
Overview
Boolean function representation
 Logic optimization
 Technology mapping

Reading
Chapter 6
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High-Level to Logic Synthesis
 Hardware is normally partitioned into two parts:

 Data path: a network of functional units, registers, 
multiplexers and buses. 

 Control: the circuit that takes care of having the data present 
at the right place at a specific time (i.e. FSM), or of presenting 
the right instructions to a programmable unit (i.e. microcode).

 High-level synthesis often focuses on data-path 
optimization
 The control part is then realized as an FSM

 Logic synthesis often focuses on control-logic optimization
 Logic synthesis is widely used in application-specific IC (ASIC) 

design, where standard cell design style is most common
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Standard-Cell Based Design
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Transformation of Logic Synthesis

D

x y


Given: Functional description of finite-state 
machine F(Q,X,Y,,) where:

Q:  Set of internal states
X:  Input alphabet
Y:  Output alphabet
:  X x Q  Q    (next state function)
:  X x Q  Y    (output function)

Target: Circuit C(G, W) where:
G:   set of circuit components g  {gates, FFs, etc.}
W:  set of wires connecting G
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Boolean Function Representation

Logic synthesis translates Boolean 
functions into circuits

We need representations of Boolean 
functions for two reasons:
 to represent and manipulate the actual circuit 

that we are implementing
 to facilitate Boolean reasoning
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Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44
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Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a 

mapping f: Bm  Yn, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111}  (characteristic function f1 = x2 )

 off-set (f = 0) 
 E.g. {100, 101}  (characteristic function f0 = x1 x2 )

 don’t-care set (f = d) 
 E.g. {000, 001}  (characteristic function fd = x1 x2 )

 f is an incompletely specified function if the don’t-care set is 
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely 

specified
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Boolean Function

 A Boolean function f: Bn  B over variables 
x1,…,xn maps each Boolean valuation (truth 
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, 
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2
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Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x) 

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1
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Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions 
 Each subset f1  Bn of vertices in Bn forms a 

distinct Boolean function f with onset f1

x1x2x3 f
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0   1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations
Given two Boolean functions:

f :  Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  from COMPLEMENT operation is defined as
h1 = f0; h0 = f1
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Cofactor and Quantification
Given a Boolean function:

f :  Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)
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Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF) 
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and 

weaknesses (no single data structure is best for all 
applications)
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Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued 

functions):
The truth table of a function f : Bn  B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd + 

abcd + abcd + abcd + 
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their 
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1
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Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression 
with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’

|        Boolean constant (true or false)

|        <Boolean variable>

| formula “+” formula (OR operator)

| formula  “” formula (AND operator)

|         formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is 
clear, e.g., f = x1 x2 + x3 + x4 x1
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Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form 
(DNF)

Example
 = ab + a’c + bc
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Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form 
(CNF)
 Dual of the SOP representation

Example 
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be 
converted to SOP using De Morgan’s law and the 
distributive law, and vice versa
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Boolean Function Representation
Binary Decision Diagram

 BDD – a graph 
representation of Boolean 
functions
 A leaf node represents 

constant 0 or 1
 A non-leaf node

represents a decision node 
(multiplexer) controlled by 
some variable

 Can make a BDD 
representation canonical
by imposing the variable 
ordering and reduction 
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root 
node

c+d

d
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Boolean Function Representation
Binary Decision Diagram

 Any Boolean function f can be written in term of 
Shannon expansion 

f = v fv + v fv
 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by 

variable v represent two sub-functions fv and fv

v
0 1

f

fv fv
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Boolean Function Representation
Binary Decision Diagram

 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a 
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce
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Boolean Function Representation
Binary Decision Diagram

 For a Boolean function, 
 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
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Boolean Function Representation
Boolean Network

 A Boolean network is a directed graph C(G,N) 
where G are the gates and N  GG) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G 
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 
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Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:
SUPPORT(g) = CONE(g)  I
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

1

5

3

4

7
8

9

2
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Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates 
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f
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Boolean Function Representation

 A canonical form of a Boolean function is a 
unique representation of the function
 It can be used for verification purposes

 Example
 Truth table is canonical

It grows exponentially with the number of input variables

 ROBDD is canonical
It is of practical interests because it may represent many 

Boolean functions compactly

 SOP, POS, Boolean networks are NOT canonical 
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Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node 

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning 
 Rarely used in circuit synthesis (due to the asymmetric characteristics 

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning
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Logic Optimization

Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Two-Level Logic Minimization

 Any Boolean function can be realized using PLA in 
two levels: AND-OR (sum of products), NAND-
NAND, etc.
 Direct implementation of two-level logic using PLAs

(programmable logic arrays) is not as popular as in the 
nMOS days

 Classic problem solved by the Quine-McCluskey
algorithm
 Popular cost function: #cubes and #literals in an SOP 

expression
#cubes – #rows in a PLA
#literals – #transistors in a PLA

 The goal is to find a minimal irredundant prime cover
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Two-Level Logic Minimization

Exact algorithm 
Quine-McCluskey’s procedure

Heuristic algorithm
 Espresso
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Two-Level Logic Minimization
Minterms and Cubes

 A minterm is a product of every input variable or 
its negation
 A minterm corresponds to a single point in Bn

 A cube is a product of literals 
 The fewer the number of literals is in the product, 

the bigger the space is covered by the cube
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Two-Level Logic Minimization
Implicant and Cover

 An implicant is a cube whose points are either in 
the on-set or the dc-set.

 A prime implicant is an implicant that is not 
included in any other implicant.

 A set of prime implicants that together cover all 
points in the on-set (and some or all points of the 
dc-set) is called a prime cover.
 A prime cover is irredundant when none of its prime 

implicants can be removed from the cover.
 An irredundant prime cover is minimal when the cover 

has the minimal number of prime implicants.
(c.f. minimum vs. minimal)
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Two-Level Logic Minimization
Cover

 Example
 f = x1 x3 + x2 x3 + x1 x2

 f = x1 x2 + x2 x3 + x1 x3
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Two-Level Logic Minimization
Cover

Example

local minimal global minimal
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Given G and D (covers for  = (f,d,r) and d, respectively), 
find a minimum cover G* of primes where: 
f  G*  f+d (G* is a prime cover of )
 f is the onset, d don’t-care set, and r offset

 Q-M Procedure:
1.Generate all primes of , {Pj} (i.e. primes of (f+d) = 

G+D)
2.Generate all minterms {mi} of f = GD
3.Build Boolean matrix B where 

Bij = 1 if mi Pj

= 0 otherwise
4.Solve the minimum column covering problem for B 

(unate covering problem)
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Two-Level Logic Minimization
Quine-McCluskey Procedure
Generating Primes

Tabular method
(based on consensus operation):

 Start with all minterm canonical 
form of F

 Group pairs of adjacent minterms
into cubes 

 Repeat merging cubes until no 
more merging possible; mark ()
+ remove all covered cubes. 

 Result: set of primes of f.

Example

F = x’ y’ + w x y + x’ y z’ + w y’ z

w’ x’ y’ z’ 

w’ x’ y’ z   
w’ x’ y z’ 
w x’ y’ z’ 

w x’ y’ z    
w x’ y z’ 

w x y z’ 
w x y’ z     
w x y z      

w’ x’ y’ 
w’ x’ z’ 
x’ y’ z’ 
x’ y’ z   
x’ y z’ 
w x’ y’ 
w x’ z’ 
w y’ z

w y z’

w x y

w x z

x’ y’

x’ z’

F = x’ y’ + w x y + x’ y z’ + w y’ z

Courtesy: Maciej Ciesielski, UMASS
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 Example

Primes: y + w +xz
Covering Table
Solution: {1,2}  y + w is a minimum prime cover (also w +xz)

dd

ddd

dd

dd

00

1

11

01

Two-Level Logic Minimization
Quine-McCluskey Procedure

F x y z w xy zw x y zw xyzw

D yz xyw x y zw x y w xy z w

   

    

xy xy xy xy

zw

zw

zw

zw

xz

Karnaugh map

010

011

110

101

y w xz

xyz w

x y z w

x yz w

xyzw

(cover of )

(cover of d)

w

y
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Column covering of Boolean matrix

 Definition. An essential prime is a prime that covers an onset 
minterm of f not covered by any other primes.

010

011

110

101
y w xz

xyzw

xyzw

xyzw

xyzw

Primes of f+d

Minterms of f

Essential prime

Row singleton
(essential minterm)
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Row equality in Boolean matrix:
 In practice, many rows in a covering table are identical. 

That is, there exist minterms that are contained in the 
same set of primes.

 Example

m1 0101101
m2 0101101
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Row dominance in Boolean matrix:
 A row i1 whose set of primes is contained in the set of 

primes of row i2 is said to dominate i2.

 Example

i1 011010
i2 011110

 i1 dominates i2
Can remove row i2 because have to choose a prime to 

cover i1, and any such prime also covers i2. So i2 is 
automatically covered.
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Column dominance in Boolean matrix:
 A column j1 whose rows are a superset of another 

column j2 is said to dominate j2.

 Example

 j1 dominates j2
We can remove column j2 since j1 covers all those rows and 

more. We would never choose j2 in a minimum cover since 
it can always be replaced by j1.

j1             j2
1 0
0 0
1 1
0 0
1 1

44

Two-Level Logic Minimization
Quine-McCluskey Procedure
Reducing Boolean matrix 
1. Remove all rows covered by essential primes (columns in 

row singletons). Put these primes in the cover G.
2. Group identical rows together and remove dominated rows.
3. Remove dominated columns. For equal columns, keep one 

prime to represent them.
4. Newly formed row singletons define induced essential 

primes.
5. Go to 1 if covering table decreased. 

 The resulting reduced covering table is called the cyclic 
core. This has to be solved (unate covering problem). A 
minimum solution is added to G. The resulting G is a 
minimum cover.
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Two-Level Logic Minimization
Quine-McCluskey Procedure
Example (reducing Boolean matrix)

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

induced essential prime P3
(remove rows 1 and 2) 

and
column dominance

(col. 7 dominated by 4)
G = P1 + P3

111

110

011

101

456

110

011

101

456

essential prime P1 
(remove rows 1 and 2)

and 
column dominance

(col. 2 dominated by 3)
G = P1

row dominance

cyclic 
core
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core
 Best known method (for unate covering) is branch and 

bound with some clever bounding heuristics
 Independent Set Heuristic:

 Find a maximum set I of “independent” rows. Two rows Bi1 ,Bi2 
are independent if not j such that Bi1j = Bi2j = 1. (They have 
no column in common.)

Example
A covering matrix B rearranged with independent sets first

Independent set I of rows
11

1111
11

0

A

1

C

B=
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core

 Heuristic algorithm:
 Let I ={I1, I2, …, Ik} be the 

independent set of rows
1. choose j  Ii such that column j covers 

the most rows of A. Put Pj in G
2. eliminate all rows covered by column j
3. I  I \{Ii}
4. go to 1 if |I |  0
5. If B is empty, then done (in this case 

achieve minimum solution)
6. If B is not empty, choose an 

independent set of B and go to 1

11
1111

11
0

A

1

C
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Summary
Calculate all prime implicants (of the union of 

the onset and don’t care set)
 Find the minimal cover of all minterms in the 

onset by prime implicants
Construct the covering matrix
Simplify the covering matrix by detecting essential 

columns, row and column dominance
What is left is the cyclic core of the covering matrix. 

 The covering problem can then be solved by a 
branch-and-bound algorithm.
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Two-Level Logic Minimization
Exact vs. Heuristic Algorithms

Quine-McCluskey Method:
1.Generate cover of all primes G = p1 + p2 ++p3n/n

2.Make G irredundant (in optimum way)
 Q-M is exact, i.e., it gives an exact minimum

 Heuristic Methods:
1.Generate (somehow) a cover of  using some of 

the primes G = pi1
+ pi2

+  + pik

2.Make G irredundant (maybe not optimally)
3.Keep best result - try again (i.e. go to 1)
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Two-Level Logic Minimization
ESPRESSO

 Heuristic two-level logic minimization

 

ESPRESSO()

{

    (F,D,R)  DECODE()

    F  EXPAND(F,R)

    F  IRREDUNDANT(F,D)

    E  ESSENTIAL_PRIMES(F,D)

    F  F-E;  D  D  E

    do{

        do{

            F  REDUCE(F,D)

            F  EXPAND(F,R)

            F  IRREDUNDANT(F,D)

        }while fewer terms in F

 //LASTGASP

        G REDUCE_GASP(F,D)

        G EXPAND(G,R)

       F IRREDUNDANT(F G,D)

        

       

    }while fewer terms in F        

    F F E;  D D-E

    LOWER_OUTPUT(F,D)

//LASTGASP

    RAISE_INPUTS

  



 

old old

(F,R)

   error (F F) or (F F D)

    return (F,error)

}

   
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Two-Level Logic Minimization
ESPRESSO

Local minimum

Local minimum

REDUCE

EXPAND

IRREDANDANT
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Logic Minimization

Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists


