Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2011

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann

Formal Verification

0 Course contents
M Introduction
M Boolean reasoning engines
B Equivalence checking
M Property checking

CJReadings
M Chapter 9

Outline
Ol Introduction
O Boolean reasoning engines

O Equivalence checking

OProperty checking

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

- (2008 %o
8/9)
prev
dorentr‘n 3y
S . or compL
|__~°n "[[%grg - | v
. Q’, \/7 . | -- .
r" - ‘ . ‘
' o ety 7
s S| dulge b
» e 1 d Sh eﬁco -.
| d ¢ u;tle il
missi
on to

lfs't

Design vs. Verification

CIVerification may take up to 70% of total
development time of modern systems !
M This ratio is ever increasing

B Some industrial sources show 1:3 head-count
ratio between design and verification engineers

ClVerification plays a key role to reduce
design time and increase productivity

IC Design Flow and Verification

; " b
implement verif. |

netlistm

.

layouitd
ask

10

Scope of Verification

O Design flow

B A series of transformations from abstract specification all the
way to layout

O Verification enters design flow in almost all abstraction
levels
B Design verification
O Functional property verification (main focus)
B Implementation verification
O Functional equivalence verification (main focus)
O Physical verification
O Timing verification
O Power analysis
O Signal integrity check
= Electro-migration, IR-drop, ground bounce, cross-talk, etc.
B Manufacture verification
O Testing

11

Verification

O Design/Implementation Verification
Functional Verification
B Property checking in system level
O PSPACE-complete
B Equivalence checking in RTL and gate level
O PSPACE-complete
Physical Verification

B DRC (design rule check) and LVS (layout vs.
schematic check) in layout level
O Tractable

O Manufacture Verification
B Testing
O NP-complete

O “Verification” often refers to functional
verification

12

Functional Verification

Design Flow Design Verification

Design Validation
(Is what | specified
really what | wanted?)

Abstract Design Specification

High-level synthesis Property Checking
(Does the design

have desired properties?)

Register-Transfer Level Model

Equivalence Checking
(Implementation verification)
(Is what I implemented
really what | specified?)

Logic synthesis

Schematic
(gate-level or transistor-level)

Physical design

Physical verification
(LVS: layout vs. schematic)

Physical verification
(DRC: design rule check)

13

Functional Verification Approaches

O Simulation (software)
B Incomplete (i.e., may fail to catch bugs)

B Time-consuming, especially at lower abstraction levels such as
gate- or transistor-level

B Still the most popular way for design validation
O Emulation (hardware)

B FPGA-based emulation systems, emulation system based on
massively parallel machines (e.g., with 8 boards, 128
processors each), etc.

B 2 to 3 orders of magnitude faster than software simulation
B Costly and may not be easy-to-use
O Formal verification

B a relatively new paradigm for property checking and
equivalence checking

B requires no input stimuli
B perform exhaustive proof through rigorous logical reasoning

14

Informal vs. Formal Verification

0 Informal verification 0 Formal verification
B Functional simulation B Mathematical proof of
aiming at locating bugs design correctness
B Incomplete B Complete
0 Show existence of O Show both existence
bugs, but not absence and absence of bugs
of bugs

We will be focusing on formal verification

15

Outline
O Introduction

C0Boolean reasoning engines
m BDD
B SAT

O Equivalence checking

OProperty checking

16

Binary Decision Diagram (BDD)

] Basic features

= ROBDD
O Proposed by R.E. Bryant in 1986

OO A directed acyclic graph (DAG) representing a Boolean
function f: B"»B

= Each non-terminal node is a decision node associated with a
input variable with two branches: O-branch and 1-branch

= Two terminal nodes: O-terminal and 1-terminal
B Example

e D -

17

Binary-Decision Diagram (BDD)

O Cofactor of Boolean function:
B Positive cofactor w.r.t. x;: fi = F(Xqseoos Xiigy 1, Xipqsees Xp)
B Negative cofactor w.r.t. x;: foi=T(Xe Xiigs 0, Xinqseens
Xp)
B Example

F=X"X,' X5" + X' X, X5 + X; X,' Xg + X3 X, X5' + X, Xg
fur = X5 X5 + X5 X5 + X, Xg
fir = X' X5 + X' X3 + X; X3
O Shannon expansion: f = x; f; + X" f;
B A complete expansion of a function can be obtained by

successively applying Shannon expansion on all variables until
either of the constant functions ‘O’ or ‘1’ is reached

18

Otdered BDD (OBDD)

0 Complete Shannon expansion can be visualized as a binary tree
B Solid (dashed) lines corresnond to the nositive (neaative) cofactor

!1!

f=X; X5 Xg + Xg Xo Xz + X Xp Xz + Xq Xy X3+ Xq X5 Xg + Xg Xy Xg

19

Reduced OBDD (ROBDD)

O Reduction rules of ROBDD
B Rule 1: eliminate a node with two identical children
B Rule 2: merge two isomorphic sub-graphs

-] %A

0 Reduction procedure
B Input: An OBDD
B Qutput: An ROBDD

B Traverse the graph from the terminal nodes towards to root
node (i.e., in a bottom-up manner) and apply the above
reduction rules whenever possible

20

ROBDD

0 An OBDD is a directed tree G(V,E)

[0 Each vertex v € V is characterized by an
associated variable ¢(v), a high subtree n(v)
(high(v), the 1-branch) and a low subtree A(V)
(low(v), the O-branch)

J Procedure to reduce an OBDD:

B Merge all identical leaf vertices and appropriately
redirect their incoming edges

M Proceed from bottom to top, process all vertices: if
two vertices u and v are found for which ¢(u) =
o(v), n(u) = n(v), and A(u) = A(v), merge u and v
and redirect incoming edges

M For vertices v for which n(v) = A(v), remove v and
redirect its incoming edges to n(v)

21

ROBDD

CDExample

Bf=xyz + xz ,,QK

Tr‘uth’%ﬁ?ble order: x<y<z @ @

Xyz
000
001
010
011
100
101
110
111

OBDD

A
1 o7 \1

07
el G

RP|IO|RP[O|O|FRP[O|O|=

22

ROBDD

0 Example (cont'd)

23

Canonicity

[0 Canonicity requirements

B A BDD representation is not canonical for a given
Boolean function unless the following constraints are
satisfied:

1.Simple BDD - each variable can appear only once along

each path from the root to a leaf

2.0rdered BDD - Boolean variables are ordered in such a
way that if the node labeled x; has a child labeled Xx,,
then order(x;) < order(x,)

3.Reduced BDD - no two nodes represent the same
function, i.e., redundancies are removed by sharing
iIsomorphic sub-graphs

24

ROBDD Properties

0 ROBDD is a canonical representation for a fixed variable
ordering

0 ROBDD is compact in representing many Boolean functions
used in practice

O Variable ordering greatly affects the size of an ROBDD
B E.g., the parity function of k bits:
k

f =HX2j—1(-BX2]

=t

25

Effects of Variable Ordering

0 BDD size

B Can vary from linear to exponential in the number of the
variables, depending on the ordering

0 Hard-to-build BDD

B Datapath components (e.g., multipliers) cannot be
represented in polynomial space, regardless of the
variable ordering

0 Heuristics of ordering
B (1) Put the variable that influence most on top

B (2) Minimize the distance between strongly related
variables

(e.g., XIx2 + x2x3 + x3x4)
X1l < X2 < X3 < X4 is better than x1 < x4 < x2 < x3

26

BDD Package

0 A BDD package refers to a software program that
supports Boolean manipulation using ROBDDs. It
has the following features:

M It provides convenient APl (application
programming interface)

M It supports the conversion between the
external Boolean function representation and
the internal ROBDD representation

B Multiple Boolean functions are stored in shared
ROBDD

M It can create new functions from existing ones
(e.9.,h =1 Q)

27

BDD Data Structure

O A triplet (¢,m,1) 0 A unique table
uniqguely identifies an (implemented by a
ROBDD vertex hash table) that stores
all triplets already
processed
struct vertex { struct vertex *old_or_new(char *¢, struct vertex *z, *1)
char *¢; {
struct vertex *n, *A; if ("a vertex v = (¢, n, A) exists™)

. return v;
} else {
v < “new vertex pointing at (¢, n, A)”;
return v;
}
}

28

Building ROBDD

struct vertex *robdd_build(struct expr f, int i)]

{ [0 The procedure directly
S:"“ztt"l‘“;m*;% A builds the compact
siru cnar ¢,

ROBDD structure
if equal(f, 7 07)) 0 A simple symbolic
return vp; . .
return vy; assumed for the
e‘f;{ " derivation of the
<—),
n < robdd_build(fs, i + 1); cofactors
it (y = A) variable from the top
return 7;
else
return old_or_new(¢, i, A);
}
} 29
Building ROBDD
0 Example
robdd bui Id(T] - T3 + 13- 13 + 1) - 12, L) 2 obdd_buildiTs + 57 - 13, Y
2 mhdd build{TT - 13+ 12, 2 L rabdd build (73, 3}
I robdd buildi 1, 3) 2 mbdd_buildi~ 07, 43
i) g
2 robdd_buildizs, 3} 2 mhdd_buildi " 17, 43
A mbod buildi 17, 4) 1)
) g = (I3, vg, 1))
- L mhad_build(- 17, 43
i = (13,1, 1) v i1y
v3 = (2.7, vl Ve . 2 mbdd_bmild{ " 17,)
&) B
: V4 - ill

Vz s = (T2,)

gy = (T, v13,15)

30

Recursive BDD Operation

] Construct the ROBDD h = f <op> g from two
existing ROBDDs f and g, where <op> is a binary
Boolean operator (e.g. AND, OR, NAND, NOR)

B A recursive procedure on each variable x
Oh =X-he; +X - h_g
=X - (f <0p> g),=y + X' - (f <0OP> Q)=
=X (fx=1 <Oop= gx=1) + X (fx=0 <Op= gx=0)
= (f <op> 9), = (f, <op> g,) for <op> = AND, OR, NAND,
NOR

31

Recursive BDD Operation

0 Existential quantification @
Let 3x; [f(X1,Y1,Y0)] = 9(Y1,-..¥0)- 0,7 \!
Then g(y,,..., y,) = 1 iff |_0‘| 1
f(0,y,,....,y,)=1or f(1,y,,....y,)=1
reduction

f= (x1+x2) - x3 I, fF=1F 0+ fyog

ROBDD Manipulation

[0 Separate algorithms could be designed for each operator on
ROBDDs, such as AND, NOR, etc. However, the universal if-then-
else operator ‘ite’ is sufficient.

z = ite(f,g,h), z equals g when f is true and equals h otherwise:
B Example:

z=dte(f,g,h)y =f g+ [h
z=f-g=lite(f,g,'0")
S+ g=itef,"l', g

O The ite operator is well-suited for a recursive algorithm based on
ROBDDs (¢(v) = x):

v = ite(F,G,H) = (x,ite(F,, Gy, H,), ite(Fy Gy, Hy))

33

ITE Operator

O ITE operator ite(f,g,h) = fg + fh can implement any two variable logic function.
There are 16 such functions corresponding to all subsets of vertices of B2:

0000 0 0 0

0001 AND(f, g) fg ite(f, g, 0)
0010 f>g fg ite(f, ', 0)
0011 f f f

0100 f<g f'g ite(f, 0, g)
0101 g g g

0110 XOR(f, g) feg ite(f, 9', 9)
0111 OR(f, 9) f+g ite(f, 1, 9)
1000 NOR(f, g) (f+q) ite(f, 0, g')
1001 XNOR(f, g) fog ite(f, 9, 9")
1010 NOT(g) g’ ite(g, 0, 1)
1011 f>g f+g ite(f, 1, 9")
1100 NOT(f) f ite(f, 0, 1)
1101 f<g f+g ite(f, 9, 1)
1110 NAND(f, g) (fg) ite(f, g', 1)
1111 1 1 1

34

Recursive Formulation of ITE

O Ite(f,g,h)

=fg+fnh

=v(@fg+fh),+v (fg+fh),

\ (fv gv + f,V hv) + V' (fv’ gv’ +f’v’ hv’)
— ite(v, ite(fv’gv’hv)’ ite(fv"gv"hv’))

where v is the top-most variable of BDDs f,
g, h

35
ITE Operator
o |
O Example . P H \\ |
a / a, b, 0 \ a, 0
\ | \ S S
y 0 SEVAYC 1/ bl L / o
{ b C© o 1 O N R b
1/\\0 1/\\0 1/\9 Ny 1/‘\0 5
i 0 i 0 ooon N oo
F,G,H,1,J,B,C,D

ite (F, G, H)

ite (a, ite (F, , G,, H,),ite (F;, G 5, H)))

ite (a, ite (1, C, H), ite(B, 0, H))

ite (a, C, ite (b, ite (B,, 0,,H,),ite (B, 0,,Hy))
ite (a, C, ite(b, ite (1, O, 1), ite (O, 0, D)))

ite (a, C, ite(b, 0, D))

are pointers

=ite (a, C, J)
Check: F=a+b

G =ac
H=b+d

ite(F, G, H) = (a + b)(ac) + a'b’'(b +d) = ac + a’b'd

36

ITE Operator

struct vertex *apply-ite(struct vertex *F, *G, *H,int i)

{

char x;
struct vertex *n, *A;

if (F=1wvy)
return G;
else if (F = vp)
return H;
elseif (G = v| && H = vp)
return F;
else {
x <« a(i);
1 < apply_ite(Fy, Gy, Hy, I +1);
A < applydte(Fr, G He i+ 1);
if(p =A)
return 7;
else
return old_or_new(x, 5, A);

}
}

O ITE algorithm processes

the variables in the order
used in the BDD package
m (i) gives the ith variable
from the top; © “1(X)
gives the index position
of variable x from the
top

Cofactor: Suppose F is the
root vertex of the function
for which F, should be
computed. Then
Fr=m(F) ifx(o(F)) =i
® F, can be calculated
similarly

The time complexity of the
algorithm is O(|F|-|G]|-|H]D)

37

ITE Operator

0 Example

G = ite(G, 0, 1)

apply-ite(vg, vg, v1, 1)
L apply_ite(v7, vg, v1,2)
L apply_ite(vp, vo, v1, 3)
vl
A ;
— apply-ite(v1, g, ¥o, 3)
Y0
vg = (x2, 1, ¥g)

% apply-ite(vy, %9, v1, 2)
L |
vig = (x1, 99, ¥1)

38

ITE Operator

0 Example (cont'd) apply_ite(vg, ¥10, g, 1)
K apply-ite(v3, vg, v7, 2)
e apply-ite(vy, ¥1, vg, 3)
¥l
A .
— apply-ite(vp, v, v1, 3)
e apply-ite(vy, vg, ¥1,4)
4]
A apply-ite(vg, vg, v1, 4)
b1
vq = (x3,vg, 1)
v11 = (X2, 1, v4)

% apply-ite(vs, v1., 19, 2)
U5

H=F&G _
= jte(F, G, G) v1p = (x1, 911, ¥5)

39

BDD Memory Management

1 Ordering
B Finding the best ordering minimizing ROBDD sizes is
intractable
B Optimal ordering may change as ROBDDs are being
manipulated
O0An ROBDD package may reorder the variables at different
moments
01t can move some variable closer to the top or bottom by
remembering the best position, and repeat the procedure
for other variables

0 Garbage collection
B Another important technique, in addition to variable
ordering, for memory management

40

