Factor Form

O Factor forms — beyond SOP
B Example:
(ad+b’c)(c+d'(e+ac’))+(d+e)fg

O Advantages

B good representation reflecting logic complexity (SOP may not be
representative)

O E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP f=
a'’b'c’+d'e’; effectively has simple factor form f=(a+b+c)(d+e)

B in many design styles (e.g. complex gate CMOS design) the
implementation of a function corresponds directly to its factored form

B good estimator of logic implementation complexity
B doesn’'t blow up easily

O Disadvantages
B not as many algorithms available for manipulation

53

Factor From

O Factored forms are useful X=(a+b)c +d
in estimating area and Vdd
delay in multi-level logic

B Note: literal count =
transistor count ~ area

O however, area also
depends on wiring, gate
size, etc.

O therefore very crude
measure

Gnd

54

Factor From

COThere are functions whose sizes are
exponential in the SOP representation, but
polynomial in the factored form

B Example
Achilles’ heel function
i=n/2
H (X2i—1 + X2i)

i=1
There are n literals in the factored form and
(n/2)x2"2 literals in the SOP form.

55

Factor Form

O Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or x, and each
leaf has a label of either a variable or its complement

B Example: factoring tree of ((a'+b)cd+e)(a+b")+e’

((a’+b)cd+e)(a+b’)+e’

56

Multi-Level Logic Minimization

Multi-Level Logic Minimization
Structural Manipulation

D BaSiC teChniqueS in Boolean network Resg(m;c:quprlig:g Problem: Given initial network, find best network.
H i - f, = abcd+abce+ab’cd’+ab’c’d’+a'c+cdf+abc’'d’e’+ab’c’df’
mampUIatlon - fi = bdg-+b'dfg+b'd'g+bd'eg
B structural manipulation (change network o B
f, = bcd+bce+b’d'+a’c+cdf+abc’'d’e’+ab’c’'df
topology) f, = bdg+dfg+b'd'g+deg
B node simplification (change node functions) f, = c(b(d+e)+b'(d+H+a’)+ac (bd'e+bdf)
Onode minimization using don’t cares f, = g(d(b+f)+d'(b'+e))
f, = c(b(d+e)+b'(d'+f)+a’)+ac'x’
f, = gx
x = d(b+f)+d'(b'+e)
Two problems:
O find good common subfunctions
0O effect the division
57 58
Multi-Level Logic Minimization Multi-Level Logic Minimization
Structural Manipulation Structural Manipulation

Basic operations:
f = abc+abd+a’'c’d'+b’c’d’
U
f=xy+xy" x=ab y=-c+d
f = (az+bz)cd+e g = (az+bz)e’ h =cde
f=xy+e g=xe' h=ye x=az+bz y=cd
f = ac+ad+bc+bd+e

U
f = (a+b)(c+d)+e

59

Basic operations (cont’d):
f=a+bc g=a+b
U
f=g(a+c) g=a+b
f=ga+gb g=c+d
U

f = ac+ad+bc'd g =c+d

Note: “division” plays a key role in all these operations

60

Multi-Level Logic Minimization
Node Simplification

0 Goal: For any node of a given Boolean network,

find a SOP expression among the set of
permissible functions for the node

B Don’'t care computation + two-level logic minimization

combinational Boolean network

RR

61

Combinational Logic Minimization

O Two-level: minimize #product terms and #literals

— v iy y e ! e !) , —
B E.g., F = XX, 'X5'+ XX, X5+ X X,'Xg'+ X XX+ X XX = F =
Xy'+ XX’

O Multi-level: minimize the # literals (area minimization)

B E.g., equations are optimized using a smaller number of
literals

g —ar 's. “ logic t1=d e

B - optimization ;5 _ gy b
Goobrs TUUATI,
(5=id b+ 2 63; M=t 3+fek
F=15;

subject graph for the optimized equations

62

Timing Analysis and Optimization

I
O Delay model at logic level
B Gate delay model (our focus)
O Constant gate delay, or pin-to-pin gate delay
O Not accurate /4 T \

B Fanout delay model

O Gate delay considering fanout load (#fanouts)
O Slightly more accurate

B Library delay model

O Tabular delay data given in the cell library

= Determine delay from input slew and output
loa

= Table look-up + interpolation/extrapolation
O Accurate

63

Timing Analysis and Optimization
Gate Delay

I
The delay of a gate depends on: o
O‘ E‘ ‘ = Re1‘fcload

1. Output Load J
O Capacitive loading o« charge | L <ﬂ

needed to swing the output Eload Rett | Coug

voltage = = = =
O Due to interconnect and An inverter e.g. output 1—0

logic fanout

2. Input Slew

[

a

Slew = transition time

= longer delay and longer
output slew

O Slower transistor switching v, /

64

Timing Analysis and Optimization
Timing Library

Static Timing Analysis

I I
O Timing library contains all 01 A O Arrival time: the time signal arrives
relevant information about each I _"-.,. 7 B Calculated from input to output in the topological order
standard cell . % O Required time: the time signal must ready (e.qg., due to the clock
® E.g., pin direction, clock, pin B — cycle constramt)
capacitance, etc. B Calculated from output to input in the reverse topological order
Path(O Slack = required time — arrival time
O Delay (fastest, slowest, and often inputPorts(A), B Timing flexibility margin (positive: good; negative: bad)
. outputPorts(2),
typlcgl)dand outﬁut slew are inpUtTransition(01)
encoded for each input-to-output outputTransition(10), . . N . .
path and each pair of transition “delay_table_1", Al) | RO AQ): arnvz_al t|m_e of 5|gnaIJ_
directions “output_slew_table_1” R(Kk): required time or for signal k
); S(k): slack of signal k
O Values typically represented as 2 “delay_table_1”) r(j,k) D(j,k): delay of node j from input k
dimensional look-up tables (of Output load (nF node j _ _
output load and input slew) o o o hol00 AK)_| R(K) A@) = maXyp gy [AK) + DK
® Interpolation is used b121 26 laaloa r(j,k) = R(j) - D(j,k)
2| Piles 26 545 . :
2lbsles oo o2 R(K) = min;_eoqq [r(,K)]
5| [r.o]2.6 [3.4 [4.08.1 S(k) = R(K) - A(k)
S| jp.of2.8 [3.7 |4.9|10.3
= 65 66
Static Timing Analysis Static Timing Analysis
I I

O Arrival times known at |, and |,
O Required times known at I3, 1,, and Ig

O Delay analysis gives arrival and required times
for combinational blocks C,, C,, C;, C,

T
@) ls

14

12 13

67

O Arrival time can be computed in the topological
order from inputs to outputs
B When a node is visited, its output arrival time is:
the max of its fanin arrival times + its own gate delay

O Required time can be computed in the reverse
topological order from outputs to inputs
B When a node is visited, its input required time is:
the min of its fanout required times - its own gate delay

68

Static Timing Analysis

A =6 R, =5
O Example Al=5 R.=5
R.=5 Ry=5 Si=-1 R;=3
4 S,=0 R,=1
Gt [sllo stk 2. RIh
102 D 2 / arrival time 34,1 = E)l
bt} 42 =
Y 1 /node ID Ssp=1
3(2 2 4 15 73"
v.. - S;4=-1
T 1 1 \ 1 27’5: é
e, v y o=
....... 10 S0
& 6 27 Ap=2 Y
\ . T e critical path edges
i
5 CE .
~ Ag=0 Skik = Sk + max{Ay} - Ay, K k; € fanin(k)
Ae=0 Si = Min{Sy}, k € fanout(k)

69

Timing Optimization

O ldentify timing critical regions
OPerform timing optimization on the
selected regions

M E.g., gate sizing, buffer insertion, fanout
optimization, tree height reduction, etc.

70

Timing Optimization

O Buffer insertion

M Divide the fanouts of a gate into critical and
non-critical parts, and drive the non-critical
fanouts with a buffer

T i
- jjjbo SuE

i

less
critical

71

Timing Optimization

O Fanout optimization

B Split the fanouts of a gate into several parts.
Each part is driven by a copy of the original
gate.

F—

—

o

NI
l
U]

72

Timing Optimization

CTree height reduction

J»/

/
o

73

Timing Optimization

COTree height reduction

Collapsed 5
Critical region
n’

Combinational Optimization

O From Boolean functions to circuits

Boolean functions

/

two-level optimization

N

/]

multi-level optimization

/

technology mapping

l

circuits

75

Technology Independent vs. Dependent
Optimization

0 Technology independent optimization produces a
two-level or multi-level netlist where literal
and/or cube counts are minimized

0 Given the optimized netlist, its logic gates are to
be implemented with library cells

0 The process of associating logic gates with library
cells is technology mapping

B Translation of a technology independent representation
(e.g. Boolean networks) of a circuit into a circuit for a
given technology (e.g. standard cells) with optimal cost

76

Technology Mapping

| technology technelogy ﬁ|
| independent dependent

.. | -
original logic optimized technology | | jmi
| optimization n[;.twork mapping 1™ og]t;:jrll]l]zted
|

l logic synthesis

O Standard-cell technology mapping: standard cell design
B Map a function to a limited set of pre-designed library cells
O FPGA technology mapping
B Lookup table (LUT) architecture:
O E.g., Lucent, Xilinx FPGAs
O Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)
B Multiplexer-based technology mapping:
O E.g., Actel FPGA
O Logic modules are constructed with multiplexers

77

Standard-Cell Based Design

|

Cell © Feedihirangh Cell

78

Technology Mapping

O Formulation:
B Choose base functions
OEx: 2-input NAND and Inverter

B Represent the (optimized) Boolean network with base
functions

OSubject graph
B Represent library cells with base functions
OPattern graph

O Each pattern is associated with a cost depending on the
optimization criteria, e.g., area, timing, power, etc.

O Goal:

B Find a minimal cost covering of a subject graph using
pattern graphs

79

Technology Mapping

0 Technology Mapping: The optimization problem
of finding a minimum cost covering of the subject
graph by choosing from a collection of pattern
graphs of gates in the library.

0 A cover is a collection of pattern graphs such that
every node of the subject graph is contained in
one (or more) of the pattern graphs.

0 The cover is further constrained so that each
input required by a pattern graph is actually an
output of some other pattern graph.

80

Technology Mapping

CExample
M Subject graph

Technology Mapping

O Example
B Pattern graphs (1/3)
nand2 (2) nor2 (2)

cell name (cost)
Y

f o inv (1)
f=d+e g] u o and2 (3) or2 (3)
=b+h
:g — at+2 +c ﬁ B 1 F (cost can be area or delay) :D_I>O_ m
t4=t1t3+fgh b = "
F=t4 2 a nand3 (3) nor3 (3)
¢ %
Technology Mapping Technology Mapping
O Example OO0 Example
B Pattern graphs (2/3) nor4 (4) B Pattern graphs (3/3)
nand4 (4)
nand4 (4) nor4 (4)
o Tl %
aoi2l (3) caizl 3)
W @& xor (5) xnor (5)

0ai22 (4)
aoi22 (4)

e

83

84

Technology Mapping

O Example
B A trivial covering

OMapped into NAND2's and INV’s
= 8 NAND2's and 7 INV’s at cost of 23

tl=d+e;
2=5b+h;
B3=a 2 +c¢

4=t 3+fgh;

85

Technology Mapping

O Example
B A better covering

O VT TD QA -

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! 56

Technology Mapping

O Example
B An even better covering

O YT TD® Q@ -

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! a7

Technology Mapping

O Complexity of covering on directed acyclic
graphs (DAGS)

B NP-complete

H If the subject graph and pattern graphs are
trees, then an efficient algorithm exists (based
on dynamic programming)

88

Technology Mapping
DAGON Approach

O Partition a subject graph into trees

B Cut the graph at all multiple fanout points
O Optimally cover each tree using dynamic programming approach
O Piece the tree-covers into a cover for the subject graph

s
: |

Technology Mapping
DAGON Approach

O Principle of optimality: optimal cover for the tree consists of
a match at the root plus the optimal cover for the sub-tree
starting at each input of the match

Match: cost =m

C(root) =m + C(l,) + C(l,) + C(l5) + C(l,)
cost of a leaf (i.e. primary input) = 0

90

Technology Mapping
DAGON Approach

OExample v 2 o @ o
= Library \anp2 3 o (@) o
NANDS 4 D)o (abc) %
NAND4 5 =)

ey %—Do—‘_}
poiz1 a4 Dy @ E o

AOI22 5 jSD (ab+cd)’ E

library element base-function representation
91

Technology Mapping
DAGON Approach

I
O Example
NAND2(3)
] NAND2(8)
INV(15) NAND2(16) mﬁm ng%
AND2(13) AO0I21(9) NAND3(18) NANDA4(19)

AOI21(22)
NAND2(8) INV(18)

NAND3(4)

92

Technology Mapping
DAGON Approach

0 Complexity of DAGON for tree mapping is
controlled by finding sub-trees of the
subject graph isomorphic to pattern trees

O complexity in both the size of
subject tree and the size of the collection
of pattern trees
M Consider library size as constant

93

Technology Mapping
DAGON Approach
O Pros: O Cons:
B Strong algorithmic B With only a local (to the
foundation tree) notion of timing
B Linear time complexity OTaking load values into
O Efficient approximation account can improve
to graph-covering the results
problem B Can destroy structures of
B Give locally optimal optimized networks
matches in terms of both OONot desirable for well-
area and delay cost structured circuits
functions B Inability to handle non-
B Easily “portable” to new tree library elements
technologies (XOR/XNOR)

B Poor inverter allocation

94

Technology Mapping
DAGON Approach

CODAGON can be improved by

B Adding a pair of inverters for each wire in the
subject graph

B Adding a pattern of a wire that matches two
inverters with zero cost

oo Boovlow

2 INV

1 Al021 2 NOR2

95

Available Logic Synthesis Tools

O Academic CAD tools:
B Espresso (heuristic two-level minimization, 1980s)
B MIS (multi-level logic minimization, 1980s)
B SIS (sequential logic minimization, 1990s)

B ABC (sequential synthesis and verification system,
2005-)

O http://www.eecs.berkeley.edu/—alanmi/abc/

96

