
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

2

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann

3

Formal Verification

Course contents
 Introduction
Boolean reasoning engines
 Equivalence checking
 Property checking

Readings
Chapter 9

4

Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking

5

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

6

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

7

(2003/8) A programming error has been identified as the cause of the Northeast
power blackout, which affected an estimated 10 million people in Canada and 45
million people in the U.S.

8

Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is
preventing data from being sent to Earth, forcing a scheduled shuttle mission to
do repairs on the observatory to be delayed.

9

Design vs. Verification

Verification may take up to 70% of total
development time of modern systems !
 This ratio is ever increasing
Some industrial sources show 1:3 head-count

ratio between design and verification engineers

Verification plays a key role to reduce
design time and increase productivity

10

IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.

11

Scope of Verification
 Design flow

 A series of transformations from abstract specification all the
way to layout

 Verification enters design flow in almost all abstraction
levels
 Design verification

 Functional property verification (main focus)
 Implementation verification

 Functional equivalence verification (main focus)
 Physical verification
 Timing verification
 Power analysis
 Signal integrity check

 Electro-migration, IR-drop, ground bounce, cross-talk, etc.
 Manufacture verification

 Testing

12

Verification
 Design/Implementation Verification

Functional Verification
 Property checking in system level

 PSPACE-complete
 Equivalence checking in RTL and gate level

 PSPACE-complete
Physical Verification
 DRC (design rule check) and LVS (layout vs.

schematic check) in layout level
 Tractable

 Manufacture Verification
 Testing

 NP-complete

 “Verification” often refers to functional
verification

13

Functional Verification
Design Flow Design Verification

Design Validation
(Is what I specified

really what I wanted?)

Property Checking
(Does the design

have desired properties?)

Equivalence Checking
(Implementation verification)

(Is what I implemented
really what I specified?)

Physical verification
(LVS: layout vs. schematic)

Register-Transfer Level ModelRegister-Transfer Level Model

Schematic
(gate-level or transistor-level)

Schematic
(gate-level or transistor-level)

LayoutLayout

Abstract Design SpecificationAbstract Design Specification

=

=

=

High-level synthesis

Logic synthesis

Physical design

Physical verification
(DRC: design rule check)

14

Functional Verification Approaches
 Simulation (software)

 Incomplete (i.e., may fail to catch bugs)
 Time-consuming, especially at lower abstraction levels such as

gate- or transistor-level
 Still the most popular way for design validation

 Emulation (hardware)
 FPGA-based emulation systems, emulation system based on

massively parallel machines (e.g., with 8 boards, 128
processors each), etc.

 2 to 3 orders of magnitude faster than software simulation
 Costly and may not be easy-to-use

 Formal verification
 a relatively new paradigm for property checking and

equivalence checking
 requires no input stimuli
 perform exhaustive proof through rigorous logical reasoning

15

Informal vs. Formal Verification
 Informal verification

 Functional simulation
aiming at locating bugs

 Incomplete
Show existence of

bugs, but not absence
of bugs

 Formal verification
 Mathematical proof of

design correctness
 Complete

Show both existence
and absence of bugs

We will be focusing on formal verification

16

Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking

17

Binary Decision Diagram (BDD)
 Basic features

 ROBDD
Proposed by R.E. Bryant in 1986
A directed acyclic graph (DAG) representing a Boolean

function f: BnB
 Each non-terminal node is a decision node associated with a

input variable with two branches: 0-branch and 1-branch
 Two terminal nodes: 0-terminal and 1-terminal

 Example

x1
x2

f

x1

x2

0 1

0
1

10

ROBDD

18

Binary-Decision Diagram (BDD)
 Cofactor of Boolean function:

 Positive cofactor w.r.t. xi: fxi = f(x1,…, xi–1, 1, xi+1,…, xn)
 Negative cofactor w.r.t. xi: fxi = f(x1,…, xi–1, 0, xi+1,…,

xn)

 Example
f = x1’ x2’ x3’ + x1’ x2’ x3 + x1 x2’ x3 + x1 x2 x3’ + x2 x3
fx1 = x2’ x3 + x2 x3’ + x2 x3
fx1’ = x2’ x3’ + x2’ x3 + x2 x3

 Shannon expansion: f = xi fxi + xi’ fxi’
 A complete expansion of a function can be obtained by

successively applying Shannon expansion on all variables until
either of the constant functions ‘0’ or ‘1’ is reached

19

Ordered BDD (OBDD)
 Complete Shannon expansion can be visualized as a binary tree

 Solid (dashed) lines correspond to the positive (negative) cofactor

f = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

20

Reduced OBDD (ROBDD)
 Reduction rules of ROBDD

 Rule 1: eliminate a node with two identical children
 Rule 2: merge two isomorphic sub-graphs

 Reduction procedure
 Input: An OBDD
 Output: An ROBDD
 Traverse the graph from the terminal nodes towards to root

node (i.e., in a bottom-up manner) and apply the above
reduction rules whenever possible

x x

y y

xx

21

ROBDD
 An OBDD is a directed tree G(V,E)
 Each vertex v  V is characterized by an

associated variable (v), a high subtree (v)
(high(v), the 1-branch) and a low subtree (v)
(low(v), the 0-branch)

 Procedure to reduce an OBDD:
 Merge all identical leaf vertices and appropriately

redirect their incoming edges
 Proceed from bottom to top, process all vertices: if

two vertices u and v are found for which (u) =
(v), (u) = (v), and (u) = (v), merge u and v
and redirect incoming edges

 For vertices v for which (v) = (v), remove v and
redirect its incoming edges to (v)

22

ROBDD

Example
 f = x’yz’ + xz
 variable order: x < y < z

OBDD

1111
0110
1101
0100
0011
1010
0001
0000
fxyz

Truth table

x

10

y

z

10

z

y

z

10

z

0 0 1 0 0 10 1

0 0001 111

x

y

zz

y

zz

0 1

by rule 2

23

ROBDD
 Example (cont’d)

x

y

zz

y

zz

0 1
rule 1 rule 2

x

y

z

y

z

0 1

rule 1

x

y

z z

0 1

ROBDD

24

Canonicity
 Canonicity requirements

 A BDD representation is not canonical for a given
Boolean function unless the following constraints are
satisfied:

1.Simple BDD – each variable can appear only once along
each path from the root to a leaf

2.Ordered BDD – Boolean variables are ordered in such a
way that if the node labeled xi has a child labeled xk,
then order(xi) < order(xk)

3.Reduced BDD – no two nodes represent the same
function, i.e., redundancies are removed by sharing
isomorphic sub-graphs

25

ROBDD Properties
 ROBDD is a canonical representation for a fixed variable

ordering
 ROBDD is compact in representing many Boolean functions

used in practice
 Variable ordering greatly affects the size of an ROBDD

 E.g., the parity function of k bits:

x2

2 1 2

1

k

j j

j

f x x



 

26

Effects of Variable Ordering
 BDD size

 Can vary from linear to exponential in the number of the
variables, depending on the ordering

 Hard-to-build BDD
 Datapath components (e.g., multipliers) cannot be

represented in polynomial space, regardless of the
variable ordering

 Heuristics of ordering
 (1) Put the variable that influence most on top
 (2) Minimize the distance between strongly related

variables
(e.g., x1x2 + x2x3 + x3x4)
x1 < x2 < x3 < x4 is better than x1 < x4 < x2 < x3

27

BDD Package
 A BDD package refers to a software program that

supports Boolean manipulation using ROBDDs. It
has the following features:
 It provides convenient API (application

programming interface)
 It supports the conversion between the

external Boolean function representation and
the internal ROBDD representation

Multiple Boolean functions are stored in shared
ROBDD

 It can create new functions from existing ones
(e.g., h = f • g)

28

BDD Data Structure
 A triplet (,,)

uniquely identifies an
ROBDD vertex

 A unique table
(implemented by a
hash table) that stores
all triplets already
processed

29

Building ROBDD
 The procedure directly

builds the compact
ROBDD structure

 A simple symbolic
computation system is
assumed for the
derivation of the
cofactors

 (i) gives the ith
variable from the top

30

Building ROBDD
 Example

31

Recursive BDD Operation
 Construct the ROBDD h = f <op> g from two

existing ROBDDs f and g, where <op> is a binary
Boolean operator (e.g. AND, OR, NAND, NOR)
 A recursive procedure on each variable x

h = x · hx=1 + x’ · hx=0
= x · (f <op> g)x=1 + x’ · (f <op> g)x=0
= x · (fx=1 <op> gx=1) + x’ (fx=0 <op> gx=0)

 (f <op> g)x = (fx <op> gx) for <op> = AND, OR, NAND,
NOR

x

fx=0 fx=1

op
x

gx=0 gx=1

x

fx=0 op gx=0 fx=1 op gx=1

0 1
0 1 0 1

32

Recursive BDD Operation
 Existential quantification

Let x1 [f(x1,y1 ,…,yn)] = g(y1 ,…,yn).
Then g(y1 ,…,yn) = 1 iff
f(0,y1 ,…,yn)=1 or f(1,y1 ,…,yn)=1

x1
0 1

x2
0 1

x3

0 1
0 1

x2
0 1

x3

0 1

0 1

x3

0 1
0 1OR =

x2
0 1

x3

0 1

0 1
x3

0 1

0 1

x3

0 1
0 1

reduction
f = (x1+x2) · x3 x1 f = fx1=0 + fx1=1

33

ROBDD Manipulation
 Separate algorithms could be designed for each operator on

ROBDDs, such as AND, NOR, etc. However, the universal if-then-
else operator ‘ite’ is sufficient.
z = ite(f,g,h), z equals g when f is true and equals h otherwise:
 Example:

 The ite operator is well-suited for a recursive algorithm based on
ROBDDs ((v) = x):

34

ITE Operator
 ITE operator ite(f,g,h) = fg + f’h can implement any two variable logic function.

There are 16 such functions corresponding to all subsets of vertices of B2:

Table Subset Expression Equivalent Form
0000 0 0 0
0001 AND(f, g) f g ite(f, g, 0)
0010 f > g f g ite(f, g, 0)
0011 f f f
0100 f < g fg ite(f, 0, g)
0101 g g g
0110 XOR(f, g) f  g ite(f, g, g)
0111 OR(f, g) f + g ite(f, 1, g)
1000 NOR(f, g) (f + g) ite(f, 0, g)
1001 XNOR(f, g) f  g ite(f, g, g)
1010 NOT(g) g ite(g, 0, 1)
1011 f  g f + g ite(f, 1, g)
1100 NOT(f) f ite(f, 0, 1)
1101 f  g f + g ite(f, g, 1)
1110 NAND(f, g) (f g) ite(f, g, 1)
1111 1 1 1

35

Recursive Formulation of ITE

Ite(f,g,h)
= f g + f h
= v (f g + f h)v + v (f g + f h)v

= v (fv gv + fv hv) + v (fv gv +fv hv)
= ite(v, ite(fv,gv,hv), ite(fv,gv,hv))

where v is the top-most variable of BDDs f,
g, h

36

ITE Operator
 Example

I = ite (F, G, H)
= ite (a, ite (Fa , Ga , Ha), ite (Fa , Ga , Ha))
= ite (a, ite (1, C , H), ite(B, 0, H))
= ite (a, C, ite (b , ite (Bb , 0b , Hb), ite (Bb , 0b , Hb))
= ite (a, C, ite(b , ite (1, 0, 1), ite (0, 0, D)))
= ite (a, C, ite(b , 0, D))
= ite (a, C, J)

Check: F = a + b
G = ac
H = b + d
ite(F, G, H) = (a + b)(ac) + ab(b + d) = ac + abd

F,G,H,I,J,B,C,D
are pointers

b1

1

a

0

1 0

1 0

F

B

1

1

a

0

1 0

0

G

c 0C

1

b

0

1 0

0

H

d D

1
1

0

a
1 0

0

I

b J

1

C

D

37

ITE Operator
 ITE algorithm processes

the variables in the order
used in the BDD package
 (i) gives the ith variable

from the top;  -1(x)
gives the index position
of variable x from the
top

 Cofactor: Suppose F is the
root vertex of the function
for which Fx should be
computed. Then
Fx = (F) if -1((F)) = i
 Fx’ can be calculated

similarly

 The time complexity of the
algorithm is O(|F||G||H|)

38

ITE Operator
 Example

G = ite(G, 0, 1)

39

ITE Operator
 Example (cont’d)

H = F  G
= ite(F, G, G)

40

BDD Memory Management
Ordering

 Finding the best ordering minimizing ROBDD sizes is
intractable

 Optimal ordering may change as ROBDDs are being
manipulated
An ROBDD package may reorder the variables at different

moments
It can move some variable closer to the top or bottom by

remembering the best position, and repeat the procedure
for other variables

 Garbage collection
 Another important technique, in addition to variable

ordering, for memory management

