

Introduction to Electronic Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

1

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann

2

Formal Verification

- ❑ Course contents
 - Introduction
 - Boolean reasoning engines
 - Equivalence checking
 - Property checking
- ❑ Readings
 - Chapter 9

3

Outline

- ❑ Introduction
- ❑ Boolean reasoning engines
- ❑ Equivalence checking
- ❑ Property checking

4

(1995/1) Intel announces a pre-tax charge of 475 million dollars against earnings, ostensibly the total cost associated with replacement of the flawed processors.

(1996/6) The European Ariane5 rocket explodes 40 s into its maiden flight due to a software bug.

(2003/8) A programming error has been identified as the cause of the Northeast power blackout, which affected an estimated 10 million people in Canada and 45 million people in the U.S.

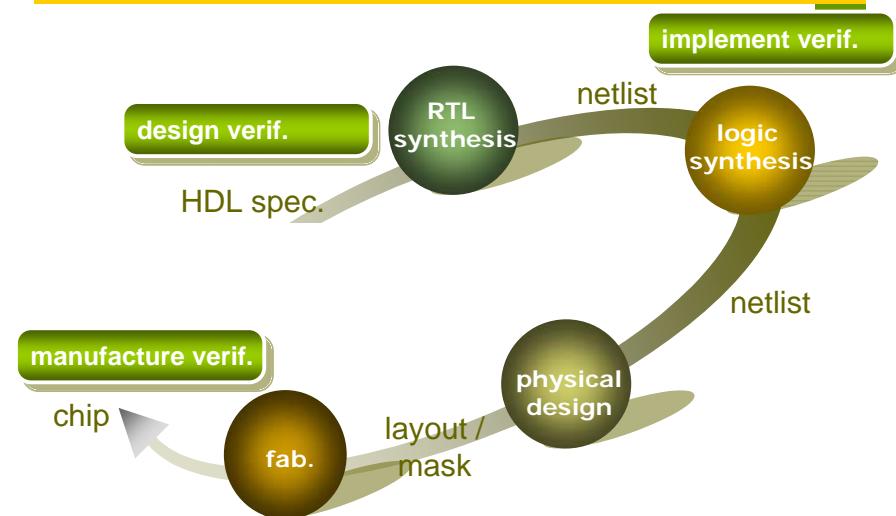
(2008/9) A major computer failure onboard the Hubble Space Telescope is preventing data from being sent to Earth, forcing a scheduled shuttle mission to do repairs on the observatory to be delayed.

Design vs. Verification

- Verification may take up to 70% of total development time of modern systems !
 - This ratio is ever increasing
 - Some industrial sources show 1:3 head-count ratio between design and verification engineers
- Verification plays a key role to reduce design time and increase productivity

9

IC Design Flow and Verification



10

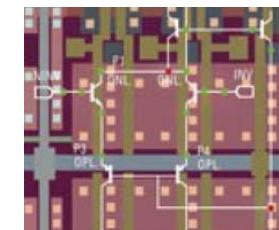
Scope of Verification

- Design flow
 - A series of transformations from abstract **specification** all the way to **layout**
- Verification enters design flow in almost all abstraction levels
 - **Design verification**
 - Functional property verification (main focus)
 - **Implementation verification**
 - Functional equivalence verification (main focus)
 - Physical verification
 - Timing verification
 - Power analysis
 - Signal integrity check
 - Electro-migration, IR-drop, ground bounce, cross-talk, etc.
 - **Manufacture verification**
 - Testing

11

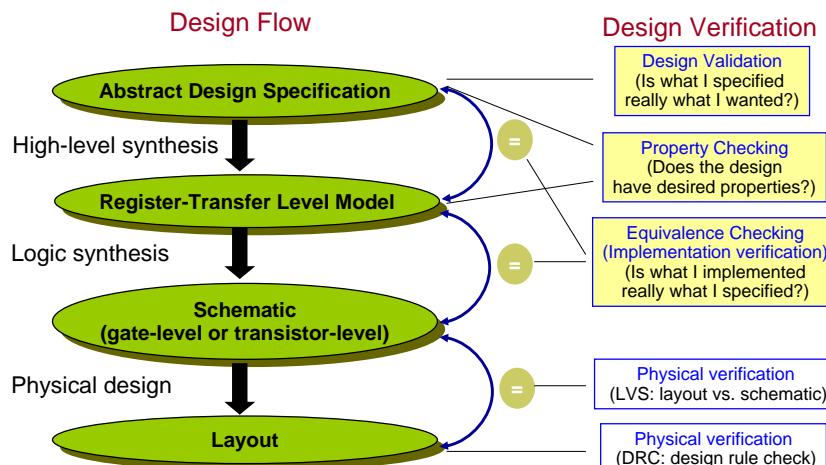
Verification

- Design/Implementation Verification
 - **Functional Verification**
 - Property checking in system level
 - PSPACE-complete
 - Equivalence checking in RTL and gate level
 - PSPACE-complete
- **Physical Verification**
 - DRC (design rule check) and LVS (layout vs. schematic check) in layout level
 - Tractable
- **Manufacture Verification**
 - Testing
 - NP-complete
- “Verification” often refers to **functional verification**



12

Functional Verification



13

Functional Verification Approaches

- **Simulation (software)**
 - **Incomplete** (i.e., may fail to catch bugs)
 - **Time-consuming**, especially at lower abstraction levels such as gate- or transistor-level
 - Still the most popular way for design validation
- **Emulation (hardware)**
 - FPGA-based emulation systems, emulation system based on massively parallel machines (e.g., with 8 boards, 128 processors each), etc.
 - **2 to 3 orders of magnitude faster** than software simulation
 - **Costly** and may not be easy-to-use
- **Formal verification**
 - a relatively new paradigm for **property checking** and **equivalence checking**
 - requires **no input stimuli**
 - perform **exhaustive proof** through rigorous **logical reasoning**

14

Informal vs. Formal Verification

- **Informal verification**
 - Functional simulation aiming at locating bugs
 - **Incomplete**
 - Show existence of bugs, but not absence of bugs
- **Formal verification**
 - Mathematical proof of design correctness
 - **Complete**
 - Show both existence and absence of bugs

We will be focusing on **formal verification**

15

Outline

- **Introduction**
- **Boolean reasoning engines**
 - BDD
 - SAT
- **Equivalence checking**
- **Property checking**

16

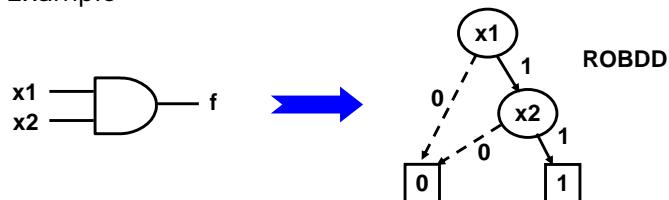
Binary Decision Diagram (BDD)

Basic features

ROBDD

- Proposed by R.E. Bryant in 1986
- A directed acyclic graph (DAG) representing a Boolean function $f: B^n \rightarrow B$
 - Each **non-terminal** node is a decision node associated with a input variable with two branches: **0-branch** and **1-branch**
 - Two terminal nodes: **0-terminal** and **1-terminal**

Example



17

Binary-Decision Diagram (BDD)

Cofactor of Boolean function:

- Positive cofactor w.r.t. x_i :
- Negative cofactor w.r.t. x_i :

$$f_{x_i} = f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$

$$f_{\neg x_i} = f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$$

Example

$$f = x_1' x_2' x_3 + x_1' x_2' x_3 + x_1 x_2' x_3 + x_1 x_2 x_3' + x_2 x_3$$

$$f_{x_1} = x_2' x_3 + x_2 x_3' + x_2 x_3$$

$$f_{x_1'} = x_2' x_3' + x_2' x_3 + x_2 x_3$$

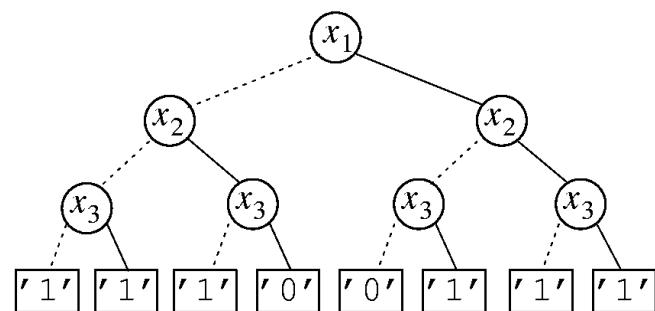
Shannon expansion: $f = x_i f_{x_i} + x_i' f_{x_i'}$

- A complete expansion of a function can be obtained by successively applying Shannon expansion on all variables until either of the constant functions '0' or '1' is reached

18

Ordered BDD (OBDD)

- Complete Shannon expansion can be visualized as a binary tree
 - Solid (dashed) lines correspond to the positive (negative) cofactor



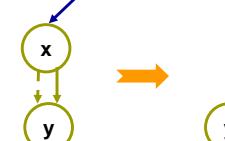
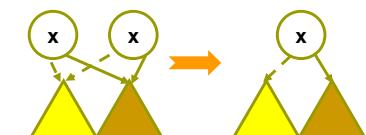
$$f = \bar{x}_1 \bar{x}_2 \bar{x}_3 + \bar{x}_1 x_2 \bar{x}_3 + \bar{x}_1 \bar{x}_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 x_3$$

19

Reduced OBDD (ROBDD)

Reduction rules of ROBDD

- Rule 1: eliminate a node with two identical children
- Rule 2: merge two isomorphic sub-graphs



Reduction procedure

- Input: An OBDD
- Output: An ROBDD
- Traverse the graph from the terminal nodes towards to root node (i.e., in a **bottom-up manner**) and apply the above reduction rules whenever possible

20

ROBDD

- An OBDD is a directed tree $G(V, E)$
- Each vertex $v \in V$ is characterized by an associated variable $\phi(v)$, a *high* subtree $\eta(v)$ (high(v), the 1-branch) and a *low* subtree $\lambda(v)$ (low(v), the 0-branch)
- Procedure to reduce an OBDD:
 - Merge all identical leaf vertices and appropriately redirect their incoming edges
 - Proceed **from bottom to top**, process all vertices: if two vertices u and v are found for which $\phi(u) = \phi(v)$, $\eta(u) = \eta(v)$, and $\lambda(u) = \lambda(v)$, merge u and v and redirect incoming edges
 - For vertices v for which $\eta(v) = \lambda(v)$, remove v and redirect its incoming edges to $\eta(v)$

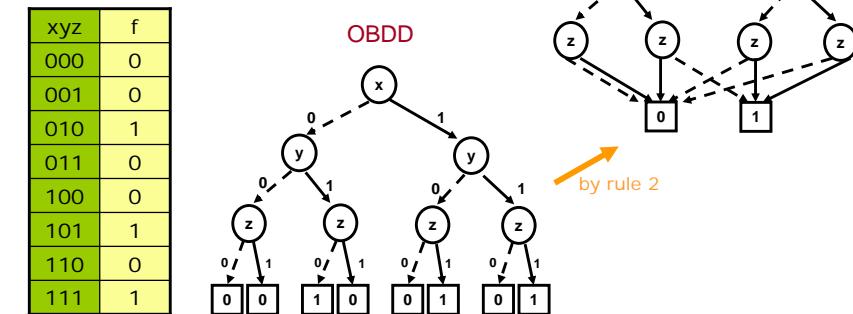
21

ROBDD

Example

- $f = x'yz' + xz$
- variable order: $x < y < z$

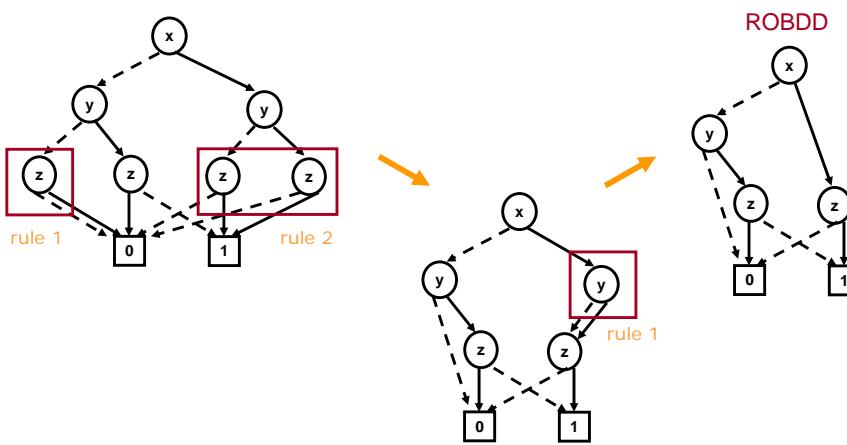
xyz	f
000	0
001	0
010	1
011	0
100	0
101	1
110	0
111	1



22

ROBDD

Example (cont'd)



23

Canonicity

Canonicity requirements

- A BDD representation is not canonical for a given Boolean function unless the following constraints are satisfied:
 1. **Simple BDD** – each variable can appear only once along each path from the root to a leaf
 2. **Ordered BDD** – Boolean variables are ordered in such a way that if the node labeled x_i has a child labeled x_k , then $\text{order}(x_i) < \text{order}(x_k)$
 3. **Reduced BDD** – no two nodes represent the same function, i.e., redundancies are removed by **sharing isomorphic sub-graphs**

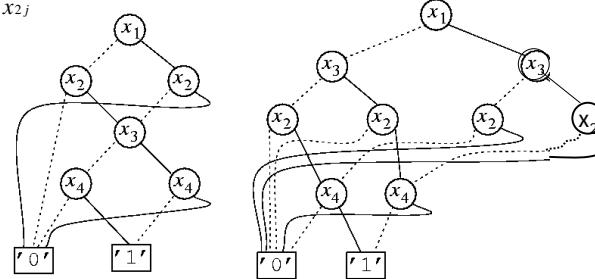
24

ROBDD Properties

- ROBDD is a canonical representation for a **fixed variable ordering**
- ROBDD is compact in representing many Boolean functions used in practice
- **Variable ordering greatly affects the size of an ROBDD**

- E.g., the parity function of k bits:

$$f = \prod_{j=1}^k x_{2j-1} \oplus x_{2j}$$



25

Effects of Variable Ordering

- BDD size
 - Can vary from **linear** to **exponential** in the number of the variables, depending on the ordering
- Hard-to-build BDD
 - Datapath components (e.g., **multipliers**) cannot be represented in polynomial space, regardless of the variable ordering
- Heuristics of ordering
 - (1) Put the **variable that influence most** on top
 - (2) Minimize the distance between **strongly related variables**

(e.g., $x_1x_2 + x_2x_3 + x_3x_4$)
 $x_1 < x_2 < x_3 < x_4$ is better than $x_1 < x_4 < x_2 < x_3$

26

BDD Package

- A BDD package refers to a software program that supports Boolean manipulation using ROBDDs. It has the following features:
 - It provides convenient API (application programming interface)
 - It supports the conversion between the external Boolean function representation and the internal ROBDD representation
 - Multiple Boolean functions are stored in shared ROBDD
 - It can create new functions from existing ones (e.g., $h = f \bullet g$)

27

BDD Data Structure

- A triplet (ϕ, η, λ) uniquely identifies an ROBDD vertex
- A **unique table** (implemented by a hash table) that stores all triplets already processed

```
struct vertex {
    char *phi;
    struct vertex *eta, *lambda;
    ...
}

struct vertex *old_or_new(char *phi, struct vertex *eta, *lambda)
{
    if ("a vertex v = (\phi, \eta, \lambda) exists")
        return v;
    else {
        v ← "new vertex pointing at (\phi, \eta, \lambda)";
        return v;
    }
}
```

28

Building ROBDD

```
struct vertex *robdd_build(struct expr f, int i)
{
    struct vertex *η, *λ;
    struct char *φ;

    if (equal(f, '0'))
        return v0;
    else if (equal(f, '1'))
        return v1;
    else {
        φ ← π(i);
        η ← robdd_build(fφ, i + 1);
        λ ← robdd_build(f̄φ, i + 1);
        if (η = λ)
            return η;
        else
            return old_or_new(φ, η, λ);
    }
}
```

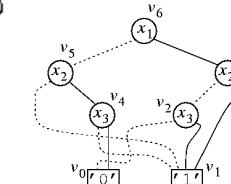
29

- The procedure directly builds the compact ROBDD structure
- A simple symbolic computation system is assumed for the derivation of the cofactors
- $\pi(i)$ gives the i^{th} variable from the top

Building ROBDD

Example

```
robdd_build(̄x1 · ̄x3 + ̄x2 · x3 + x1 · x2, 1)
  ↳ robdd_build(̄x2 · x3 + x1 · x2, 2)
    ↳ robdd_build('1', 3)
      ↳ v1
    ↳ robdd_build(x3, 3)
      ↳ robdd_build('1', 4)
        ↳ v1
    ↳ robdd_build('0', 4)
      ↳ v0
      v2 = (x3, v1, v0)
    ↳ v3 = (x2, v1, v2)
```



```
↳ robdd_build(̄x3 + x3, 3)
  ↳ robdd_build('1', 4)
    ↳ v1
  ↳ robdd_build('1', 4)
    ↳ v1
    v4 = (x3, v0, v1)
  ↳ robdd_build(̄x2 + x2, 3)
    ↳ robdd_build('1', 4)
      ↳ v1
    ↳ robdd_build('1', 4)
      ↳ v1
      v5 = (x2, v3, v1)
    ↳ v6 = (x1, v3, v5)
```

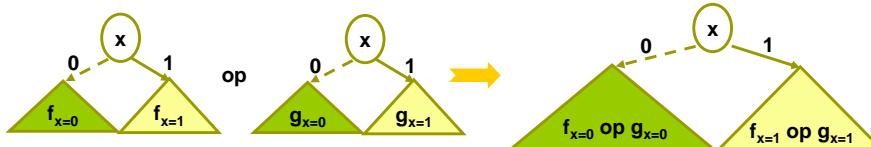
30

Recursive BDD Operation

- Construct the ROBDD $h = f \text{ <op>} g$ from two existing ROBDDs f and g , where <op> is a binary Boolean operator (e.g. AND, OR, NAND, NOR)

A recursive procedure on each variable x

- $h = x \cdot h_{x=1} + x' \cdot h_{x=0}$
- $= x \cdot (f \text{ <op>} g)_{x=1} + x' \cdot (f \text{ <op>} g)_{x=0}$
- $= x \cdot (f_{x=1} \text{ <op>} g_{x=1}) + x' (f_{x=0} \text{ <op>} g_{x=0})$
- $(f \text{ <op>} g)_x = (f_x \text{ <op>} g_x)$ for $\text{<op>} = \text{AND, OR, NAND, NOR}$

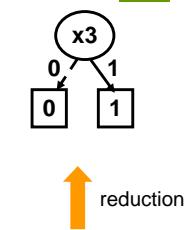


31

Recursive BDD Operation

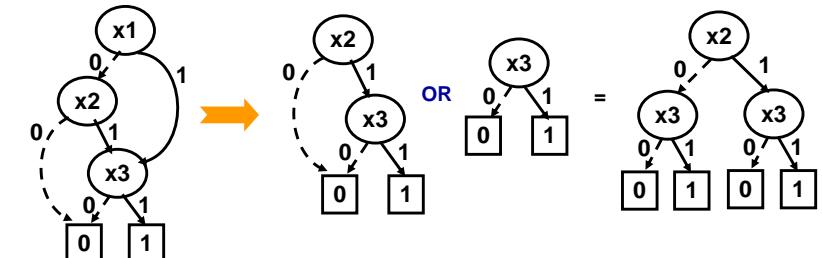
Existential quantification

Let $\exists x_1 [f(x_1, y_1, \dots, y_n)] = g(y_1, \dots, y_n)$.
 Then $g(y_1, \dots, y_n) = 1$ iff
 $f(0, y_1, \dots, y_n) = 1$ or $f(1, y_1, \dots, y_n) = 1$



$$f = (x_1 + x_2) \cdot x_3$$

$$\exists x_1 f = f_{x_1=0} + f_{x_1=1}$$



32

ROBDD Manipulation

- Separate algorithms could be designed for each operator on ROBDDs, such as AND, NOR, etc. However, the universal **if-then-else** operator 'ite' is sufficient.

$z = \text{ite}(f, g, h)$, z equals g when f is true and equals h otherwise:

- Example:

$$z = \text{ite}(f, g, h) = f \cdot g + \bar{f} \cdot h$$

$$z = f \cdot g = \text{ite}(f, g, '0')$$

$$z = f + g = \text{ite}(f, '1', g)$$

- The *ite* operator is well-suited for a recursive algorithm based on ROBDDs ($\phi(v) = x$):

$$v = \text{ite}(F, G, H) = (x, \text{ite}(F_x, G_x, H_x), \text{ite}(F_{\bar{x}}, G_{\bar{x}}, H_{\bar{x}}))$$

33

ITE Operator

- ITE operator $\text{ite}(f, g, h) = fg + f'h$ can implement any two variable logic function. There are 16 such functions corresponding to all subsets of vertices of B^2 :

Table	Subset	Expression	Equivalent Form
0000	0	0	0
0001	AND(f, g)	fg	$\text{ite}(f, g, 0)$
0010	$f > g$	$f g'$	$\text{ite}(f, g', 0)$
0011	f	f	f
0100	$f < g$	$f'g$	$\text{ite}(f, 0, g)$
0101	g	g	g
0110	XOR(f, g)	$f \oplus g$	$\text{ite}(f, g', g)$
0111	OR(f, g)	$f + g$	$\text{ite}(f, 0, 1)$
1000	NOR(f, g)	$(f + g)'$	$\text{ite}(f, 0, g')$
1001	XNOR(f, g)	$f \oplus g'$	$\text{ite}(f, g, g')$
1010	NOT(g)	g'	$\text{ite}(g, 0, 1)$
1011	$f \geq g$	$f + g'$	$\text{ite}(f, 1, g')$
1100	NOT(f)	f'	$\text{ite}(f, 0, 1)$
1101	$f \leq g$	$f' + g$	$\text{ite}(f, g, 1)$
1110	NAND(f, g)	$(f g)'$	$\text{ite}(f, g', 1)$
1111	1	1	1

34

Recursive Formulation of ITE

- $\text{Ite}(f, g, h)$

$$= f g + f' h$$

$$= v (f g + f' h)_v + v' (f g + f' h)_{v'}$$

$$= v (f_v g_v + f'_v h_v) + v' (f_{v'} g_{v'} + f'_{v'} h_{v'})$$

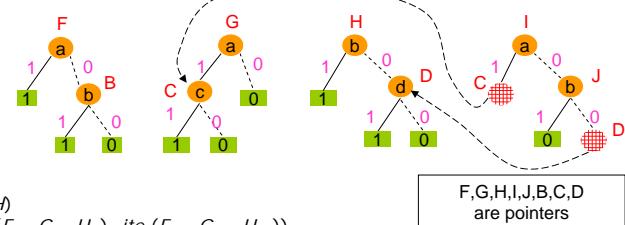
$$= \text{ite}(v, \text{ite}(f_v, g_v, h_v), \text{ite}(f_{v'}, g_{v'}, h_{v'}))$$

where v is the top-most variable of BDDs f , g , h

35

ITE Operator

- Example



$$\begin{aligned} I &= \text{ite}(F, G, H) \\ &= \text{ite}(a, \text{ite}(F_a, G_a, H_a), \text{ite}(F_{\bar{a}}, G_{\bar{a}}, H_{\bar{a}})) \\ &= \text{ite}(a, \text{ite}(1, C, H), \text{ite}(0, H)) \\ &= \text{ite}(a, C, \text{ite}(b, \text{ite}(B_b, 0_b, H_b), \text{ite}(B_{\bar{b}}, 0_{\bar{b}}, H_{\bar{b}}))) \\ &= \text{ite}(a, C, \text{ite}(b, \text{ite}(1, 0, 1), \text{ite}(0, 0, D))) \\ &= \text{ite}(a, C, \text{ite}(b, 0, D)) \\ &= \text{ite}(a, C, J) \end{aligned}$$

Check: $F = a + b$

$$G = ac$$

$$H = b + d$$

$$\text{ite}(F, G, H) = (a + b)(ac) + a'b'(b + d) = ac + a'b'd$$

36

ITE Operator

```
struct vertex *apply_ite(struct vertex *F, *G, *H, int i)
{
    char x;
    struct vertex *η, *λ;

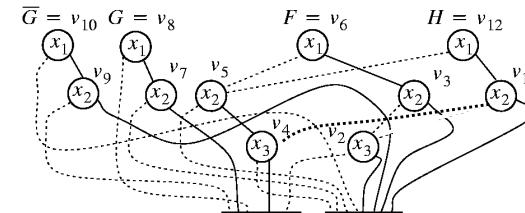
    if (F == v1)
        return G;
    else if (F == v0)
        return H;
    else if (G == v1 && H == v0)
        return F;
    else {
        x ← π(i);
        η ← apply_ite(Fx, Gx, Hx, i + 1);
        λ ← apply_ite(Fx̄, Gx̄, Hx̄, i + 1);
        if (η = λ)
            return η;
        else
            return old_or_new(x, η, λ);
    }
}
```

- ITE algorithm processes the variables in the order used in the BDD package
 - $\pi(i)$ gives the i^{th} variable from the top; $\pi^{-1}(x)$ gives the index position of variable x from the top
- Cofactor: Suppose F is the root vertex of the function for which F_x should be computed. Then
 - $F_x = \eta(F)$ if $\pi^{-1}(\phi(F)) = i$
 - $F_{x'}$ can be calculated similarly
- The time complexity of the algorithm is $O(|F| \cdot |G| \cdot |H|)$

37

ITE Operator

Example



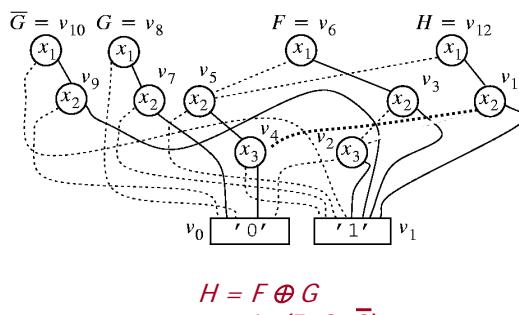
$$\bar{G} = \text{ite}(G, 0, 1)$$

$\text{apply_ite}(v_8, v_0, v_1, 1)$
 $\xrightarrow{\eta} \text{apply_ite}(v_7, v_0, v_1, 2)$
 $\xrightarrow{\eta} \text{apply_ite}(v_6, v_0, v_1, 3)$
 $\xrightarrow{v_1} \text{apply_ite}(v_1, v_0, v_0, 3)$
 $\xrightarrow{v_0} v_9 = (x_2, v_1, v_0)$
 $\xrightarrow{\lambda} \text{apply_ite}(v_0, v_0, v_1, 2)$
 $\xrightarrow{v_1} v_10 = (x_1, v_9, v_1)$

38

ITE Operator

Example (cont'd)



$$\begin{aligned}
 H = F \oplus G \\
 = \text{ite}(F, G, \bar{G})
 \end{aligned}$$

$\text{apply_ite}(v_6, v_{10}, v_8, 1)$
 $\xrightarrow{\eta} \text{apply_ite}(v_3, v_9, v_7, 2)$
 $\xrightarrow{\eta} \text{apply_ite}(v_1, v_1, v_0, 3)$
 $\xrightarrow{v_1} v_1$
 $\xrightarrow{\lambda} \text{apply_ite}(v_2, v_0, v_1, 3)$
 $\xrightarrow{\eta} \text{apply_ite}(v_1, v_0, v_1, 4)$
 $\xrightarrow{v_0} v_0$
 $\xrightarrow{\lambda} \text{apply_ite}(v_0, v_0, v_1, 4)$
 $\xrightarrow{v_1} v_1$
 $v_4 = (x_3, v_0, v_1)$
 $v_{11} = (x_2, v_1, v_4)$
 $\xrightarrow{\lambda} \text{apply_ite}(v_5, v_1, v_0, 2)$
 $\xrightarrow{v_5} v_5$
 $v_{12} = (x_1, v_{11}, v_5)$

39

BDD Memory Management

Ordering

- Finding the best ordering minimizing ROBDD sizes is intractable
- Optimal ordering may change as ROBDDs are being manipulated
 - An ROBDD package may **reorder** the variables at different moments
 - It can move some variable closer to the top or bottom by remembering the best position, and repeat the procedure for other variables

Garbage collection

- Another important technique, in addition to variable ordering, for memory management

40