Data Type Conversion

Truth Table

recursive
Shannon
expansion

BDD

translation
using MUXes

incremental
construction
from Pls to POs

Logic Netlist

enumerate each root-to-1
path (each representing
a product term)

enumerate each root-to-1
path (each representing
a product term)

recursive

Shannon

expansion

Boolean
Formula

41

Formula to BDD

Given a Boolean formula
f=x3 - (x1+x2)

a sequence of recursive

. Shannon expansions
Use variable order: x1<x2<x3 | /

i r :

} Shannon expansion on x1
f=x1-f,o, + X1 -,
=x1-x3+x1"-x2-x3

!

| Shannon expansion on x2 and x3
D | f=x1-x3+x1 - (x2- X3 +x2' - 0) !

e b s |

Perform reduction on the resulting BDD
to a canonical form

42

Netlist to BDD

Decide a

x1

the signals
(from PI's towards PO’s)

X2
x3

|

more signal’s

Boolean network C

OBDD to—w

select the based
on the topological order

each PO’s OBDD

construct the
using its direct OBDD'’s

43

Netlist to BDD

0 Example Topological order: {x1,x2,x3,z1,22}
variable order: x1<x2<x3
1 OBDD(z2) = OBDD(x3) - OBDD(z1)
s (1)
x3
0,
Boolean network C / 1
07 1

@mom&

OBDD(x1) OBDD(x2) OBDD(x3)

\
\
Io]
OBDD(z2)
44

OBDD(z1)

BDD to Netlist

O MUX-based translation
B replace each decision node by a MUX
m replace O-terminal by GND, and 1-terminal by VDD
B reverse the direction of every edge
B specify the root node as the output node

output function

45

BDD Features

O Strengths

B ROBDD is a compact representation for many
Boolean functions

B ROBDD is canonical, given a fixed variable
ordering

B Many Boolean operations are of polynomial
time complexity in the input BDD sizes

OWeaknesses

B In the worst case, the size of a BDD is O(2")
for n-input Boolean functions

46

BDD Applications

O Boolean function verification

B Compare a specification f to an implementation g, assuming
their ROBDDs are F and G, respectively.

O For fully specified functions fand g, the verification is trivial
(pointer comparison) because of the strong canonicity of the
ROBDD

= Strong canonicity: the representations of identical functions
are the same

O For an incompletely specified function | = (f, d, —(f+d)) with onset f,
dc-set d, and offset —(f+d). A completely specified function g
correctly implements | if (d + f.g + —f-—Q) is a tautology, that is, f
=g= (fd)

O Satisfiability checking

B A Boolean function f is satisfiable if there exists an input
assignment for which f evaluates to ‘1’

B Any Boolean function whose ROBDD is not equal to ‘O’ is
satisfiable

47

BDD Applications

O Min-cost satisfiability

B Suppose that choosing a Boolean variable x; to be ‘1’ costs c;.
Then, the minimum-cost satisfiability problem asks to
minimize: %, ¢;u(x)
where p(x;) = 1 when x; = ‘1" and p(x;) = 0 when x; = ‘0.

B Solving minimum-cost satisfiability amounts to computing the
shortest path in an ROBDD with weights: w(v, 7 (v)) = ¢;, w(v,
A (v)) = 0, variable x; = ¢(v), which can be solved in linear
time

O Combinatorial optimization
B Many combinatorial optimization problems can also be
formulated in terms of the satisfiability problem

B 0-1 integer linear programming can be formulated as a
minimum-cost satisfiability problem although the translation
may not be efficient

OE.g., the constraint: x; + X, + X5 + X, = 3 can be written as
(X1+X2)(X1+X3)(X1+X4)(X2+X3)(X2+X4)A&X3+X4)(ﬂX1+—'X2+ﬁX3+—'X4)

48

Outline

O Introduction

[O0Boolean reasoning engines
® BDD
B SAT

OEquivalence checking

OProperty checking

49

SAT Solving

0 SAT problem: Given a Boolean formula ¢ in CNF,
find an input assignment such that ¢ valuates to
true

O SAT solving is a decision procedure over CNFs
Example
¢ = (a+b'+c)(a’+b+c)(a+b’'+c")(a+b+c)
is SAT (e.g. under a=1, b=1, c=0)

O SAT in CNF (POS) < Tautology in DNF (SOP)
B How about Tautology in CNF and SAT in DNF?

50

SAT Solving

[Given a circuit, suppose we would like to know if
some signal is always zero. This can be
formulated as a SAT problem if we can covert the
circuit to an CNF.

7
/

N\‘@—» 0 Is output always 0 ?
®* "

A
4

an AlIG

51

Circuit to CNF

O Naive conversion of circuit to CNF:
B Multiply out expressions of circuit until two level structure
B Example: y =X,®X, ®X, ® ... DX,
O circuit size is linear in the number of variables

OO,
® = g O—
O—0O—""
O generated chess-board Karnaugh map
O CNF (or DNF) formula has 2™1 terms (exponential in #vars)

O Better approach:
B Introduce one variable per circuit vertex

B Formulate the circuit as a conjunction of constraints imposed
on the vertex values by the gates

B Uses more variables but size of formula is linear in the size of
the circuit

52

Circuit to CNF

O Example
B Single gate:

a AND
—/

b/@—» ¢c —» (—a+ —-b+c)(@+ —c)(b+ —c)

m Circuit of connected gates:

O—@—_, F1+2+4HA+ -2+ -4)

D, (=2 + =3 + 5)(2 + =5)(3 + —5)

g g®<y@m T @+ -3+ 6)(-2+-B)E + -6)

© L A+ 5+ YA+ 7Y +)

Is output always O 7 (5 +6+ 8)(—|5 + —|8)(—|6 + —|8)

(7 + 8 +9)(—=7 + -9)(—-8 + =9)
9

Justify to “1”

53

Circuit to CNF

CCircuit to CNF conversion

M can be done in linear size (with respect to the
circuit size) if intermediate variables can be
introduced

B may grow exponentially in size if no
intermediate variables are allowed

54

DPLL-Style SAT Solving

SAT(clause set S, literal v)

1. S = S, [lcofactor each clause of Sw.r.t. v

2. ITf no clauses In S, return T

3. If a clause in S is empty (FALSE), return
F

4. 1If S has a unit clause with literal u,
then return SAT(S, u) //implication

5. Choose a variable x with value not yet
assigned

6. IF SAT(S, xX), return T
7. IF SAT(S, —x), return T
8. Return F

55

SAT Solving with Case Splitting

O Example

; E 1:Ej:ﬂl) ’/////////a
_ _ b

431 Ea++t:d)0) / /
- c c c

1 S AN,

7

8

oSN L N A A

Source: Karem A. Sakallah, Univ. of Michigan 56

SAT Solving with Implication

O Implication in a CNF formula are caused
by unit clauses

M A unit clause is a clause in which all literals
except one are assigned (to be false)
OThe value of the unassigned variable is implied
Example
(a+—-b+c)
a=0, b=1=c=1

57

Implications in CNF

O Example

a AND
—/

b/_Q—» ¢ (—a+-b+c)(a+—c)(b+—-c)

Implications: (—a + —b + c) (a+ _|< } + —C)
1 ~. 0‘\> X X
1:9' g 1’O+ X x& Lo g
X O‘ 0 ~. 1\, :
)1/' 0 x/'@ 0/'/> X X7 !
1 xI— 1
>X;O—> 0 1:0-» 1 0//,()» X

58

SAT Solving with Implication

O Example
G+b+)
G+b+)
(ra+ +)
G +c+d)
(ra+ +)
(ra+ +)
(b+-c+)
(b+-c+)

0o ~N O o~ WDN P

Source: Karem A. Sakallah, Univ. of Michigan

SAT Solving with Learning

O Example
+b+) <9
(+b+)0
(ra+ +)12
G +c+d
(ra+ +)
a4+ +)
(H+-c+
(b+-c+)

0N o o~ WDN P

Source: Karem A. Sakallah, Univ. of Michigan 60

Implementation Issues

O Track sensitivity of clauses for changes (two-literal-watch
scheme)
B clause with all literals but one assigned — implication

B clause with all literals but two assigned — sensitive to a
change of either literal

m all other clauses are insensitive and need not be
observed

O Learning:
B |learned implications are added to the CNF formula as
additional clauses
Olimit the size of the clause

Olimit the “lifetime” of a learned clause, will be removed
after some time

61

Quantification over CNF and DNF

0 Recall a quantified Boolean formula (QBF) is

Q1 Xps Qp X, -y Qp Xye @

where Qi is either a existential (3) or universal
quantifier (Vv), x; is a Boolean variable, and ¢ is a
Boolean formula.

O Existential (respectively universal) quantification
over DNF (respectively CNF) is easy

B One approach to quantifier elimination is by back-and-
forth CNF-DNF conversion!

O Solving QBFs with QBF-solvers

62

Outline

O Introduction
OBoolean reasoning engines
CDEquivalence checking

OProperty checking

63

Equivalence Checking in
Microprocessor Design

Architectural Specification
(informal) Property Checking

RTL Specification < Cycle Simulation <: Test Programs

(Verilog, VHDL)

11

Circuit Implementation

Equivalence

- Checking
(Schematic)
Layout Implementation Circuit Simulation

(GDS 1)

64

Equivalence Checking in ASIC Design

Equivalence Checking

RTL , O Equivalence checking is one of the most
Specification Property Checking important problem in design verification
@ \ B It ensures logic transformation process (e.g. two-level,
Cell-Based Equivalence multi-level logic minimization, retiming and resynthesis,
Synthesis Checking etc.) does not introduce errors
g
Standard Cell O Two types of equivalence checking
Implementation B Combinational equivalence checking
@ OCheck if two combinational circuits are equivalent
Engineering Equivalence B Sequential equivalence checking
Changj(jCOs) / Checking OCheck if two sequential circuits are equivalent
Final
Implementation o5 o6
Outline History of Equivalence Checking

O Introduction
OBoolean reasoning engines

CDEquivalence checking
B Combinational equivalence checking
B Sequential equivalence checking

OProperty checking

67

O SAS (IBM 1978 - 1994):

B standard equivalence checking tool running on
mainframes

B based on the DBA algorithm (“BDDs in time”)
m verified manual cell-based designs against RTL spec
B handling of entire processor designs

O application of “proper cutpoints”

O application of synthesis routines to make circuits
structurally similar

O special hacks for hard problems

O Verity (IBM 1992 - today):
m originally developed for switch-level designs

B today IBMs standard EC tool for any combination of
switch-, gate-, and RTL designs

68

History of Equivalence Checking

O Chrysalis (1994 - Avanti - now Synopsys):
B based on ATPG technology and cutpoint exploitation
B very weak if many cutpoints present
B did not adopt BDDs for a long time

O Formality (1997 - Synopsys)
B multi-engine technology including strong structural matching
techniques

O Verplex (1998 - now Cadence)
B strong multi-engine based tool
B heavy SAT-based
B very fast front-end

69

Combinational EC

O Given two combinational circuits C; and C,, are
their outputs equivalent under any possible input
assignment?

x —— C, Y1

[[IRN]

x—— G, Yo

Miter for Combinational EC

O Two combinational circuits C, and C, are
equivalent if and only if the output of their “miter”
structure always produces constant O

Cy

= =

71

Approaches to Combinational EC

OBasic methods:

B random simulation
Ogood at identifying inequivalent signals

B BDD-based methods
B structural SAT-based methods

Cy

= =g

72

BDD-based Combinational EC

O Procedure
1.Construct the ROBDDs F, and F, for circuits C;

and C,, respectively
OVariable orderings of F, and F, should be the same

2.Let G= F,;®F,. If G=0, C; and C, are equivalent;
otherwise, they are inequivalent
OONo false negative or false positive
= False negative: circuits are equivalent; however,
verifier fails to tell
= False positive: circuits are inequivalent; however,
verifier says otherwise

73

SAT-based Combinational EC

OProcedure
1.Convert the miter structure into a CNF

2.Perform SAT solving to verify if the output
variable cannot be valuated to true under

every input assignment (i.e. UNSAT)

74

Combinational EC
O Pure BDD and plain SAT solving cannot handle all
logic cones
M BDDs can be built for about 80% of the cones
of high-speed designs and less for complex
ASICs
M plain SAT blows up in CPU time on a miter
structure

O Contemporary method highly exploit structural
similarities between two circuits to be compared

75

Combinational EC

O Memory statistics of BDD-based EC on a PowerPC processor
design

10°

95 % of dl Circuits

Memery in KBytes

76

Combinational EC

Necessity of Structure Similarity

O Runtime statistics of BDD-based EC on a PowerPC ; SE
processor design I:IPure_ BDDs are mcapaple Qf verifying
equivalence of large circuits
* B Even more so for arithmetic circuits (e.g. BDDs
“E] blow up in representing multipliers)
ﬁ o’ 95 % of all Circuits - 3
‘N O ldentifying structure similarity helps
10 E | - - - g -
: 1 simplify verification tasks
2 L
St Py 4 M E.g. structure hashing in AIGs
%% ¥ g
" g ‘fx x)gx"x*‘f%% B
#oux B *
10 : : : :
10” 10 10° 107 10 10°
Circuit Size {Number of Transistors) 77 78
Combinational EC Structure and Verification
O Evidence of vast existence of structure similarities o
100 AR T, 57 s S g g 0 ¢ B Exhaustive simulation
o e ol e B Decision diagrams
o # . @ e D
RN B Graph hashing
g ¢ . E R e s B SAT based cutpoint identification
3 s 4 Degree of
% 1oL 2 o 2% w B Structural
5 ’ U2 L S Difference | struture- _
g e % cwe s O Combined
g L s n methods
z R T techniques
’ : Structure-dependent
110 150 10‘00 10500 100‘000 1e+06 teChniques Size
Circuit Size 79

80

Summary

0 Combinational EC is considered to be solvable in
most industrial circuits (w/ multi-million gates)
B Computational efforts scale almost linearly with the
design size
B Existence of structural similarities
OLogic transformations preserve similarities to some extent
B Hybrid engine of BDD, SAT, AIG, simulation, etc.
O Cutpoint identification

O Unsolved for arithmetic circuits
B Absence of structural similarities
O Commutativity ruins internal similarities
B Word- vs. bit-level verification

81

Outline

O Introduction
OBoolean reasoning engines

O Equivalence checking
B Combinational equivalence checking
B Sequential equivalence checking

OProperty checking

82

Sequential EC

O Given two sequential circuits (and thus FSMs), do
they produce the same output sequence under
any possible input sequence?

X —7— ﬂl—/—’)/
M, 6, !

?
X — /‘Lz—,«—>y2

83

Miter for Sequential EC

O Two FSMs M; and M, are equivalent if and only if
the output of their product machine always
produces constant O

A
M, & Y1
)
L, =0
X —r—)) —
y
/12 2
M, 9,

84

Product Machine

COThe product FSM M, of FSMs M; = (Q, 14,
2, Q, 8, A) and M, = (Qy, 1, 2, Q, 6, Ay)
is a six-tuple (Qi.2, l1.0: 2, Q, 81,2, A0),
where
W State space Q,, = Q1 x Q;
M Initial state set 1., =1, x I,
B Input alphabet X
B Output alphabet {0,1}
® Transition function 3,,, = (3,, 3,)
B Output function A,,, = (A, ® A,)

85

Sequential EC

O Approaches for combinational EC do not work for
sequential EC because two equivalent FSMs need
not have the same transition and output
functions

B False negatives may result from applying combinational
EC on sequential circuits

0 One solution to sequential EC is by reachability
analysis

B Two FSMs M, and M, are equivalent if and only if the
output of their product FSM M,,, is constant O under all
input assignments and all reachable states of M,,,

B Need to know the set of reachable states of M,,,

86

Reachability Analysis

O Givenan FSM M = (Q, I, 2, Q, §, 1) , which states
are reachable from the initial state set | ?

Reachable states

" Unreachable states

87

Symbolic Reachability Analysis

O Reachability analysis can be performed
either explicitly (over a state transition
graph) or implicitly (over transition
functions or a transition relation)

B Implicit reachability analysis is also called
symbolic reachability analysis (often using
BDDs and more recently SAT)

O Ilmage computation is the core
computation in symbolic reachability
analysis

88

Reachability Onion Ring

89

Computing Reachable States

O Input: Sequential system represented by a
transition relation and an initial state (or a set of
initial states)

B Transition functions can be converted into a transition
relation

O Computation: Image computation using Boolean
operations on characteristic functions
(representing state sets)

O Output: A characteristic function representing the
set of reachable states

90

Relation

O Definition. Relation R ¢ XxY is a subset of the Cartesian
If (X,y)eR, then we
alternatively write “x R y” meaning x is related to y by R.

product of two sets X and Y.

X,
X3 Y,

Courtesy of A. Mishchenko

X
fie

X
N

X
w0

<
i

P PP P OOODO

P PP OOPFrRFPFR OO

R OPFP OFr OFr O

P OOOOODO

PR R ORPRPROK

91

Characteristic Function

O Relation R ¢ XxY can be represented by a characteristic
function: a Boolean function Fy(X,y) taking value 1 for
those (X,y)eR and O otherwise.

Xy Xp X3 |¥: Yo | F
O O O 0 (6] 1
O O 1|0 1 1
O 1 0]O 1 1
0 1 1 (0] 1 1
1 0 0] O (0] 1
1 O 1 0 1 1
1 1 O 1 1 1
1 1 1 1 1 1
other 0 9 nodes

Courtesy of A. Mishchenko 92

Transition Relation

O Definition. A transition relation T of an FSM M = (Q, I, £, Q,
6, M) isarelation T c (2 x Q) x Q such that T(c, ;,9,) =1
iff there is a transition from ¢, to g, under input c.

m3(ExQ)->Q
BT:(TxQxQ—>{0,1}

Assume § = (3, ...,). Then
T(%,5,5)=(5,"'= 5,05 A(S, =5, (X,5) A+ A5, ' =6, (%,5))
=[1(s'=a(x5)

where X, s, s’ are primary-input, current-state, and next-state
variables, respectively.

93

Quantified Transition Relation

O Definition
LetM = (Q, I, £, Q, 3, A) be an FSM
B Quantified transition relation T,
T.(5,5) = 3%(5,'= 6,(X,5)) A (S, = 5,(X,5)) A--- A (S, '= 5, (X,5))
=3%] [(s,'=6,(%.5))

O(p,q) € T, if there exists an input assignment bringing
the M from state p to state g

Oonly concerns about the reachability of the FSM’s
transition graph

94

Transition Relation

COExample
Cs S; S, NS |[s,'s, T
0 1 ¢} A 0o B 10 1
0,1 A 0o A 0o 1
0 o B 10 B 10 1
1 1 B 10 A 0o 1
0 o C o1 B 10 1
1 C o1 A 0o 1
O’ 1 other (0]

Courtesy of A. Mishchenko 95

Transition Relation

O Example
X
1
0 31
0 s,
1 S
0 '
S
0,1 2
Courtesy of A. Mishchenko 96

Image Computation

Image Computation

O Given a mapping of one Output space O Example Input space
Boolean space (input space) ;
i abc
into another Boolean space T
output space Y ¥
(outp pace)) Input space 000 fR Output space
B For a set of minterms e X y i
(care set) in the input : ‘ 001 | Xy
space O | "W"“:
O The image is the set of e 010 00
related minterms from the | :
output space O 011 01
B For a set of minterms in Care set 100 | 10
the output space O a b ¢ |
O The pre-image is the set : 101 11
of related minterms inthe 777 3 ; ;
input space 110 |
o 111 |
Courtesy of A. Mishchenko R 97 Courtesy of A. Mishchenko S ' 98
Image Computation Symbolic Image Computation

O Image(C(x),T(X,y)) = Ix [C(X) A T(X,y)]

O Implicit methods by far outperform explicit ones

B Successfully computing images with more than 21
minterms in the input/output spaces

[0 Operations A and 3 are basic Boolean
manipulations are implemented using BDDs

0 To avoid large intermediate results (during and
after the product computation), operation AND-
EXIST is used, which performs product and
quantification in one pass over the BDD

99

O Definition. Let F: B™xB" be a projection and C be a set of
minterms in B™. Then the image of C is the set

Img(C,F) ={weB"]| (v, w) e Fand v € C} in B".

O Characteristic function
B for reachable next-state computation

N;(s7) = Img(R;(5),T,(5,5 ")) Br B

_35.(R (5) AT,(5,57) 0
=35.(R(S)AER] [(s'=6,(x,9))) @

100

