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Physical Design

Physical design converts a circuit description into a geometric
description.

The description is used to manufacture a chip.
Physical design cycle:

1. Logic partitioning

2. Floorplanning and placement

3. Routing

4. Compaction

O Others: circuit extraction, timing verification and design rule
checking
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Circuit Partitioning

0 Course contents:
B Kernighang-Lin partitioning algorithm
B Simulated annealing based partitioning algorithm
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Circuit Partitioning

OO0 Objective: Partition a circuit into parts such that every
component is within a prescribed range and the # of
connections among the components is minimized.

B More constraints are possible for some applications.
0 Cutset? Cut size? Size of a component?

Problem Detinition: Partitioning

O k-way partitioning: Given a graph G(V, E), where each
vertex v € V has a size s(v) and each edge e € E has a
weight w(e), the problem is to divide the set V into k disjoint
subsets V,, V,, ..., V,, such that an objective function is
optimized, su?bject to certain constraints.

O Bounded size constraint: The size of the i-th subset is
bounded by B, (i.e., 2 vey; (v} < B; ).
B Is the partition balanced?

O Min-cut cost between two subsets: o
Minimize w(e) , where p(u) is the partition # of

ve=(u,v)Ap(u)zp(v)
node u.

OO0 The 2-way, balanced partitioning problem is NP-complete,
even in its simple form with identical vertex sizes and unit
edge weights.




Kernighan-Lin Algorithm

O Kernighan and Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol.
49, no. 2, Feb. 1970.

O An iterative, 2-way, balanced partitioning (bi-sectioning)
heuristic.

O Till the cut size keeps decreasing

B Vertex pairs which give the largest decrease or the
smallest increase in cut size are exchanged.

B These vertices are then locked (and thus are prohibited
from participating in any further exchanges).

B This process continues until all the vertices are locked.
B Find the set with the largest partial sum for swapping.
B Unlock all vertices.

K-L Algorithm: A Simple Example

O Each edge has a unit weight.

Step #F Vertex palr  Cost reduction  Cut cost

0 - 0 5
1 {d, g} 3 2
2 {c, T} 1 1
3 {b, h} -2 3
4 {a, e} -2 5

0 Questions: How to compute cost reduction? What pairs to
be swapped?

® Consider the change of internal & external connections.
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Properties

OoOooooano

Two sets A and B such that |A| = n = |Bl]and AnB = &.
External costofa € A: E, = 2., C,,-

Internal costofa € A: I, = ZveA Coy-

D-value of a vertex a: D, = E, - I, (cost reduction for moving a).
Cost reduction (gain) for swapping a and b: g,, = D, + D, - 2c,,.

If a € Aand b € B are interchanged, then the new D-values, D’,
are given by

D; = Dz 2cza — 2czp, Vo € A — {a}
D, = Dy 2cy— 2cya,Vy € B— {b}.
A E

A E
s before after AC
i — ' swap  Swap
A L
—Cxn +Cya +2E’J_“I
Gﬂiﬂ roe Da— C'ab B C‘m
Gty Dy— cop +Cxs —op =20

Inrermal cost vs. Extermal cose updating D—rvalues
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A Weighted Example
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Initicd cut cost = (342444 (44241 1+ 3+24 1) = 22

Iteration 1

I,=142=3;, E,=34+244=29; Dao=E,—1,=9—-3=6
Ihh=141=2, E=44241=7, Dy=FEy—Ih=7—-2=5
Io=241=3, E.=34+241=6¢6; De=Fe—Io=6—-3=3
Is=44+3=7, E;4=34+44+3=10;, Dy=E;—1;,=10—-7=3
fo=442=6;, E.=24242=06; Do=FKs—Ilo=6—-6=0
Iy=342=5 Ef=44+141=6 Dy=E;—I;=6-5=1
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A Weighted Example (cont’d)

O Iteration 1:
Inp=142=73; Fa=34244=9; Do =EBpg—Tag=9—-3=50
L=141=2; Ep=44+241=7, Dy=FEpy—Ip=7-2=05
Ip=241=3; Fe=324241=86; De=Fpn—fn=6-3=3
fd=4+3=?; Ed=3+4+3=10; Dy=Fy—I;=10-7=3
Io=442=06; Es=2+4242=0; De=Eeg—Ilo=6-6=0
ff= 4+ z2=5; Ef=4+1+1=6: Df=Ef_If= —-5=1
o g,, = D, + D, - 2¢,,
Gad = Da,-|-Dd—2¢:ad=5+3—2X3=3
gae = B4+D-2x2=2
9 = 6+1-2x4=-1
fpd = 54+3-2x4=0
Spf = 54+1-2x1=4 {(mammum) (§1=4)
90y = 34+3-2x3=0
e = 340-2x2=-1
Gef = 3+1-2x1=2
OO0 Swap b and f.
13
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A Weighted Example (cont'd)

O D’X=DX+20Xp—Zch,vXeA—{p}(swappandq,peA,qu)

D = Do+ 2¢4p—2c,; =6+2%x1-2x4=0
D, = De+2cp—2c;=3+2x1-2x1=3
Dfi = Dd+2c¢#—2cdb=3+2x3—2x4=1
Dy = Dot 25— 2cp=0+2%x2-2%x2=0

0 g, = Dy + D, - 2c,,.

Gad = Dh+Di—2c4=0+4+1-2%x3=-5
Goe = DL+ D, —2c.=04+0-2x2=-4
9od = Do+ Di—2cy=3+1-2x3=-2
Goe = Db+ DL—20e=34+0-2x2=—1 (mazimum) (@ =-1)

O Swap c and e.
14




A Weighted Example (cont’d)

N T

O D =Dy+2c,-2¢C VXeA-{p}

D Di 4 2c00—200e =04+2%x2-2%x2=0
D:; D:i+2'3de_2'3dc=1+2x‘4‘_2><3=3

O Oyy = D", + D”{’— ZC;jy.
Gad = Do+ Dg—2c0q=0+3-2x3=-3(g3=-3)

B Note that this step is redundant
O Summary: §1 =gy =4, §2 =gee = =1, §3 = gog = —3. (XTi=16 = 0).

O Largest partial sum maxY® .5 =4 (k=1)= Swap b and f.
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A Weighted Example (cont'd)
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Initiad cut cost = ([4+342) (I +3+2)+(1+3+2) = 18 (22-4)

O Iteration 2: Repeat what we did at Iteration 1
(Initial cost = 22-4 =18).

O Summary: g1 =g = -1, =gs = -3, g3 =94 = 4

O Largest partial sum = max>* =0 (k = 3) = Stop!
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Kernighan-Lin Algorithm

|
Algorithm: Kernighan-Lin{G)
Input: G = (V. E),|V| = 2n.
Qutput: Balanced bi-partition A and B with “small™ cut cost.
1 begin
2 Bipartition @ into A and B such that |Va| = |Vg|, Van¥g =8,
and VauV¥g=1V.

3 repeat
4  Compute Dy, Yo e V.
5 for:i=11ton do
G Find a pair of unlocked vertices vy ; € V4 and vy € Vg whose

exchange makes the largest decrease or smallest increase in

cut cost;
7 Mark ©z; and vy as locked, store the gain §;, and compute

the new D, for all unlccked v € V;
8 Find &, such that G, = Zlejq} is maximized,
9 WG >0 then
10 Move v q,.-.., e from Vy to Vg and vq,..., g from Vg to Vy;
11 Unlock v, Yo € V.
12 until G £ 0,
13 end

17
Time Complexity
|

CLine 4: Initial computation of D: O(n?)
ClLine 5: The for-loop: O(Nn)
CO0The body of the loop: O(Nn2).
MLines 6--7: Step i takes (n —i + 1)? time.
ClLines 4--11: Each pass of the repeat loop:
O(n3).
CSuppose the repeat loop terminates after r
passes.

O The total running time: O(rn3).
B Polynomial-time algorithm?

18




Extensions of K-I. Algorithm

O Unequal sized subsets (assume n; < n,)
1. Partition: |A] = n, and |B] = n,.
2. Add n, - n; dummy vertices to set A. Dummy vertices have no
connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.
O Unequal sized “vertices”
1. Assume that the smallest “vertex'" has unit size.

2. Replace each vertex of size s with s vertices which are fully
connected with edges of infinite weight.

3. Apply the Kernighan-Lin algorithm.
O k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

19
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Floorplanning

0 Course contents
M Floorplan basics
B Normalized Polish expression for slicing flooprlans
B B*-trees for non-slicing floorplans

0 Readings
B Chapter 10

MMotorolas Fowerl'C ™ 604 KISC

PowerPC 604 21

Floorplanning

OO0 Partitioning leads to
B Blocks with well-defined areas and shapes (rigid/hard
blocks).
B Blocks with approximate areas and no particular shapes
(flexible/soft blocks).
B A netlist specifying connections between the blocks.

0 Objectives
B Find locations for all blocks.
B Consider shapes of soft block and pin locations of all the blocks.

Blocks w/ areas Block locations
(shapes) .
netlist f netlist
—_— —_—
o S
Partitioning Floorplanning/Placement Routing

(/Pin assignment)
22




Early Layout Decision Example
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Farly Layout Decision Methodology

O An integrated circuit is essentially a two-dimensional
medium; taking this aspect into account in early stages of
the design helps in creating designs of good quality.

O Floorplanning gives early feedback: thinking of layout at
early stages may suggest valuable architectural
modifications; floorplanning also aids in estimating delay
due to wiring.

O Floorplanning fits very well in a top-down design strategy,
the step-wise refinement strategy also propagated in
software design.

O Floorplanning assumes, however, flexibility in layout design,
the existence of cells that can adapt their shapes and
terminal locations to the environment.

24




Floorplanning Problem

0 Inputs to the floorplanning problem:
M A set of blocks, hard or soft.
M Pin locations of hard blocks.
¥ A netlist.
0 Objectives: minimize area, reduce wirelength for

(critical) nets, maximize routability (minimize
congestion), determine shapes of soft blocks, etc.

7 5 3

6 6 1

1 3 1 2 J

An optimal floorplan, .
in terms of are: A non—optimal floorplan -

Floorplan Design

e Modules: v

8 Area: A=xy

® Aspectratio: r <=Vv/x <=5

8 Roiation:

® Module connectivity

C [ 2 b

26




Floorplanning Concepts

O Leaf cell

(block/module): a

cell at the lowest level
of the hierarchy; it

composite cell

does not contain any

other cell.
0 Composite cell

(block/module): a
cell that is composed
of either leaf cells or
composite cells. The
entire IC is the
highest- level
composite cell.

i
[ ]

il

]

leaf cell
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Slicing Floorplan + S

icing Tree

O A composite cell’'s subcells

are obtained by a

H

horizontal or vertical
bisection of the composite

cell.

Slicing floorplans can be

represented by a slicing
tree.

In a slicing tree, all cells
(except for the top-level
cell) have a parent, and all
composite cells have
children.

O A slicing floorplan is also
called a floorplan of order

5 H:

V:

inl

il

]

[ ]

horizontal cut
vertical cut

different from the definitions in the
textbook!!
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Skewed Slicing Tree

[0 Rectangular dissection: Subdivision of a given rectangle by a
finite # of horizontal and vertical line segments into a finite # of
non-overlapping rectangles.

O Slicing structure: a rectangular dissection that can be obtained
by repetitively subdividing rectangles horizontally or vertically.

OO0 Slicing tree: A binary tree, where each internal node represents
a vertical cut line or horizontal cut line, and each leaf a basic
rectangle.

O Skewed slicing tree: One in which no node and its right child
are the same.

— eIl T TV v
3 r//'a/ 3 EMH/ \H H/ \l
1 sl N /N /N /N /N
Y 4 5 2 1M 3 2 1V H
2 = ,,.V/ \v é/\:rv/ \3
S I B I S e W \

) Another slicing tree

Non—slicing floorplan ~ Slicing floorplan A slicing tree (skewed (non—skewed)
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Slicing Floorplan Design by
Simulated Annealing

O Related work
B Wong & Liu, “A new algorithm for floorplan
design,” DAC-86.

CConsiders slicing floorplans.

B Wong & Liu, “Floorplan design for rectangular
and L-shaped modules,” ICCAD'87.
CJAlso considers L-shaped modules.
M Wong, Leong, Liu, Simulated Annealing for
VLSI Design, pp. 31--71, Kluwer Academic
Publishers, 1988.
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Simulated Annealing

O Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated
annealing,” Science, May 1983.

0 Greene and Supowit, “Simulated annealing without rejected
moves,” ICCD-84.

A

§

e

local optima

Cost

global optimum
-

States
31

Simulated Annealing Basics

0 Non-zero probability for “up-hill” moves.

] Probability depends on
1. magnitude of the “up-hill” movement
2.total search time

1 if AC <0 [/=* “down — hall” moves s/
Prob(S — §') = _AC

e T ITAC>0 [ “up— hill" moves* [

0 AC = cost(S') - Cost(S)
0 T: Control parameter (temperature)

O Annealing schedule: T=T,, T,, T,, ..., where T, =
Ty withr < 1.

32




Generic Simulated Annealing Algorithm

1 begin

2 Get an initial solution S;

3 Get an initial temperature T > 0O;
4 while not yet “frozen” do

5 forl<i<Pdo

6 Pick a random neighbor S' of S;
7 A « cost(S') - cost(S);
/> downhill move */
8 If A<Othen S « S
/* uphill move */ A
9 if A >0 then S « S'with probability
10 T « rT; /* reduce temperature */
11 return S
12 end

33

Basic Ingredients for Simulated
Annealing

0 Analogy:
Physical system Optimization problem
state configuration
enerqgy cost function
ground state optimal solution
quenching iterative improvement
careful annealing | simulated annealing

] Basic Ingredients for Simulated Annealing:
m Solution space
B Neighborhood structure
B Cost function
B Annealing schedule

34




Solution Representation of Slicing
Floorplan

O An expression E =e; e,... 5,4, Wheree; € {1, 2, ..., n, H, V}, 1 <i<
2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1 <j < n, appears exactly once in E;

2. (the balloting property) for every subexpression E; = e;

2n-1, # operands > # operators.

.e,1<i<
16 H35V2HVY74HY
#of operands =4 ... =7
#of operators =2 ... =3
0 Polish expression <> Postorder traversal
O ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.
/V\\h\
124 Oy
e AN 24
5 s
1 3 E = 16H2V/5VH34HV
E = 16+2%75%434+%
Postorder traversal of a tree!
35

Redundant Representations

V
/ \\ / T
3 e \ 1/ . *
4
1 4 AN 5’ \

2 E = I23H4VY £ = I23HV4V

non—skewed! skewed!
H V

Non—skewed

AA AA

OO0 Question: How to eliminate ambiguous representation?

36




Normalized Polish Expression

O A Polish expression E = e; e, ... e, is called
normalized iff E has no consecutive operators of
the same type (H or V), i.e. skewed.

0 Given a normalized Polish expression, we can
construct a unique rectangular slicing structure.

v
7 5 v Th
4 N /\
v v 3 4
6 VANVAN
9) l/ \6
1 3 E = 16H2V75VH34HY

A normalized Polish expression
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Neighborhood Structure

[0 Chain: HVHVH ... or VHVHV ...
1 6H35|VI2HV74HV

AL

chain

O Adjacent: 1 and 6 are adjacent operands; 2 and 7 are
adjacent operands; 5 and V are adjacent operand and
operator.

O 3 types of moves:

® M1 (Operand Swap): Swap two adjacent operands.
B M2 (Chain Invert): Complement some chain (V = H, H = V).

B M3 (Operator/Operand Swap): Swap two adjacent operand
and operator.

38




Effects of Perturbation

: 3 | 1
4 ! - ; | ,
L3 | 4
1 4 ! 4
e — |
ol e T e | w1
I12V4H3V I2V3H4V I2H3HLV I2H34HV

0 Question: The balloting property holds during the moves?
B M1 and M2 moves are OK.
B Check the M3 moves! Reject “illegal” M3 moves.
O Check M3 moves: Assume that the M3 move swaps the
operand e; with the operator e,,,, 1 <i < k-1. Then, the
swap will not violate the balloting property iff 2N;,; <i.

B N,: # of operators in the Polish expressionE = e, e, ... g, 1 <
k<2n-1

39

Cost Function

Oo¢=A+AW.
B A: area of the smallest rectangle
B W: overall wiring length
B ) : user-specified parameter

i | T
| 4 | |
—— 2
e | 2 .
I
|—i- 4 4 —-|

1 2 | 317 1 2 —"im | 1 3 1 S
12V4H3V I2V3H4V I2H3H4V I2H34HV

B c;: # of connections between blocks i and j.
B d;: center-to-center distance between basic rectangles i and j.

ST
i Y,

{
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Area Computation for Hard Blocks

0 Allow rotation {@mal 2 1 2
|.t3+11 / — '@lfw] 212156
/\ [ 182 )[33 }/ \ @

I.B]]I. / L”l)}[ , 1 3 4
[.[3111{.[31} .
7 b2 | ol maxfui, w2} v
) ;l W vtw |LPV/ \H [
/\ b// e
] 2 L 2
; 2| —~ wi+u2 b |L 3 3
A I [ Lot b

mex i, wi
0 Wiring cost?
B Center-to-center interconnection length
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Incremental Computation of Cost
Function

0 Each move leads to only a minor modification of
the Polish expression.

0 At most two paths of the slicing tree need to be
updated for each move.

“\f"\¥ vL
/\\\K\H /
VAN AN IL.>H§; A
Cod o=k

E =12H34V56VHYV E =12H35V46VHV
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Incremental Computation of Cost
Function (cont'd)

= ks
_nH u [\ I — A
SN b e M2 LTS
SN S — K 2
S oo
E =12H34V56VHV E=12H34V56HVH
/V\L--\‘\ /VL\H
L u 1 &
/H\ L /\\vg M3 A L-.v/ \\V\L
| Ny — VAN
= L C L L A
(T /H\ L
E =12H34V56VHV Ii \i
E =123H4V56VHYV 43
Annealing Schedule

O Initial solution: 12V3V ... nV.

1 2 3 n

OT,=rT,i=1,2,3,..; r=0.85.
0 At each temperature, try kn moves (k = 5-10).
0 Terminate the annealing process if

M # of accepted moves < 5%,

M temperature is low enough, or
¥ run out of time.

44




Wong-Liu Algorithm

I
Input: (P, ¢, r, k)
1 begin
2 E « 12V3V4V ... nVY: /* initial solution */
3 Best « E; Ty « 29% ; M « MT « uphill < 0; N = kn;
4 repeat in(P)
5 MT « uphill « reject « O;
6 repeat
7 SelectMove(M);
8 Case M of
9 M;: Select two adjacent operands e; and e;; NE « Swap(E, ¢;_€));
10 M,: Select a nonzero length chain C; NE <~ Complement(E, C);
11 Mj3: done « FALSE;
12 while not (done) do
13 Select two adjacent operand e; and operator e;, 4;
14 if (ej., # €;+1) and (2 Ni;, < i) then done « TRUE;
13 Select two adjacent operator e; and operand e;, q;
14 if (e ej,») then done « TRUE;
15 NE « Swap(E, €;, ej+1);
16 MT « MT+1; Acost « cost(NE) - cost(E);
Y —Heost
17 if (Acost <0) or (Random < ¢ )
18 then
19 if (Acost > 0) then uphill « uphill + 1;
20 E « NE;
21 if cost(E) < cost(best) then best « E;
22 else reject « reject + 1;
23  until (uphill > N) or (MT > 2N);
24 T « rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ¢) or OutOfTime;
26 end
45
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[0 Flexible cells imply that cells can have different aspect

ratios.

0 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola.

] Very thin cells are not interesting and often not feasible

to design. The shape function is a combination of a
hyperbola and two straight lines.

B Aspect ratio: r <= y/x <= s.

T legal T legal
h
y L y shapes

'y: SX
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Shape Curve (cont'd)

[ Leaf cells are built from discrete transistors: it is
not realistic to assume that the shape function
follows the hyperbola continuously.

O In an extreme case, a cell is rigid: it can only be
rotated and mirrored during floorplanning or
placement.

|
X —>

The shape function of a 2 x 4 inset cell.
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Shape Curve (cont'd)

0 In general, a piecewise linear function can be
used to approximate any shape function.

0 The points where the function changes its
direction, are called the corner (break) points of
the piecewise linear function.
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