Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Spring 2011

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehimann

Formal Verification

C0Course contents
B Introduction
M Boolean reasoning engines
B Equivalence checking
M Property checking

COReadings
B Chapter 9

Outline

O Introduction
OBoolean reasoning engines
OEquivalence checking

OProperty checking

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

\I\!I
I
!i
;

I ‘
\
|

- (2008/9)-A major computer i e_or:boarmﬂgbhlé.{s-pace Telescope is

" preventing-data from:bei to Earth, g a scheduled shuttle mission to
do repairsion the olﬂel_r_'/‘z_atow_ 0 be del-gyed.) » "

- o

Design vs. Verification

O Verification may take up to 70% of total
development time of modern systems !
B This ratio is ever increasing

B Some industrial sources show 1:3 head-count
ratio between design and verification engineers

OVerification plays a key role to reduce
design time and increase productivity

IC Design Flow and Verification

implement verif.

netlist

HDL spec:

netlist

manufacture verif.

chip layouts

ask

10

Scope of Verification

O Design flow

B A series of transformations from abstract specification all the
way to layout

O Verification enters design flow in almost all abstraction
levels
B Design verification
O Functional property verification (main focus)
B Implementation verification
O Functional equivalence verification (main focus)
O Physical verification
O Timing verification
O Power analysis
O Signal integrity check
= Electro-migration, IR-drop, ground bounce, cross-talk, etc.
B Manufacture verification
O Testing

11

Verification

O Design/Implementation Verification
Functional Verification
B Property checking in system level
O PSPACE-complete
B Equivalence checking in RTL and gate level
O PSPACE-complete
Physical Verification

B DRC (design rule check) and LVS (layout vs. o | LN 'f
schematic check) in layout level] |

O Tractable o S
o=

; ' -
s WLy = ;
SE o
O Manufacture Verification Ll | -
B Testing
O NP-complete

" " " n @
£ g

O “Verification” often refers to functional
verification

12

Functional Verification

Design Flow

Abstract Design Specification

High-level synthesis l

Register-Transfer Level Model

Logic synthesis l

Schematic
(gate-level or transistor-level)

Physical design

Design Verification

Design Validation
(Is what | specified
really what | wanted?)

Property Checking
(Does the design
have desired properties?)

Equivalence Checking
(Implementation verification)
(Is what | implemented
really what | specified?)

Physical verification
(LVS: layout vs. schematic)

Physical verification
(DRC: design rule check)

13

Functional Verification Approaches

O Simulation (software)
B Incomplete (i.e., may fail to catch bugs)

B Time-consuming, especially at lower abstraction levels such as
gate- or transistor-level

B Still the most popular way for design validation
O Emulation (hardware)

B FPGA-based emulation systems, emulation system based on
massively parallel machines (e.g., with 8 boards, 128
processors each), etc.

m 2 to 3 orders of magnitude faster than software simulation
B Costly and may not be easy-to-use
O Formal verification

B a relatively new paradigm for property checking and
equivalence checking

B requires no input stimuli
B perform exhaustive proof through rigorous logical reasoning

14

Informal vs. Formal Verification

O Informal verification O Formal verification

B Functional simulation
aiming at locating bugs
B Incomplete
O Show existence of

bugs, but not absence
of bugs

B Mathematical proof of
design correctness
B Complete

O Show both existence
and absence of bugs

We will be focusing on formal verification

15

Outline

OIntroduction

C0Boolean reasoning engines
®BDD
B SAT

OEquivalence checking

OProperty checking

16

Binary Decision Diagram (BDD)

[0 Basic features
u ROBDD
OProposed by R.E. Bryant in 1986

OA directed acyclic graph (DAG) representing a Boolean
function f: Bn—»B

= Each non-terminal node is a decision node associated with a
input variable with two branches: O-branch and 1-branch

= Two terminal nodes: O-terminal and 1-terminal
B Example

e ! -

17

Binary-Decision Diagram (BDD)

O Cofactor of Boolean function:

B Positive cofactor w.r.t. x;: T = F(Xpaooo Xigs Ly Xigqaeeon Xp)

B Negative cofactor w.r.t. X;: T = F(Xpheoos Xigs Oy Xigqseees
Xp)

B Example

f= X, X, X'+ X;' Xy Xg + Xg Xy’ X + Xg X5 Xg' + Xy Xg
fur = X' X3 + X5 X3 + X, X
fer = X' X3 + X' X3 + X5 X5

O Shannon expansion: f = x; f; + X’ f;
B A complete expansion of a function can be obtained by
successively applying Shannon expansion on all variables until
either of the constant functions ‘0O’ or ‘1’ is reached

18

Ordered BDD (OBDD)

O Complete Shannon expansion can be visualized as a binary tree
B Solid (dashed) lines corresnond to the nositive (nenative) cofactor

’

|I lrl |r l'| |r lr| |.' Orl |.' Orl |.' lrl |r lrl |r lrl

f=X; Xy Xg + Xq Xy X3+ Xg Xy Xz + Xq Xp Xg + Xg Xy Xg + Xq X Xg

19

Reduced OBDD (ROBDD)

O Reduction rules of ROBDD
B Rule 1: eliminate a node with two identical children
B Rule 2: merge two isomorphic sub-graphs

-] A

O Reduction procedure
B Input: An OBDD
B Output: An ROBDD

B Traverse the graph from the terminal nodes towards to root
node (i.e., in a bottom-up manner) and apply the above
reduction rules whenever possible

20

ROBDD

0 An OBDD is a directed tree G(V,E)

O Each vertex v € V is characterized by an
associated variable ¢(v), a high subtree n(v)
(high(v), the 1-branch) and a low subtree A(Vv)
(low(v), the O-branch)

ROBDD

O Example
Bf=xXyz + xz
;B varjable order: x <y <z

O Procedure to reduce an OBDD: xyz | f OBDD
B Merge all identical leaf vertices and appropriately 000 | O
redirect their incoming edges 001 | O
B Proceed from bottom to top, process all vertices: if 010 | 1 8-- S
two vertices u and v are found for which ¢(u) = e o @
¢(v), n(u) = n(v), and A(u) = A(v), merge u and v 0N 0 / AN
and redirect incoming edges . S 4
[Fo(; vertices v for Whicg nv) = 72(\)/), remove v and . 1
redirect its incoming edges to n(v 110 | ©O or \1 ! !
| 1 | [rL| r‘|
21 22
ROBDD Canonicity

O Example (cont'd)

ROBDD

23

0 Canonicity requirements

B A BDD representation is not canonical for a given
Boolean function unless the following constraints are
satisfied:

1.Simple BDD - each variable can appear only once along
each path from the root to a leaf

2.0rdered BDD - Boolean variables are ordered in such a
way that if the node labeled x; has a child labeled x,,
then order(x;) < order(x,)

3.Reduced BDD - no two nodes represent the same
function, i.e., redundancies are removed by sharing
isomorphic sub-graphs

24

ROBDD Properties

O ROBDD is a canonical representation for a fixed variable
ordering

OO0 ROBDD is compact in representing many Boolean functions
used in practice

O Variable ordering greatly affects the size of an ROBDD
B E.g., the parity function of k bits:
k
f =Hij71®ij

j=1

25

Effects of Variable Ordering

O BDD size

B Can vary from linear to exponential in the number of the
variables, depending on the ordering

O Hard-to-build BDD

B Datapath components (e.g., multipliers) cannot be
represented in polynomial space, regardless of the
variable ordering

0 Heuristics of ordering
B (1) Put the variable that influence most on top

B (2) Minimize the distance between strongly related
variables

(e.g., XIx2 + x2x3 + x3x4)
X1 < X2 < X3 < x4 is better than x1 < x4 < x2 < x3

26

BDD Package

0 A BDD package refers to a software program that
supports Boolean manipulation using ROBDDs. It
has the following features:

M It provides convenient APl (application
programming interface)

M It supports the conversion between the
external Boolean function representation and
the internal ROBDD representation

B Multiple Boolean functions are stored in shared
ROBDD

M It can create new functions from existing ones
(e.g.,h=f «Q)

27

BDD Data Structure

O A triplet (¢,n,L) O A unique table
uniquely identifies an (implemented by a
ROBDD vertex hash table) that stores
all triplets already
processed
struct vertex { struct vertex *old_or_new(char *¢, struct vertex *», *1)
char *¢; {
struct vertex *z, *X; if (“a vertex v = (¢, n, A) exists”)

e return v;
1 else {
v < “new vertex pointing at (¢, 1, 1)”;
return v;
)
}

28

Building ROBDD

Building ROBDD

struct vertex *robdd_build(struct expr f, int i) .
{ 0 The procedure directly O Example
struct vertex ™y, A, builds the compact robdel bui 9] - 77+ 77 13 + 1, - T2, 1) 2 b bulld(Fs + F7 13, 2
struct char 7¢: ROBDD structure L mhodbuild(Fy - x5+ x3, 2 S ot build 5, 3
m e a e
if(equal(f, "G Y) D A Simple SymbOliC — robdd build(~1-, 3) mbdd_buildi -0, 4
return vp; . . 3 o 3 B
else if (equal(f, 7 17) computation system Is = robddbuildizs, 2] = mbdd_buildi - 17, 4
return vy; assumed for the L wbad_buildi* 17, 4) y B e e
else{ 1 H) = [T3.10. 1]
b < 7 derivation of the X o bd_buildt 07 43 A r:\l:-dd_l:ruildiﬁ+ I3
7 < robdd build(f. i + 1); cofactors g X obdd buildi” 17, 4
. 17 = (13,1, 1g) 1
. < robdd ulldCf -+ Ly 0 x(i) gives the it o
ity = 1) variable from the top — mhddtuildi” 17, 4
return n;)
else ?'li ,
. g = [T32,1, ¥
| return old_or_new(¢, n, A); vl = Ly, v)
} 29 30
Recursive BDD Operation Recursive BDD Operation
O Construct the ROBDD h = f <op> g from two O Existential quantification @
existing ROBDDs f and g, where <op> is a binary Let 3x; [F(X1,Y1 s Y)] = (Y1 -2 Yn)- 0,7 \1
Boolean operator (e.g. AND, OR, NAND, NOR) Then g(y;,....y,) = 1 iff m
B A recursive procedure on each variable x f(0,y,,....y,)=1or f(1,y, ,....y,)=1
Oh =X he; +X - h_g
reduction

=X (f <op> g)y=; + X' - (f <Op> g),0

=X+ (fu=g <OP> gy=y) + X' (fyzo <OP> Gyx—0)
= (f <op> g), = (f,<op=> g,) for <op> = AND, OR, NAND,
NOR

WOW

31

f= (x1+x2) - x3 I, F=1f 0+ frumr

ROBDD Manipulation ITE Operator

I I
O Separate algorithms could be designed for each operator on O ITE operator ite(f,g,h) = fg + f'h can implement any two variable logic function.
ROBDDs, such as AND, NOR, etc. However, the universal if-then- There are 16 such functions corresponding to all subsets of vertices of B2:
else operator ‘ite’ is sufficient.
z = ite(f,g,h), z equals g when f is true and equals h otherwise: 0000 0 0 0
B Example: _ 0001 AND(f, g) fg ite(f, g, 0)
z =ite(f,g,hy =f-g+f-h 0010 f>g fg ite(f, g’, 0)
X PP 0011 f f f
z=f-g=it(fg'0) 0100 f<g fg ite(f, 0, g)
_ r . S E N 0101 g g g
z=/+g=itf,’1',9) 0110 XOR(f, g) f@g ite(f, g', g)
0111 OR(f, g) f+g ite(f, 1, g)
O The ite operator is well-suited for a recursive algorithm based on 1000 NOR(, g) (f+ay ite(f, 0,)
ROBDDs (¢(V) — X)Z 1001 XNOR(f, 9) fog !te(f, g,9)
1010 NOT(g) g ite(g, 0, 1)
. ~ . ~ , ~ > . ; ,
v = Hé')(Fa (’: H) = (.\‘, II(')(F.\': (].\": H_\-)., lr(')(FT'! (]._": H_)) 12;; ngr(n I, 9 :::g: é: g))
1101 f<g f+g ite(f, g, 1)
1110 NAND(f, g) (fay ite(f, g’, 1)
1111 1 1 1
33 34

Recursive Formulation of I'TE ITE Operator

Olte(f,g,h) O Example i 7 : ~ |
a / (a \ a
— ’ 0 %0 ~0 \ ~0
Sy o Loy
—_ ’ ' ' 1/ 1/ 80> T 1/0
=v (fg+fh), +Vv (fg+fh), o Ll {a L
—_— ! ! ! S~ -7
=V (fv gv + fv hv) + Vv (fv’ gv’ +f A hv’) | =ite (F, G, H) F,G,H,,J,B,C,D
— H H . e . P are pointers
= ite(v, ite(f,,9,.h,), ite(f,,9,.,h,)) SiteGaite (7, Gy M), ite (1 G0 HL)
=ite (a, C, ite (b, ite (B,, O,, H,). ite (B, 04, Hy))
=ite (a, C, ite(b, ite (1, 0, 1), ite (O, O, D)))
. . = ite (a, C, ite(b, 0, D))
where v is the top-most variable of BDDs f, =ite (a, C, J)
h Check: F=a+b
g ’ G =ac
H=b-+d

ite(F, G, H) = (a + b)(ac) + a'b’'(b +d) = ac + a’b'd

35 36

ITE Operator

struct vertex *apply-ite(struct vertex *£, *G, *H, int i)

{

char x;
struct vertex *n, *A;

if (F=wvp)
return G;
else if (F = vp)
return H;
else if (G = v| && H = vp)
return £;
else {
x < m(i);
n < applydte(Fy, Gy, Hy, i + 1)
A < apply ite(Fy, Gy, Hy, i +1);
if(np =2
return 7;
else
return old_or_new(x, n, A);
}
}

O ITE algorithm processes
the variables in the order
used in the BDD package

m n(i) gives the ith variable
from the top; © “1(x)
gives the index position
of variable x from the
top

Cofactor: Suppose F is the
root vertex of the function
for which F, should be
computed. hen

Fe=n(F) ifxt(¢(F)) =i

® F, can be calculated
similarly

The time complexity of the
algorithm is O(|F|-|G]|-|H])

37

ITE Operator

0 Example

apply-ite(vg, tig, vy, 1)
2 apply_-ite(vy, vg, v1, 2)
2 apply-ite(vy, vg, ¥1, 3)
v
A .
= apply-ite{¥, ¥0, 1. 3)
Yo
vg = (X, 91, 7)
A apply -ite(vg, vg, v1,2)
vl
vig = (x1, g, v1)

G=ite(G, 0, 1)

38

ITE Operator

O Example (cont'd)

H=F&G _
=Jte(F, G, G)

apply-ite(vg, v10. v8. 1)
A apply.ite(vs, vg, v7, 2)
2 apply-ite(vy, v1, vg, 3)
¥l
ii apply-ite(vz, vg, v1, 3)
A apply-ite(vy, vg. v1. 4)
Yo
—l> apply_ite(vg, vg, v1,4)
1
vq = (x3, 0, 1)
v11 = (X2, V1, v4)
X apply-ite(vs, v1, tg, 2)
v5
v1z = (X1, v11, v5)

39

BDD Memory Management

0 Ordering
B Finding the best ordering minimizing ROBDD sizes is
intractable
B Optimal ordering may change as ROBDDs are being
manipulated

OAn ROBDD package may reorder the variables at different
moments

01t can move some variable closer to the top or bottom by
remembering the best position, and repeat the procedure
for other variables

0 Garbage collection

B Another important technique, in addition to variable
ordering, for memory management

40

