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Factor Form
 Factor forms – beyond SOP

 Example: 
(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representation reflecting logic complexity (SOP may not be 

representative)
 E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP  f’= 

a’b’c’+d’e’; effectively has simple factor form  f=(a+b+c)(d+e)
 in many design styles (e.g. complex gate CMOS design) the 

implementation of a function corresponds directly to its factored form
 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
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Factor From
 Factored forms are useful 

in estimating area and 
delay in multi-level logic
 Note: literal count  

transistor count  area 
 however, area also 

depends on wiring, gate 
size, etc.

 therefore very crude 
measure
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Factor From

There are functions whose sizes are 
exponential in the SOP representation, but 
polynomial in the factored form
 Example

Achilles’ heel function

There are n literals in the factored form and 
(n/2)2n/2 literals in the SOP form.

  
(x2i1  x2i )

i1

in / 2


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Factor Form
 Factored forms can be graphically represented as labeled 

trees, called factoring trees, in which each internal node 
including the root is labeled with either + or , and each 
leaf has a label of either a variable or its complement
 Example: factoring tree of ((a’+b)cd+e)(a+b’)+e’



57

Multi-Level Logic Minimization

Basic techniques in Boolean network 
manipulation:
 structural manipulation (change network 

topology)
 node simplification (change node functions)

node minimization using don’t cares
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Multi-Level Logic Minimization
Structural Manipulation
Restructuring Problem: Given initial network, find best network.

Example:
f1 = abcd+abce+ab’cd’+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg

minimizing,
f1 = bcd+bce+b’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg

factoring,
f1 = c(b(d+e)+b’(d’+f)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))

decompose,
f1 = c(b(d+e)+b’(d’+f)+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

Two problems:
 find good common subfunctions
 effect the division
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Multi-Level Logic Minimization
Structural Manipulation
Basic operations:

1. Decomposition (for a single function)
f = abc+abd+a’c’d’+b’c’d’


f = xy+x’y’ x = ab y = c+d

2. Extraction (for multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde


f = xy+e g = xe’ h = ye    x = az+bz’ y = cd

3. Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e


f = (a+b)(c+d)+e
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Multi-Level Logic Minimization
Structural Manipulation
Basic operations (cont’d):

4. Substitution
f = a+bc g = a+b


f = g(a+c)    g = a+b

5. Collapsing (also called elimination)
f = ga+g’b g = c+d


f = ac+ad+bc’d’ g = c+d

Note: “division” plays a key role in all these operations
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Multi-Level Logic Minimization
Node Simplification

 Goal: For any node of a given Boolean network, 
find a least-cost SOP expression among the set of 
permissible functions for the node
 Don’t care computation + two-level logic minimization

combinational Boolean network
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Combinational Logic Minimization
 Two-level: minimize #product terms and #literals

 E.g., F = x1’x2’x3’+ x1’x2’x3+ x1x2’x3’+ x1x2’x3+ x1x2x3’  F = 
x2’+ x1x3’

 Multi-level: minimize the # literals (area minimization)
 E.g., equations are optimized using a smaller number of 

literals
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Timing Analysis and Optimization
 Delay model at logic level

 Gate delay model (our focus)
 Constant gate delay, or pin-to-pin gate delay
 Not accurate

 Fanout delay model
 Gate delay considering fanout load (#fanouts)
 Slightly more accurate

 Library delay model
 Tabular delay data given in the cell library

 Determine delay from input slew and output 
load

 Table look-up + interpolation/extrapolation
 Accurate

d
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Timing Analysis and Optimization
Gate Delay
The delay of a gate depends on:

1. Output Load
 Capacitive loading charge 

needed to swing the output 
voltage

 Due to interconnect and 
logic fanout

2. Input Slew
 Slew = transition time
 Slower transistor switching 

 longer delay and longer 
output slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter
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Timing Analysis and Optimization
Timing Library
 Timing library contains all 

relevant information about each 
standard cell 
 E.g., pin direction, clock, pin 

capacitance, etc.

 Delay (fastest, slowest, and often 
typical) and output slew are 
encoded for each input-to-output 
path and each pair of transition 
directions

 Values typically represented as 2 
dimensional look-up tables (of 
output load and input slew)
 Interpolation is used

Output load (nF)

In
pu

t s
le

w
 (n

s)

10.34.93.72.82.0

8.14.03.42.61.0

7.23.92.92.40.5

6.13.42.62.10.1

10.04.02.01.0

“delay_table_1”

Path(
inputPorts(A), 
outputPorts(Z), 
inputTransition(01),  
outputTransition(10), 
“delay_table_1”, 
“output_slew_table_1”

);

A

B

Z

01

10
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Static Timing Analysis
 Arrival time: the time signal arrives

 Calculated from input to output in the topological order
 Required time: the time signal must ready (e.g., due to the clock 

cycle constraint)
 Calculated from output to input in the reverse topological order

 Slack = required time – arrival time
 Timing flexibility margin (positive: good; negative: bad)

node k

A(j) R(j)

node j
D(j,k)

r(j,k)

A(k) R(k)

A(j): arrival time of signal j
R(k): required time or for signal k
S(k): slack of signal k
D(j,k): delay of node j from input k

A(j) = maxkFI (j) [A(k) + D(j,k)]
r(j,k) = R(j) - D(j,k)
R(k) = minjFO(k) [r(j,k)]
S(k) = R(k) - A(k)
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Static Timing Analysis
 Arrival times known at l1 and l2
 Required times known at l3, l4, and l5
 Delay analysis gives arrival and required times (hence 

slacks) for combinational blocks C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5
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Static Timing Analysis
 Arrival time can be computed in the topological 

order from inputs to outputs 
 When a node is visited, its output arrival time is: 

the max of its fanin arrival times + its own gate delay

Required time can be computed in the reverse 
topological order from outputs to inputs
 When a node is visited, its input required time is: 

the min of its fanout required times – its own gate delay
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Static Timing Analysis
 Example

2 1

2 2 1

21

R2=5R1=5

A8=0 A9=0
98

0

0
1

0-1

-1
-1

-1
10

-1

-1

5
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3

1 2

4

1

4

2

34

56

node ID

arrival time
slack

A10=2
10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki  fanin(k)
Sk = min{Sk,kj }, kj  fanout(k)
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Timing Optimization

Identify timing critical regions
Perform timing optimization on the 

selected regions
 E.g., gate sizing, buffer insertion, fanout

optimization, tree height reduction, etc.
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Timing Optimization

Buffer insertion
Divide the fanouts of a gate into critical and 

non-critical parts, and drive the non-critical 
fanouts with a buffer

more
critical less

critical

timing is improved
due to less loading
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Timing Optimization

Fanout optimization
Split the fanouts of a gate into several parts. 

Each part is driven by a copy of the original 
gate.
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Timing Optimization

Tree height reduction

n

l m

i j

h

k
3

6

5 5

1 4

1

0 0 0 0 2 0 0
a b c d e f g

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
duplicated
logic

1
200

5critical region
collapsed

critical region 
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Timing Optimization

Tree height reduction

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
Duplicated
logic

1
200

5

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed
Critical region

New delay = 5
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Combinational Optimization

From Boolean functions to circuits
Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Technology Independent vs. Dependent 
Optimization
 Technology independent optimization produces a 

two-level or multi-level netlist where literal 
and/or cube counts are minimized

 Given the optimized netlist, its logic gates are to 
be implemented with library cells

 The process of associating logic gates with library 
cells is technology mapping
 Translation of a technology independent representation 

(e.g. Boolean networks) of a circuit into a circuit for a 
given technology (e.g. standard cells) with optimal cost
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Technology Mapping

 Standard-cell technology mapping: standard cell design
 Map a function to a limited set of pre-designed library cells

 FPGA technology mapping
 Lookup table (LUT) architecture: 

 E.g., Lucent, Xilinx FPGAs
 Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)

 Multiplexer-based technology mapping: 
 E.g., Actel FPGA
 Logic modules are constructed with multiplexers
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Standard-Cell Based Design
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Technology Mapping
 Formulation:

 Choose base functions
Ex: 2-input NAND and Inverter

 Represent the (optimized) Boolean network with base 
functions
Subject graph

 Represent library cells with base functions
Pattern graph
Each pattern is associated with a cost depending on the 

optimization criteria, e.g., area, timing, power, etc.

 Goal:
 Find a minimal cost covering of a subject graph using 

pattern graphs
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Technology Mapping
 Technology Mapping: The optimization problem 

of finding a minimum cost covering of the subject 
graph by choosing from a collection of pattern 
graphs of gates in the library.

 A cover is a collection of pattern graphs such that 
every node of the subject graph is contained in 
one (or more) of the pattern graphs.

 The cover is further constrained so that each 
input required by a pattern graph is actually an 
output of some other pattern graph.
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Technology Mapping
Example
Subject graph

t1 = d + e
t2 = b + h
t3 = a t2 + c
t4 = t1 t3 + f g h
F = t4’

f
g
d
e
h
b
a
c

Ft1

t2
t3

t4
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Technology Mapping
 Example

 Pattern graphs (1/3)

inv (1)

nand2 (2) nor2 (2)

nand3 (3) nor3 (3)

cell name (cost)

and2 (3) or2 (3)

(cost can be area or delay)
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Technology Mapping
 Example

 Pattern graphs (2/3)

nand4 (4)
nor4 (4)

aoi21 (3)
oai21 (3)

aoi22 (4)
oai22 (4)
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Technology Mapping
 Example

 Pattern graphs (3/3)

xor (5) xnor (5)

nand4 (4) nor4 (4)
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Technology Mapping
 Example

 A trivial covering
Mapped into NAND2’s and INV’s

 8 NAND2’s and 7 INV’s at cost of 23

cost = 23
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Technology Mapping
 Example

 A better covering

f
g
d
e
h
b
a
c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

cost = 18

For a covering to be legal, every input of a pattern 
graph must be the output of another pattern graph!
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Technology Mapping
 Example

 An even better covering

OAI21
OAI21

NAND3

AND2

NAND2
INV

f
g
d
e
h
b
a
c

F

cost = 15

For a covering to be legal, every input of a pattern 
graph must be the output of another pattern graph! 88

Technology Mapping

Complexity of covering on directed acyclic 
graphs (DAGs)
NP-complete

 If the subject graph and pattern graphs are 
trees, then an efficient algorithm exists (based 
on dynamic programming)
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Technology Mapping
DAGON Approach
 Partition a subject graph into trees

 Cut the graph at all multiple fanout points
 Optimally cover each tree using dynamic programming approach
 Piece the tree-covers into a cover for the subject graph
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Technology Mapping
DAGON Approach
 Principle of optimality: optimal cover for the tree consists of 

a match at the root plus the optimal cover for the sub-tree 
starting at each input of the match

I1

I3

I2

I4

Match: cost = m

root

C(root) = m + C(I1) + C(I2) + C(I3) + C(I4) 
cost of a leaf (i.e. primary input) = 0
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Technology Mapping
DAGON Approach
 Example

 Library
INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4
(ab+c)’

AOI22 5
(ab+cd)’

library element base-function representation
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Technology Mapping
DAGON Approach
 Example

NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)
INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)
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Technology Mapping
DAGON Approach

Complexity of DAGON for tree mapping is 
controlled by finding all sub-trees of the 
subject graph isomorphic to pattern trees

Linear complexity in both the size of 
subject tree and the size of the collection 
of pattern trees
Consider library size as constant
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Technology Mapping
DAGON Approach
 Pros:

 Strong algorithmic 
foundation

 Linear time complexity
Efficient approximation 

to graph-covering 
problem

 Give locally optimal 
matches in terms of both 
area and delay cost 
functions

 Easily “portable” to new 
technologies

 Cons:
 With only a local (to the 

tree) notion of timing
Taking load values into 

account can improve 
the results

 Can destroy structures of 
optimized networks
Not desirable for well-

structured circuits
 Inability to handle non-

tree library elements 
(XOR/XNOR)

 Poor inverter allocation
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Technology Mapping
DAGON Approach

DAGON can be improved by
Adding a pair of inverters for each wire in the 

subject graph
Adding a pattern of a wire that matches two 

inverters with zero cost

2 INV
1 AIO21

2 NOR2
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Available Logic Synthesis Tools
 Academic CAD tools: 

 Espresso (heuristic two-level minimization, 1980s)
 MIS (multi-level logic minimization, 1980s) 
 SIS (sequential logic minimization, 1990s) 
 ABC (sequential synthesis and verification system, 

2005-)
http://www.eecs.berkeley.edu/~alanmi/abc/


