

Introduction to Electronic Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

1

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann

2

Formal Verification

❑ Course contents

- Introduction
- Boolean reasoning engines
- Equivalence checking
- Property checking

❑ Readings

- Chapter 9

3

Outline

❑ Introduction

❑ Boolean reasoning engines

❑ Equivalence checking

❑ Property checking

4

(1995/1) Intel announces a pre-tax charge of 475 million dollars against earnings, ostensibly the total cost associated with replacement of the flawed processors.

(1996/6) The European Ariane5 rocket explodes 40 s into its maiden flight due to a software bug.

003 / 45 / 7844

(2003/8) A programming error has been identified as the cause of the Northeast power blackout, which affected an estimated 10 million people in Canada and 45 million people in the U.S.

T Geostar 45
15 EST 14 Aug. 2003

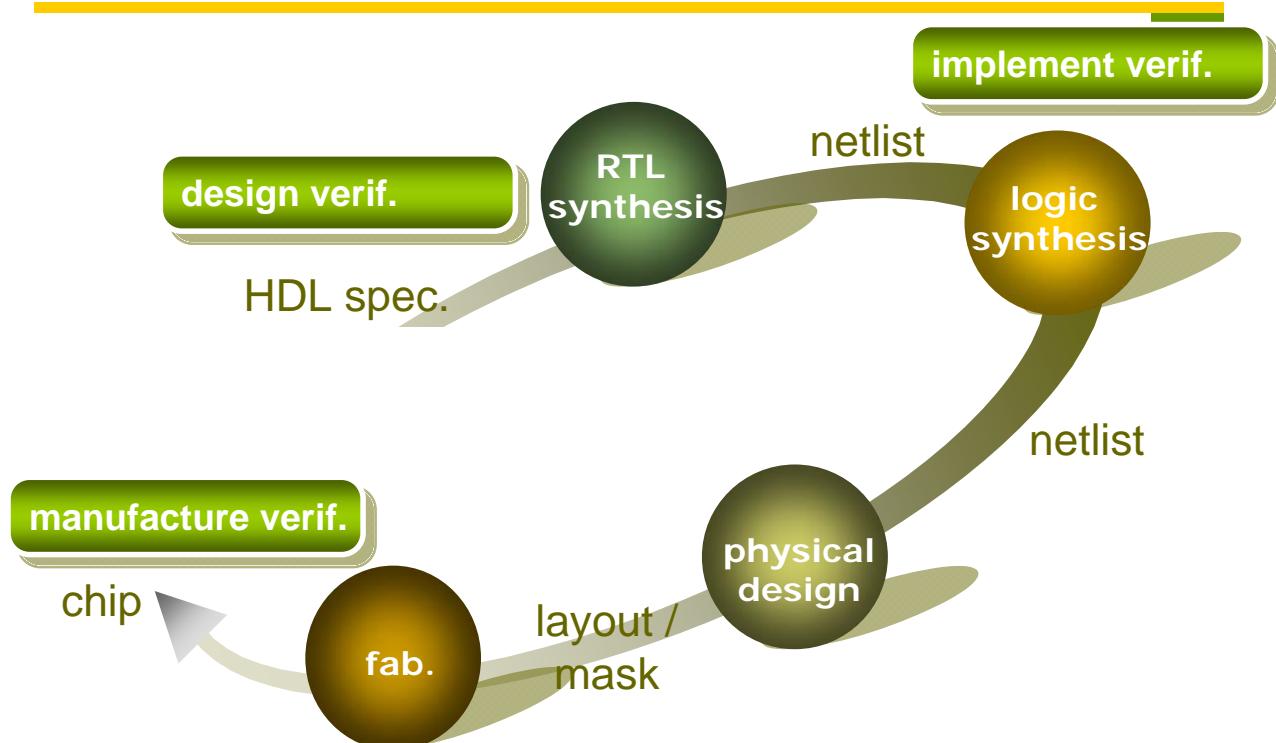
(2008/9) A major computer failure onboard the Hubble Space Telescope is preventing data from being sent to Earth, forcing a scheduled shuttle mission to do repairs on the observatory to be delayed.

Design vs. Verification

- Verification may take up to 70% of total development time of modern systems !
 - This ratio is ever increasing
 - Some industrial sources show 1:3 head-count ratio between design and verification engineers
- Verification plays a key role to reduce design time and increase productivity

9

IC Design Flow and Verification



10

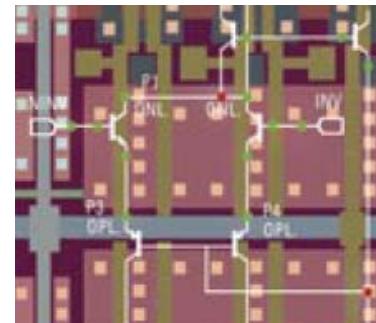
Scope of Verification

- ❑ Design flow
 - A series of transformations from abstract **specification** all the way to **layout**
- ❑ Verification enters design flow in almost all abstraction levels
 - **Design verification**
 - ❑ Functional property verification (main focus)
 - **Implementation verification**
 - ❑ Functional equivalence verification (main focus)
 - ❑ Physical verification
 - ❑ Timing verification
 - ❑ Power analysis
 - ❑ Signal integrity check
 - Electro-migration, IR-drop, ground bounce, cross-talk, etc.
 - **Manufacture verification**
 - ❑ Testing

11

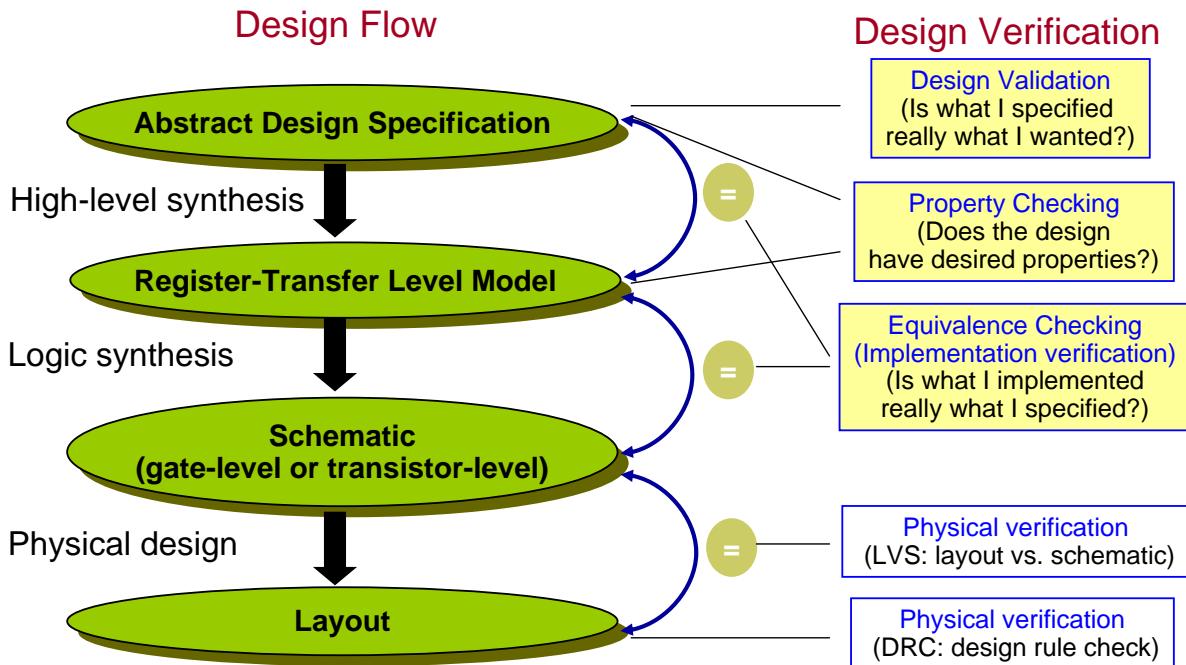
Verification

- ❑ Design/Implementation Verification
 - Functional Verification**
 - Property checking in system level
 - ❑ PSPACE-complete
 - Equivalence checking in RTL and gate level
 - ❑ PSPACE-complete
 - Physical Verification**
 - DRC (design rule check) and LVS (layout vs. schematic check) in layout level
 - ❑ Tractable
- ❑ Manufacture Verification
 - Testing
 - ❑ NP-complete
- ❑ “Verification” often refers to **functional verification**



12

Functional Verification



13

Functional Verification Approaches

- **Simulation (software)**
 - **Incomplete** (i.e., may fail to catch bugs)
 - **Time-consuming**, especially at lower abstraction levels such as gate- or transistor-level
 - Still the most popular way for design validation
- **Emulation (hardware)**
 - FPGA-based emulation systems, emulation system based on massively parallel machines (e.g., with 8 boards, 128 processors each), etc.
 - **2 to 3 orders of magnitude faster** than software simulation
 - **Costly** and may not be easy-to-use
- **Formal verification**
 - a relatively new paradigm for **property checking** and **equivalence checking**
 - requires **no input stimuli**
 - perform **exhaustive proof** through rigorous **logical reasoning**

14

Informal vs. Formal Verification

❑ Informal verification

- Functional simulation aiming at locating bugs
- Incomplete
 - ❑ Show existence of bugs, but not absence of bugs

❑ Formal verification

- Mathematical proof of design correctness
- Complete
 - ❑ Show both existence and absence of bugs

We will be focusing on [formal verification](#)

15

Outline

❑ Introduction

❑ Boolean reasoning engines

- BDD
- SAT

❑ Equivalence checking

❑ Property checking

16

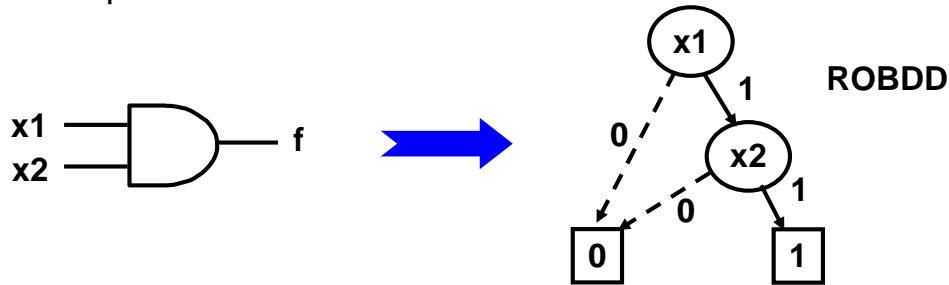
Binary Decision Diagram (BDD)

□ Basic features

■ ROBDD

- Proposed by R.E. Bryant in 1986
- A directed acyclic graph (DAG) representing a Boolean function $f: B^n \rightarrow B$
 - Each **non-terminal** node is a decision node associated with a input variable with two branches: **0-branch** and **1-branch**
 - Two terminal nodes: **0-terminal** and **1-terminal**

■ Example



17

Binary-Decision Diagram (BDD)

□ Cofactor of Boolean function:

- Positive cofactor w.r.t. x_i : $f_{x_i} = f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$
- Negative cofactor w.r.t. x_i : $f_{\neg x_i} = f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$

■ Example

$$f = x_1' x_2' x_3' + x_1' x_2' x_3 + x_1 x_2' x_3 + x_1 x_2 x_3' + x_2 x_3$$

$$f_{x_1} = x_2' x_3 + x_2 x_3' + x_2 x_3$$

$$f_{x_1'} = x_2' x_3' + x_2' x_3 + x_2 x_3$$

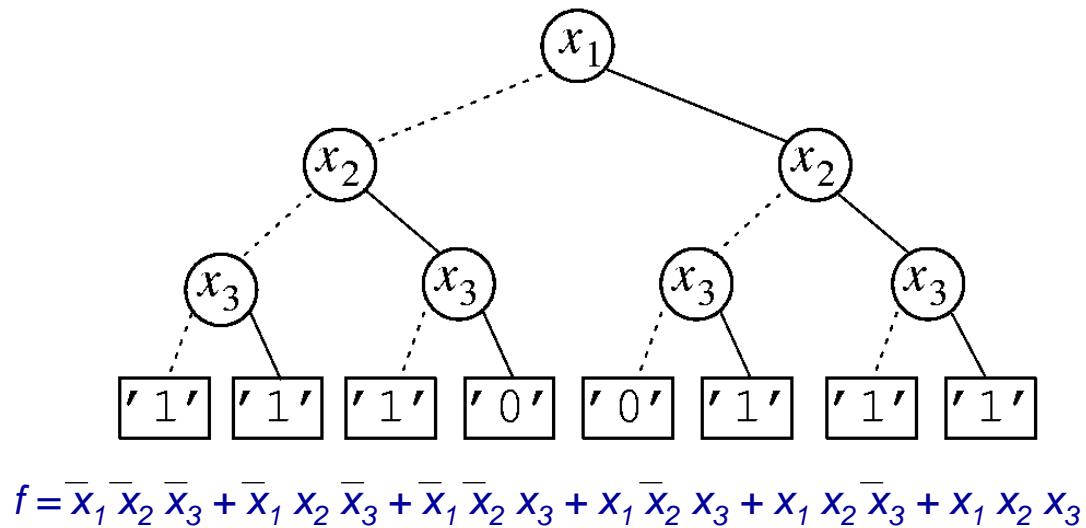
□ Shannon expansion: $f = x_i f_{x_i} + x_i' f_{x_i'}$

- A complete expansion of a function can be obtained by successively applying Shannon expansion on all variables until either of the constant functions '0' or '1' is reached

18

Ordered BDD (OBDD)

- Complete Shannon expansion can be visualized as a binary tree
 - Solid (dashed) lines correspond to the positive (negative) cofactor



19

Reduced OBDD (ROBDD)

- Reduction rules of ROBDD
 - Rule 1: eliminate a node with two identical children
 - Rule 2: merge two isomorphic sub-graphs



- Reduction procedure
 - Input: An OBDD
 - Output: An ROBDD
 - Traverse the graph from the terminal nodes towards to root node (i.e., in a bottom-up manner) and apply the above reduction rules whenever possible

20

ROBDD

- An OBDD is a directed tree $G(V, E)$
- Each vertex $v \in V$ is characterized by an associated variable $\phi(v)$, a *high* subtree $\eta(v)$ ($\text{high}(v)$, the 1-branch) and a *low* subtree $\lambda(v)$ ($\text{low}(v)$, the 0-branch)
- Procedure to reduce an OBDD:
 - Merge all identical leaf vertices and appropriately redirect their incoming edges
 - Proceed **from bottom to top**, process all vertices: if two vertices u and v are found for which $\phi(u) = \phi(v)$, $\eta(u) = \eta(v)$, and $\lambda(u) = \lambda(v)$, merge u and v and redirect incoming edges
 - For vertices v for which $\eta(v) = \lambda(v)$, remove v and redirect its incoming edges to $\eta(v)$

21

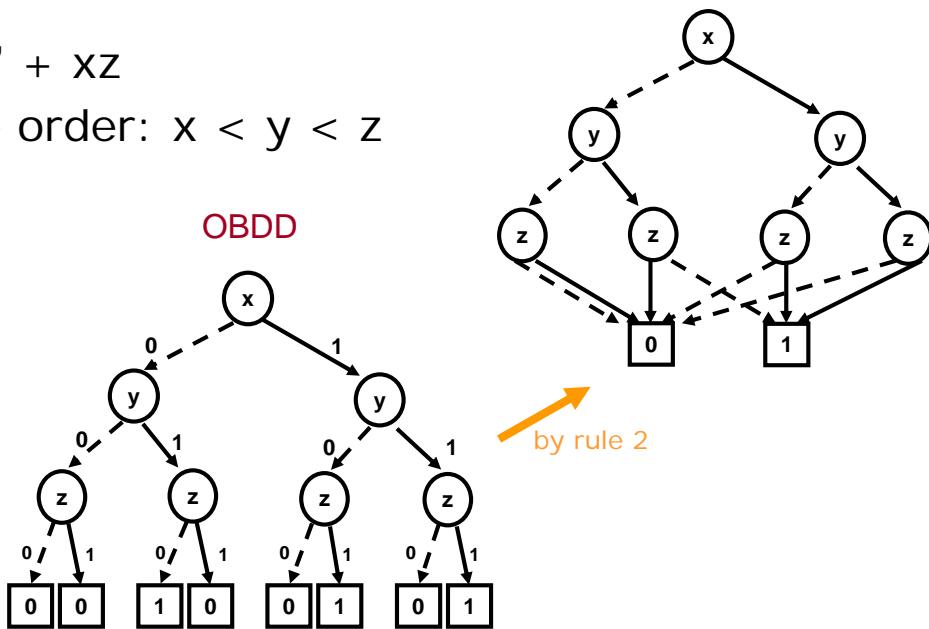
ROBDD

□ Example

- $f = x'yz' + xz$
- variable order: $x < y < z$

Truth table

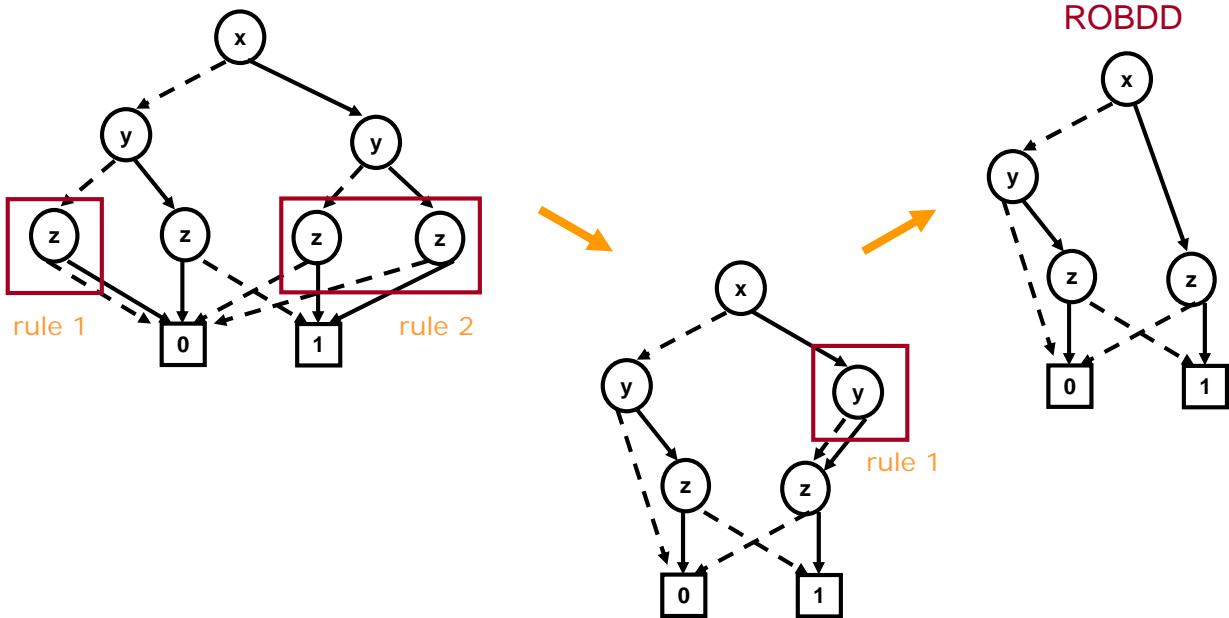
xyz	f
000	0
001	0
010	1
011	0
100	0
101	1
110	0
111	1



22

ROBDD

□ Example (cont'd)



23

Canonicity

□ Canonicity requirements

- A BDD representation is not canonical for a given Boolean function unless the following constraints are satisfied:

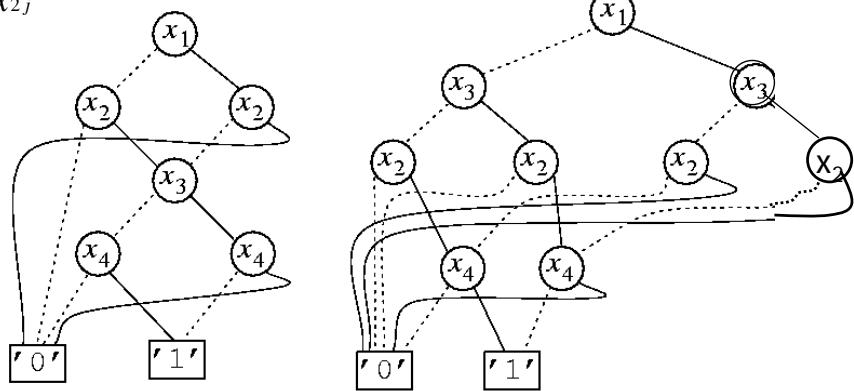
1. **Simple BDD** – each variable can appear only once along each path from the root to a leaf
2. **Ordered BDD** – Boolean variables are ordered in such a way that if the node labeled x_i has a child labeled x_k , then $\text{order}(x_i) < \text{order}(x_k)$
3. **Reduced BDD** – no two nodes represent the same function, i.e., redundancies are removed by **sharing** isomorphic sub-graphs

24

ROBDD Properties

- ROBDD is a canonical representation for a fixed variable ordering
- ROBDD is compact in representing many Boolean functions used in practice
- Variable ordering greatly affects the size of an ROBDD
 - E.g., the parity function of k bits:

$$f = \prod_{j=1}^k x_{2j-1} \oplus x_{2j}$$



25

Effects of Variable Ordering

- BDD size
 - Can vary from linear to exponential in the number of the variables, depending on the ordering
- Hard-to-build BDD
 - Datapath components (e.g., multipliers) cannot be represented in polynomial space, regardless of the variable ordering
- Heuristics of ordering
 - (1) Put the variable that influence most on top
 - (2) Minimize the distance between strongly related variables
 - (e.g., $x_1x_2 + x_2x_3 + x_3x_4$)
 - $x_1 < x_2 < x_3 < x_4$ is better than $x_1 < x_4 < x_2 < x_3$

26

BDD Package

- ❑ A BDD package refers to a software program that supports Boolean manipulation using ROBDDs. It has the following features:
 - It provides convenient API (application programming interface)
 - It supports the conversion between the external Boolean function representation and the internal ROBDD representation
 - Multiple Boolean functions are stored in shared ROBDD
 - It can create new functions from existing ones (e.g., $h = f \bullet g$)

27

BDD Data Structure

- ❑ A triplet (ϕ, η, λ) uniquely identifies an ROBDD vertex
- ❑ A unique table (implemented by a hash table) that stores all triplets already processed

```
struct vertex {  
    char *phi;  
    struct vertex *eta, *lambda;  
    ...  
}
```

```
struct vertex *old_or_new(char *phi, struct vertex *eta, *lambda)  
{  
    if ("a vertex  $v = (\phi, \eta, \lambda)$  exists")  
        return v;  
    else {  
        v ← "new vertex pointing at  $(\phi, \eta, \lambda)$ ";  
        return v;  
    }  
}
```

28

Building ROBDD

```

struct vertex *robdd_build(struct expr f, int i)
{
    struct vertex *η, *λ;
    struct char *φ;

    if (equal(f, '0'))
        return v0;
    else if (equal(f, '1'))
        return v1;
    else {
        φ ← π(i);
        η ← robdd_build( $f_\phi$ , i + 1);
        λ ← robdd_build( $f_{\bar{\phi}}$ , i + 1);
        if (η = λ)
            return η;
        else
            return old_or_new(φ, η, λ);
    }
}

```

- The procedure directly builds the compact ROBDD structure
- A simple symbolic computation system is assumed for the derivation of the cofactors
- $\pi(i)$ gives the i^{th} variable from the top

29

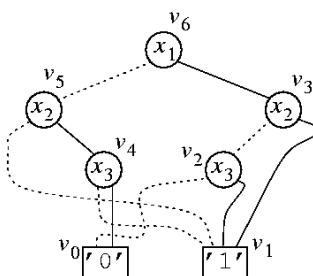
Building ROBDD

□ Example

```

robdd_build( $\bar{x}_1 \cdot \bar{x}_3 + \bar{x}_2 \cdot x_3 + x_1 \cdot x_2$ , 1)
  ↳ robdd_build( $\bar{x}_2 \cdot x_3 + x_2$ , 2)
    ↳ robdd_build('1', 3)
      ↳ v1
    ↳ robdd_build( $x_3$ , 3)
      ↳ robdd_build('1', 4)
        ↳ v1
      ↳ robdd_build('0', 4)
        ↳ v0
      v2 = ( $x_3, v_1, v_0$ )
    v3 = ( $x_2, v_1, v_2$ )

```



```

  ↳ robdd_build( $\bar{x}_3 + \bar{x}_2 \cdot x_3$ , 2)
    ↳ robdd_build( $\bar{x}_3$ , 3)
      ↳ robdd_build('0', 4)
        ↳ v0
      ↳ robdd_build('1', 4)
        ↳ v1
      v4 = ( $x_3, v_0, v_1$ )
    ↳ robdd_build( $\bar{x}_3 + x_3$ , 3)
      ↳ robdd_build('1', 4)
        ↳ v1
      ↳ robdd_build('1', 4)
        ↳ v1
      v5 = ( $x_2, v_4, v_1$ )
    v6 = ( $x_1, v_3, v_5$ )

```

30

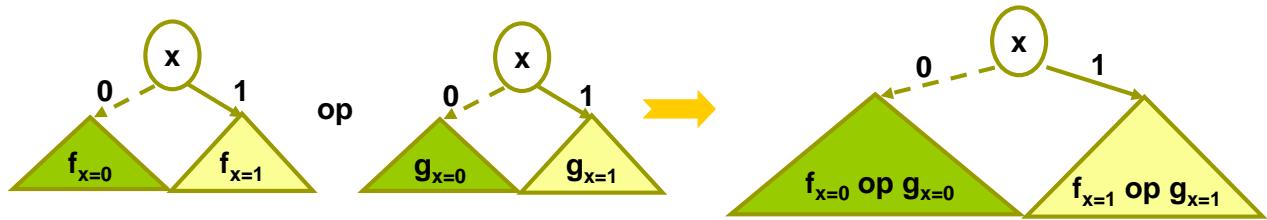
Recursive BDD Operation

- Construct the ROBDD $h = f \text{ op } g$ from two existing ROBDDs f and g , where op is a binary Boolean operator (e.g. AND, OR, NAND, NOR)

- A recursive procedure on each variable x

$$\begin{aligned}
 h &= x \cdot h_{x=1} + x' \cdot h_{x=0} \\
 &= x \cdot (f \text{ op } g)_{x=1} + x' \cdot (f \text{ op } g)_{x=0} \\
 &= x \cdot (f_{x=1} \text{ op } g_{x=1}) + x' \cdot (f_{x=0} \text{ op } g_{x=0})
 \end{aligned}$$

- $(f \text{ op } g)_x = (f_x \text{ op } g_x)$ for $\text{op} = \text{AND}, \text{OR}, \text{NAND}, \text{NOR}$



31

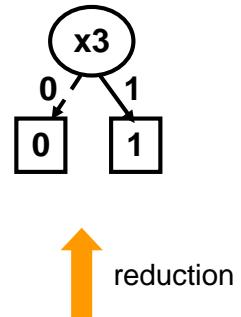
Recursive BDD Operation

- Existential quantification

Let $\exists x_1 [f(x_1, y_1, \dots, y_n)] = g(y_1, \dots, y_n)$.

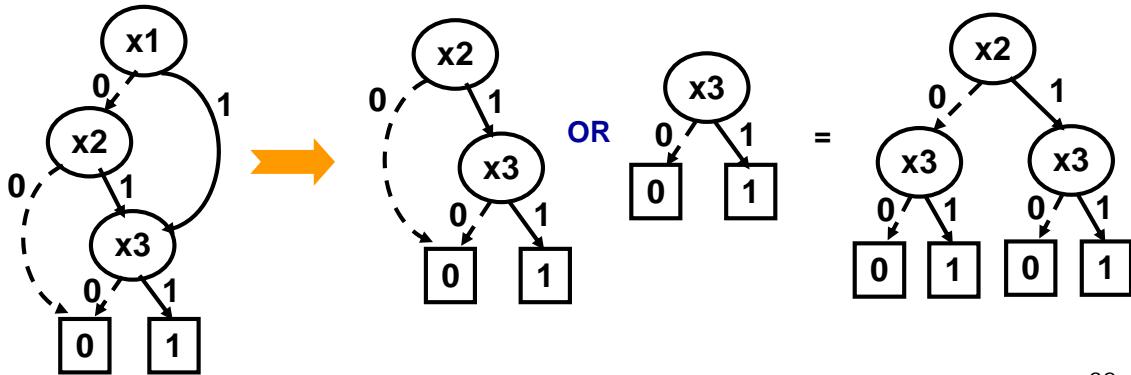
Then $g(y_1, \dots, y_n) = 1$ iff

$f(0, y_1, \dots, y_n) = 1$ or $f(1, y_1, \dots, y_n) = 1$



$$f = (x_1 + x_2) \cdot x_3$$

$$\exists x_1 f = f_{x_1=0} + f_{x_1=1}$$



32

ROBDD Manipulation

- Separate algorithms could be designed for each operator on ROBDDs, such as AND, NOR, etc. However, the universal **if-then-else** operator '*ite*' is sufficient.

$z = \text{ite}(f, g, h)$, z equals g when f is true and equals h otherwise:

- Example:

$$z = \text{ite}(f, g, h) = f \cdot g + \bar{f} \cdot h$$

$$z = f \cdot g = \text{ite}(f, g, '0')$$

$$z = f + g = \text{ite}(f, '1', g)$$

- The *ite* operator is well-suited for a recursive algorithm based on ROBDDs ($\phi(v) = x$):

$$v = \text{ite}(F, G, H) = (x, \text{ite}(F_x, G_x, H_x), \text{ite}(F_{\bar{x}}, G_{\bar{x}}, H_{\bar{x}}))$$

33

ITE Operator

- ITE operator $\text{ite}(f, g, h) = fg + f'h$ can implement any two variable logic function. There are 16 such functions corresponding to all subsets of vertices of \mathbf{B}^2 :

Table	Subset	Expression	Equivalent Form
0000	0	0	0
0001	AND(f, g)	$f g$	$\text{ite}(f, g, 0)$
0010	$f > g$	$f g'$	$\text{ite}(f, g', 0)$
0011	f	f	f
0100	$f < g$	$f'g$	$\text{ite}(f, 0, g)$
0101	g	g	g
0110	XOR(f, g)	$f \oplus g$	$\text{ite}(f, g', g)$
0111	OR(f, g)	$f + g$	$\text{ite}(f, 1, g)$
1000	NOR(f, g)	$(f + g)'$	$\text{ite}(f, 0, g')$
1001	XNOR(f, g)	$f \oplus g'$	$\text{ite}(f, g, g')$
1010	NOT(g)	g'	$\text{ite}(g, 0, 1)$
1011	$f \geq g$	$f + g'$	$\text{ite}(f, 1, g')$
1100	NOT(f)	f'	$\text{ite}(f, 0, 1)$
1101	$f \leq g$	$f' + g$	$\text{ite}(f, g, 1)$
1110	NAND(f, g)	$(f g)'$	$\text{ite}(f, g', 1)$
1111	1	1	1

34

Recursive Formulation of ITE

□ $\text{Ite}(f, g, h)$

$$= f \ g + f' \ h$$

$$= v \ (f \ g + f' \ h)_v + v' \ (f \ g + f' \ h)_{v'}$$

$$= v \ (f_v \ g_v + f'_{v'} \ h_v) + v' \ (f_{v'} \ g_{v'} + f'_{v'} \ h_{v'})$$

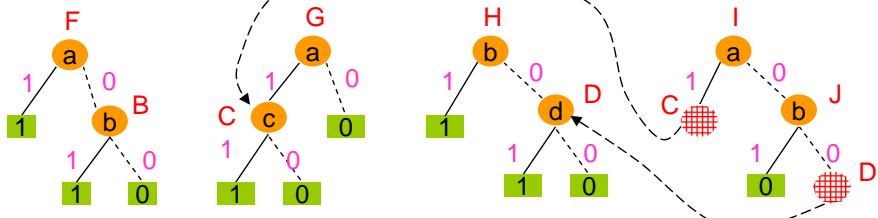
$$= \text{ite}(v, \text{ite}(f_v, g_v, h_v), \text{ite}(f_{v'}, g_{v'}, h_{v'}))$$

where v is the top-most variable of BDDs f , g , h

35

ITE Operator

□ Example



F,G,H,I,J,B,C,D
are pointers

$$\begin{aligned}
 I &= \text{ite}(F, G, H) \\
 &= \text{ite}(a, \text{ite}(F_a, G_a, H_a), \text{ite}(F_{\bar{a}}, G_{\bar{a}}, H_{\bar{a}})) \\
 &= \text{ite}(a, \text{ite}(1, C, H), \text{ite}(B, 0, H)) \\
 &= \text{ite}(a, C, \text{ite}(b, \text{ite}(B_b, 0_b, H_b), \text{ite}(B_{\bar{b}}, 0_{\bar{b}}, H_{\bar{b}}))) \\
 &= \text{ite}(a, C, \text{ite}(b, \text{ite}(1, 0, 1), \text{ite}(0, 0, D))) \\
 &= \text{ite}(a, C, \text{ite}(b, 0, D)) \\
 &= \text{ite}(a, C, J)
 \end{aligned}$$

Check: $F = a + b$
 $G = ac$
 $H = b + d$
 $\text{ite}(F, G, H) = (a + b)(ac) + a'b'(b + d) = ac + a'b'd$

36

ITE Operator

```

struct vertex *apply_ite(struct vertex *F, struct vertex *G, struct vertex *H, int i)
{
    char x;
    struct vertex *η, *λ;

    if (F == v1)
        return G;
    else if (F == v0)
        return H;
    else if (G == v1 && H == v0)
        return F;
    else {
        x ← π(i);
        η ← apply_ite(Fx, Gx, Hx, i + 1);
        λ ← apply_ite(Fx̄, Gx̄, Hx̄, i + 1);
        if (η = λ)
            return η;
        else
            return old_or_new(x, η, λ);
    }
}

```

ITE algorithm processes the variables in the order used in the BDD package

- $\pi(i)$ gives the i^{th} variable from the top; $\pi^{-1}(x)$ gives the index position of variable x from the top

■ Cofactor: Suppose F is the root vertex of the function for which F_x should be computed. Then

$F_x = \eta(F) \quad \text{if } \pi^{-1}(\phi(F)) = i$

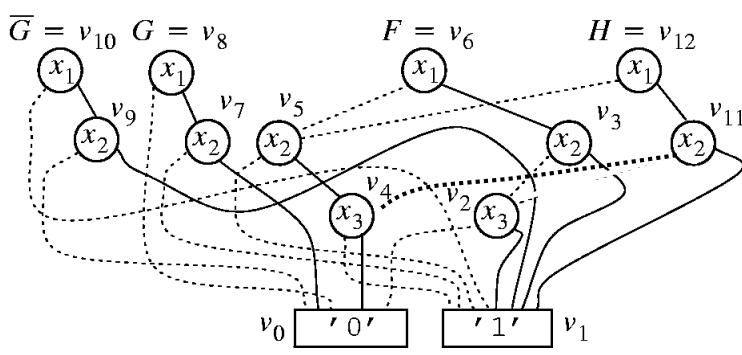
- F_x can be calculated similarly

■ The time complexity of the algorithm is $O(|F| \cdot |G| \cdot |H|)$

37

ITE Operator

Example



$$\overline{G} = \text{ite}(G, 0, 1)$$

```

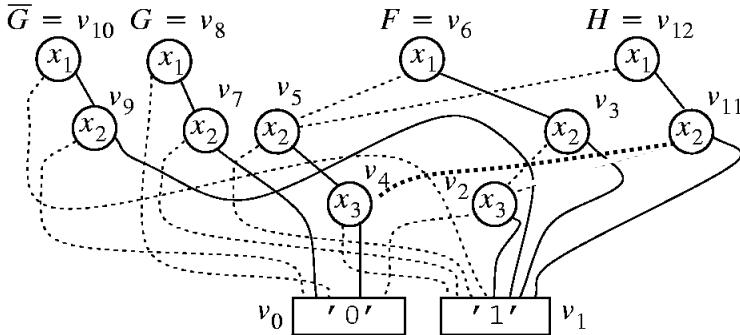
apply_ite(v8, v0, v1, 1)
  ↗ apply_ite(v7, v0, v1, 2)
  ↗ apply_ite(v0, v0, v1, 3)
  ↗ v1
  ↗ apply_ite(v1, v0, v0, 3)
  ↗ v0
  ↗ v9 = (x2, v1, v0)
  ↗ apply_ite(v0, v0, v1, 2)
  ↗ v1
  ↗ v10 = (x1, v9, v1)

```

38

ITE Operator

□ Example (cont'd)



$$H = F \oplus G \\ = \text{ite}(F, G, \bar{G})$$

$\text{apply_ite}(v_6, v_{10}, v_8, 1)$
 $\xrightarrow{\eta} \text{apply_ite}(v_3, v_9, v_7, 2)$
 $\xrightarrow{\eta} \text{apply_ite}(v_1, v_1, v_0, 3)$
 v_1
 $\xrightarrow{\lambda} \text{apply_ite}(v_2, v_0, v_1, 3)$
 $\xrightarrow{\eta} \text{apply_ite}(v_1, v_0, v_1, 4)$
 v_0
 $\xrightarrow{\lambda} \text{apply_ite}(v_0, v_0, v_1, 4)$
 v_1
 $v_4 = (x_3, v_0, v_1)$
 $v_{11} = (x_2, v_1, v_4)$
 $\xrightarrow{\lambda} \text{apply_ite}(v_5, v_1, v_0, 2)$
 v_5
 $v_{12} = (x_1, v_{11}, v_5)$

39

BDD Memory Management

□ Ordering

- Finding the best ordering minimizing ROBDD sizes is intractable
- Optimal ordering may change as ROBDDs are being manipulated
 - An ROBDD package may **reorder** the variables at different moments
 - It can move some variable closer to the top or bottom by remembering the best position, and repeat the procedure for other variables

□ Garbage collection

- Another important technique, in addition to variable ordering, for memory management

40