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Data Type Conversion

Truth Table

Boolean
Formula

Logic Netlist

BDD

enumerate each root-to-1
path (each representing 
a product term)

translation
using MUXes

recursive
Shannon
expansion

incremental
construction
from PIs to POs

enumerate each root-to-1
path (each representing 
a product term)

recursive
Shannon
expansion
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Formula to BDD

Use variable order: x1<x2<x3

x1
0

1
x2

0 1

x3

0 1

0 1

f

Given a Boolean formula
f = x3 · (x1 + x2)

Shannon expansion on x1
f = x1 · fx1=1 + x1’ · fx1=0

= x1 · x3 + x1’ · x2 · x3 

Shannon expansion on x2 and x3
f = x1 · x3 + x1’ · (x2 · x3 + x2’ · 0)

Perform reduction on the resulting BDD 
to a canonical form

a sequence of recursive
Shannon expansions
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Netlist to BDD
Decide a good variable ordering

Topologically sort the signals
(from PI’s towards PO’s)

select the next signal based
on the topological order

construct the selected signal’s OBDD
using its direct fanins’ OBDD’s

more signal’s
OBDD to build ?

each PO’s OBDD
yes

no

x1
x2
x3

z1

z2

Boolean network C
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Netlist to BDD
 Example Topological order: {x1,x2,x3,z1,z2}

variable order: x1<x2<x3

x1

0 1

0 1
x2

0 1

0 1
x3

0 1

0 1

x1

1

0 1

x2

0 1

0 1

x1
0

1
x2

0 1

x3

0 1

0 1

OBDD(z1) OBDD(z2)

OBDD(z2) = OBDD(x3) · OBDD(z1)

OBDD(x1) OBDD(x2) OBDD(x3)

x1
x2
x3

z1

z2

Boolean network C
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BDD to Netlist
 MUX-based translation

 replace each decision node by a MUX
 replace 0-terminal by GND, and 1-terminal by VDD
 reverse the direction of every edge
 specify the root node as the output node

x1
0

1
x2

0 1

x3

0 1

0 1

MUX

MUX

MUX

GND VDD

output function

x2

x1

x3

1

1

1

0

0

0
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BDD Features
Strengths
ROBDD is a compact representation for many 

Boolean functions
ROBDD is canonical, given a fixed variable 

ordering
Many Boolean operations are of polynomial 

time complexity in the input BDD sizes 

Weaknesses
 In the worst case, the size of a BDD is O(2n) 

for n-input Boolean functions
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BDD Applications
 Boolean function verification

 Compare a specification f  to an implementation g, assuming 
their ROBDDs are F and G, respectively.
 For fully specified functions f and g, the verification is trivial 

(pointer comparison) because of the strong canonicity of the 
ROBDD
 Strong canonicity: the representations of identical functions 

are the same
 For an incompletely specified function I = (f, d, (f+d)) with onset f, 

dc-set d, and offset (f+d). A completely specified function g 
correctly implements I if (d + fg + fg) is a tautology, that is, f 
 g  (f+d)

 Satisfiability checking
 A Boolean function f is satisfiable if there exists an input 

assignment for which f evaluates to ‘1’
 Any Boolean function whose ROBDD is not equal to ‘0’ is 

satisfiable
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BDD Applications
 Min-cost satisfiability

 Suppose that choosing a Boolean variable xi to be ‘1’ costs ci. 
Then, the minimum-cost satisfiability problem asks to 
minimize:  i ciui(xi)
where (xi) = 1 when xi = ‘1’ and (xi) = 0 when xi = ‘0’.

 Solving minimum-cost satisfiability amounts to computing the 
shortest path in an ROBDD with weights: w(v,  (v)) = ci, w(v, 
 (v)) = 0, variable xi = (v), which can be solved in linear 
time

 Combinatorial optimization
 Many combinatorial optimization problems can also be 

formulated in terms of the satisfiability problem
 0-1 integer linear programming can be formulated as a 

minimum-cost satisfiability problem although the translation 
may not be efficient
 E.g., the constraint: x1 + x2 + x3 + x4 = 3 can be written as 

(x1+x2)(x1+x3)(x1+x4)(x2+x3)(x2+x4)(x3+x4)(x1+x2+x3+x4)
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Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking
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SAT Solving
 SAT problem: Given a Boolean formula  in CNF, 

find an input assignment such that  valuates to 
true

 SAT solving is a decision procedure over CNFs
Example

 = (a+b+c)(a+b+c)(a+b+c)(a+b+c)
 is SAT (e.g. under a=1, b=1, c=0)

 SAT in CNF (POS)  Tautology in DNF (SOP)
 How about Tautology in CNF and SAT in DNF?
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SAT Solving
 Given a circuit, suppose we would like to know if 

some signal is always zero. This can be 
formulated as a SAT problem if we can covert the 
circuit to an CNF.

1

6

2 5
8

7

3

4

9 0

an AIG

Is output always 0 ?
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Circuit to CNF
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed 

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit
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Circuit to CNF
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?
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Circuit to CNF

Circuit to CNF conversion 
 can be done in linear size (with respect to the 

circuit size) if intermediate variables can be 
introduced

may grow exponentially in size if no 
intermediate variables are allowed
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DPLL-Style SAT Solving
SAT(clause set S, literal v)
1. S :=  Sv //cofactor each clause of S w.r.t. v
2. If no clauses in S, return T
3. If a clause in S is empty (FALSE), return 

F
4. If S has a unit clause with literal u, 

then return SAT(S, u) //implication
5. Choose a variable x with value not yet 

assigned
6. If SAT(S, x), return T
7. If SAT(S, x), return T
8. Return F
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SAT Solving with Case Splitting
 Example

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

1
2
3
4
5
6
7
8

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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SAT Solving with Implication

Implication in a CNF formula are caused 
by unit clauses
A unit clause is a clause in which all literals 

except one are assigned (to be false) 
The value of the unassigned variable is implied

Example
(a+b+c)
a=0, b=1  c=1
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Implications in CNF
 Example

(a + b + c)           (a + c)              (b + c)

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1x

1
0

1

x
0

1

0
x

0

1
x

1

1
x

Implications:

(a+b+c)(a+c)(b+c)
a

c
b

AND
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SAT Solving with Implication
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

5
5

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 6

6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) c

3
3

a
b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 5

5
d

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

4
4

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 60

SAT Solving with Learning
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

bc  ¬


 (¬b + ¬c)

9 (¬b + ¬c)(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

c9b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

a

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

ab  ¬


 (¬a + ¬b)

10 (¬a + ¬b)
(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

b

a

10

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

c3
3

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

a  ¬


 (¬a)

11 (¬a)11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a11

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b
11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b 9 c

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

4

4 d

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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Implementation Issues
 Track sensitivity of clauses for changes (two-literal-watch 

scheme)
 clause with all literals but one assigned  implication
 clause with all literals but two assigned  sensitive to a 

change of either literal
 all other clauses are insensitive and need not be 

observed

 Learning: 
 learned implications are added to the CNF formula as 

additional clauses
 limit the size of the clause
 limit the “lifetime” of a learned clause, will be removed 

after some time

62

Quantification over CNF and DNF
 Recall a quantified Boolean formula (QBF) is 

Q1 x1, Q2 x2, …, Qn xn. 
where Qi is either a existential () or universal 
quantifier (), xi is a Boolean variable, and  is a 
Boolean formula.

 Existential (respectively universal) quantification 
over DNF (respectively CNF) is easy
 One approach to quantifier elimination is by back-and-

forth CNF-DNF conversion!

 Solving QBFs with QBF-solvers

63

Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking
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Equivalence Checking in 
Microprocessor Design

Architectural Specification
(informal)

RTL Specification
(Verilog, VHDL)

Circuit Implementation
(Schematic)

Layout Implementation
(GDS II)

Cycle Simulation

Equivalence
Checking

Circuit Simulation

Test Programs

Property Checking
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Equivalence Checking in ASIC Design
RTL

Specification

Cell-Based
Synthesis

Standard Cell
Implementation

Engineering 
Changes (ECOs)

Equivalence
Checking

Final
Implementation

Equivalence
Checking

Property Checking
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Equivalence Checking
 Equivalence checking is one of the most 

important problem in design verification
 It ensures logic transformation process (e.g. two-level, 

multi-level logic minimization, retiming and resynthesis, 
etc.) does not introduce errors

 Two types of equivalence checking
 Combinational equivalence checking

Check if two combinational circuits are equivalent
 Sequential equivalence checking

Check if two sequential circuits are equivalent

67

Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking
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History of Equivalence Checking
 SAS (IBM 1978 - 1994):

 standard equivalence checking tool running on 
mainframes

 based on the DBA algorithm (“BDDs in time”)
 verified manual cell-based designs against RTL spec
 handling of entire processor designs

application of “proper cutpoints”
application of synthesis routines to make circuits 

structurally similar
special hacks for hard problems

 Verity (IBM 1992 - today):
 originally developed for switch-level designs
 today IBMs standard EC tool for any combination of 

switch-, gate-, and RTL designs
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History of Equivalence Checking
 Chrysalis (1994 - Avanti - now Synopsys):

 based on ATPG technology and cutpoint exploitation
 very weak if many cutpoints present
 did not adopt BDDs for a long time

 Formality (1997 - Synopsys)
 multi-engine technology including strong structural matching 

techniques

 Verplex (1998 - now Cadence)
 strong multi-engine based tool
 heavy SAT-based
 very fast front-end

70

Combinational EC
 Given two combinational circuits C1 and C2, are 

their outputs equivalent under any possible input 
assignment?

x C1

C2x


?

y1

y2

71

Miter for Combinational EC
 Two combinational circuits C1 and C2 are 

equivalent if and only if the output of their “miter”
structure always produces constant 0

x 0?

C1

C2

72

Approaches to Combinational EC

Basic methods:
 random simulation

good at identifying inequivalent signals
 BDD-based methods
 structural SAT-based methods

x 0?

C1

C2
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BDD-based Combinational EC

Procedure
1.Construct the ROBDDs F1 and F2 for circuits C1 

and C2, respectively 
Variable orderings of F1 and F2 should be the same

2.Let G= F1⊕F2. If G=0, C1 and C2 are equivalent; 
otherwise, they are inequivalent
No false negative or false positive

 False negative: circuits are equivalent; however, 
verifier fails to tell

 False positive: circuits are inequivalent; however, 
verifier says otherwise

74

SAT-based Combinational EC

Procedure
1.Convert the miter structure into a CNF

2.Perform SAT solving to verify if the output 
variable cannot be valuated to true under 
every input assignment (i.e. UNSAT)

75

Combinational EC
 Pure BDD and plain SAT solving cannot handle all 

logic cones
BDDs can be built for about 80% of the cones 

of high-speed designs and less for complex 
ASICs

 plain SAT blows up in CPU time on a miter 
structure

 Contemporary method highly exploit structural 
similarities between two circuits to be compared

76

Combinational EC
 Memory statistics of BDD-based EC on a PowerPC processor 

design
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Combinational EC
 Runtime statistics of BDD-based EC on a PowerPC 

processor design
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Necessity of Structure Similarity

Pure BDDs are incapable of verifying 
equivalence of large circuits
 Even more so for arithmetic circuits (e.g. BDDs

blow up in representing multipliers)

Identifying structure similarity helps 
simplify verification tasks
 E.g. structure hashing in AIGs

79

Combinational EC
 Evidence of vast existence of structure similarities

Fu
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Circuit Size 80

Structure and Verification
 Structure-independent techniques

 Exhaustive simulation
 Decision diagrams

 Structure-dependent techniques
 Graph hashing
 SAT based cutpoint identification

Struture-
independent
techniques

Structure-dependent
techniques

Combined 
methods

Degree of 
Structural 
Difference

Size
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Summary
 Combinational EC is considered to be solvable in 

most industrial circuits (w/ multi-million gates)
 Computational efforts scale almost linearly with the 

design size
 Existence of structural similarities

Logic transformations preserve similarities to some extent
 Hybrid engine of BDD, SAT, AIG, simulation, etc.

Cutpoint identification

 Unsolved for arithmetic circuits 
 Absence of structural similarities

Commutativity ruins internal similarities
 Word- vs. bit-level verification

82

Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking
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Sequential EC
 Given two sequential circuits (and thus FSMs), do 

they produce the same output sequence under 
any possible input sequence?


?

y1

D

x 1
1M1

y2

D

x 2
2M2
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Miter for Sequential EC
 Two FSMs M1 and M2 are equivalent if and only if 

the output of their product machine always 
produces constant 0

0=
?

y1

D
x

1
1M1

y2

D

2
2M2
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Product Machine

The product FSM M12 of FSMs M1 = (Q1, I1, 
, , , 1) and M2 = (Q2, I2, , , , 2) 
is a six-tuple (Q12, I12, , , 12, 12), 
where
State space Q12 = Q1  Q2

 Initial state set I12 = I1  I2

 Input alphabet 
Output alphabet {0,1}
 Transition function 12 = (, )
Output function 12 = (  )

86

Sequential EC
 Approaches for combinational EC do not work for 

sequential EC because two equivalent FSMs need 
not have the same transition and output 
functions
 False negatives may result from applying combinational 

EC on sequential circuits

One solution to sequential EC is by reachability
analysis
 Two FSMs M1 and M2 are equivalent if and only if the 

output of their product FSM M12 is constant 0 under all 
input assignments and all reachable states of M12

 Need to know the set of reachable states of M12

87

Reachability Analysis
 Given an FSM M = (Q, I, , , , ) , which states 

are reachable from the initial state set I ?

Unreachable states

Reachable states

88

Symbolic Reachability Analysis
Reachability analysis can be performed 

either explicitly (over a state transition 
graph) or implicitly (over transition 
functions or a transition relation)
 Implicit reachability analysis is also called 

symbolic reachability analysis (often using 
BDDs and more recently SAT)

Image computation is the core 
computation in symbolic reachability
analysis
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Reachability Onion Ring

0

1

1

2
2

2

2

3 3

3

3

3

33
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Computing Reachable States
 Input: Sequential system represented by a 

transition relation and an initial state (or a set of 
initial states)
 Transition functions can be converted into a transition 

relation

 Computation: Image computation using Boolean 
operations on characteristic functions 
(representing state sets)

Output: A characteristic function representing the 
set of reachable states

91

Relation
 Definition. Relation R  XY is a subset of the Cartesian 

product of two sets X and Y.  If (x,y)R, then we 
alternatively write “x R y” meaning x is related to y by R.

1
1
0
0
0
0
0
0
y1

1111
1011
1101
0001
1110
1010
1100
0000
y2x3x2x1

x1

x2

x3

y1

y2

Courtesy of A. Mishchenko 92

Characteristic Function
 Relation R  XY can be represented by a characteristic 

function: a Boolean function FR(x,y) taking value 1 for 
those (x,y)R and 0 otherwise.

111111
1
1
0
1
1

1
0
y2

1
0
0
0
0

0
0
y1

0other

1011
1101
1001
1110
1010

1100
1000
Fx3x2x1 x1

x2

x3

y1

y2

0 1

Courtesy of A. Mishchenko
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Transition Relation
 Definition. A transition relation T of an FSM M = (Q, I, , , 

, ) is a relation T  ( x Q) x Q such that T(, q1, q2) = 1 
iff there is a transition from q1 to q2 under input .
 : ( x Q)  Q 
 T: ( x Q) x Q  {0,1}

Assume  = (, …, ). Then

where x, s, s’ are primary-input, current-state, and  next-state 
variables, respectively.

1 1 2 2( , , ') ( ' ( , )) ( ' ( , )) ( ' ( , ))

               ( ' ( , ))
k k

i i
i

T x s s s x s s x s s x s
s x s
  



      

 

        


 
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Quantified Transition Relation

Definition
Let M = (Q, I, , , , ) be an FSM
Quantified transition relation T

(p,q)  T if there exists an input assignment bringing 
the M from state p to state q

only concerns about the reachability of the FSM’s
transition graph

1 1 2 2( , ') .( ' ( , )) ( ' ( , )) ( ' ( , ))

            . ( ' ( , ))
k k

i i
i

T s s x s x s s x s s x s
x s x s

  


        

  

        


  
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Transition Relation

Example

0other

1
1
1
1

1
1

T

A
B
A
B

A
B

NS

01
01
10
10

00
00

s1 s2

C
C
B
B

A
A

CS

001
100
001
100

000,1
100

s1’ s2’xC

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko 96

Transition Relation

Example

C

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko

x
s1

s1
s2

s2
10
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Image Computation
 Given a mapping of one 

Boolean space (input space) 
into another Boolean space 
(output space)
 For a set of minterms

(care set) in the input 
space
 The image is the set of 

related minterms from the 
output space

 For a set of minterms in 
the output space
 The pre-image is the set 

of related minterms in the 
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko 98

Image Computation

Example

a b c

yx Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko

99

Image Computation
 Image(C(x),T(x,y)) = x [C(x)  T(x,y) ]

 Implicit methods by far outperform explicit ones
 Successfully computing images with more than 2100

minterms in the input/output spaces

Operations  and  are basic Boolean 
manipulations are implemented using BDDs

 To avoid large intermediate results (during and 
after the product computation), operation AND-
EXIST is used, which performs product and 
quantification in one pass over the BDD

100

Symbolic Image Computation
 Definition. Let F: BmBn be a projection and C be a set of 

minterms in Bm. Then the image of C is the set 
Img(C, F) = { w  Bn | (v, w)  F and v  C} in Bn.

 Characteristic function
 for reachable next-state computation
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