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Physical Design
 Physical design converts a circuit description into a geometric 

description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule 
checking
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Physical Design Flow
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Circuit Partitioning

 Course contents:
 Kernighang-Lin partitioning algorithm 
 Simulated annealing based partitioning algorithm
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Circuit Partitioning
 Objective: Partition a circuit into parts such that every 

component is within a prescribed range and the # of 
connections among the components is minimized.
 More constraints are possible for some applications.

 Cutset? Cut size? Size of a component?
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Problem Definition: Partitioning
 k-way partitioning: Given a graph G(V, E), where each 

vertex v  V has a size s(v) and each edge e  E has a 
weight w(e), the problem is to divide the set V into k disjoint 
subsets V1, V2, …, Vk, such that an objective function is 
optimized, subject to certain constraints.

 Bounded size constraint: The size of the i-th subset is 
bounded by Bi (i.e.,                       ).
 Is the partition balanced?

 Min-cut cost between two subsets:
Minimize                         ,  where p(u) is the partition # of 
node u.

 The 2-way, balanced partitioning problem is NP-complete, 
even in its simple form with identical vertex sizes and unit 
edge weights.
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Kernighan-Lin Algorithm
 Kernighan and Lin, “An efficient heuristic procedure for 

partitioning graphs,” The Bell System Technical Journal, vol. 
49, no. 2, Feb. 1970.

 An iterative, 2-way, balanced partitioning (bi-sectioning) 
heuristic.

 Till the cut size keeps decreasing
 Vertex pairs which give the largest decrease or the 

smallest increase in cut size are exchanged.
 These vertices are then locked (and thus are prohibited 

from participating in any further exchanges).
 This process continues until all the vertices are locked.
 Find the set with the largest partial sum for swapping.
 Unlock all vertices.
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K-L Algorithm: A Simple Example
 Each edge has a unit weight.

 Questions: How to compute cost reduction? What pairs to 
be swapped?
 Consider the change of internal & external connections.
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Properties
 Two sets A and B such that |A| = n = |B| and A  B = .
 External cost of a  A: Ea =         cav.
 Internal cost of a  A: Ia =         cav.
 D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
 Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
 If a  A and b  B are interchanged, then the new D-values, D’, 

are given by

v B
v A
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A Weighted Example

 Iteration 1
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A Weighted Example (cont’d)
 Iteration 1:

 gxy = Dx + Dy - 2cxy.

 Swap b and f. 
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A Weighted Example (cont’d)

 D’x = Dx + 2 cxp - 2 cxq,  x  A – {p} (swap p and q, p  A, q  B)

 gxy = D’x + D’y - 2cxy.

 Swap c and e. 
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A Weighted Example (cont’d)

 D’’x = D’x + 2 cxp - 2 cxq,  x  A – {p}

 gxy = D’’x + D’’y - 2cxy.

 Note that this step is redundant

 Summary:       

 Largest partial sum                              (k = 1)  Swap b and f.
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A Weighted Example (cont’d)

 Iteration 2: Repeat what we did at Iteration 1 
(Initial cost  = 22-4 =18).

 Summary:       

 Largest partial sum =                              (k = 3)  Stop!
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Kernighan-Lin Algorithm
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Time Complexity

Line 4: Initial computation of D: O(n2)
Line 5: The for-loop: O(n)
The body of the loop: O(n2).
Lines 6--7: Step i takes (n – i + 1)2 time.

Lines 4--11: Each pass of the repeat loop: 
O(n3).

Suppose the repeat loop terminates after r
passes.

The total running time: O(rn3).
Polynomial-time algorithm?
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Extensions of K-L Algorithm
 Unequal sized subsets (assume n1 < n2)

1. Partition:  |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have no 

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

 Unequal sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully 

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

 k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Floorplanning

 Course contents
 Floorplan basics 
 Normalized Polish expression for slicing flooprlans
 B*-trees for non-slicing floorplans

 Readings
 Chapter 10

Pentium 4
PowerPC 604
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Floorplanning
 Partitioning leads to

 Blocks with well-defined areas and shapes (rigid/hard
blocks).

 Blocks with approximate areas and no particular shapes 
(flexible/soft blocks).

 A netlist specifying connections between the blocks.
 Objectives

 Find  locations for all blocks.
 Consider shapes of soft block and pin locations of all the blocks.
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Early Layout Decision Example
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Early Layout Decision Methodology
 An integrated circuit is essentially a two-dimensional 

medium; taking this aspect into account in early stages of 
the design helps in creating designs of good quality.

 Floorplanning gives early feedback: thinking of layout at 
early stages may suggest valuable architectural 
modifications; floorplanning also aids in estimating delay 
due to wiring.

 Floorplanning fits very well in a top-down design strategy, 
the step-wise refinement strategy also propagated in 
software design.

 Floorplanning assumes, however, flexibility in layout design, 
the existence of cells that can adapt their shapes and 
terminal locations to the environment.
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Floorplanning Problem

 Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.
 A netlist.

Objectives: minimize area, reduce wirelength for 
(critical) nets, maximize routability (minimize 
congestion), determine shapes of soft blocks, etc.
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Floorplan Design
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Floorplanning Concepts

 Leaf cell 
(block/module): a 
cell at the lowest level 
of the hierarchy; it 
does not contain any 
other cell.

 Composite cell
(block/module): a 
cell that is composed 
of either leaf cells or 
composite cells. The 
entire IC is the 
highest- level 
composite cell.

leaf cell

composite cell
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Slicing Floorplan + Slicing Tree
 A composite cell’s subcells

are obtained by a 
horizontal or vertical 
bisection of the composite 
cell.

 Slicing floorplans can be 
represented by a slicing 
tree. 

 In a slicing tree, all cells 
(except for the top-level 
cell) have a parent, and all 
composite cells have 
children.

 A slicing floorplan is also 
called a floorplan of order 
2.

H

V

H

H: horizontal cut
V: vertical cut
different from the definitions in the 
textbook!!
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Skewed Slicing Tree
 Rectangular dissection: Subdivision of a given rectangle by a 

finite # of horizontal and vertical line segments into a finite # of 
non-overlapping rectangles.

 Slicing structure: a rectangular dissection that can be obtained 
by repetitively subdividing rectangles horizontally or vertically.

 Slicing tree: A binary tree, where each internal node represents 
a vertical cut line or horizontal cut line, and each leaf a basic 
rectangle.

 Skewed slicing tree: One in which no node and its right child 
are the same.
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Slicing Floorplan Design by 
Simulated Annealing

Related work
Wong & Liu, “A new algorithm for floorplan

design,” DAC-86.
Considers slicing floorplans.

Wong & Liu, “Floorplan design for rectangular 
and L-shaped modules,” ICCAD'87.
Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for 
VLSI Design, pp. 31--71, Kluwer Academic 
Publishers, 1988.
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Simulated Annealing
 Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated 

annealing,” Science, May 1983.
 Greene and Supowit, “Simulated annealing without rejected 

moves,” ICCD-84.
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Simulated Annealing Basics

 Non-zero probability for “up-hill” moves.
 Probability depends on

1.magnitude of the “up-hill” movement
2.total search time

 C = cost(S') - Cost(S)
 T: Control parameter (temperature)
 Annealing schedule: T=T0, T1, T2, …, where Ti = 

ri T0 with r < 1.
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Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S; 
3 Get an initial temperature T > 0; 
4 while not yet “frozen” do
5    for 1  i  P do
6         Pick a random neighbor S' of S;
7           cost(S') - cost(S);

/* downhill move */
8         if   0 then S  S'

/* uphill move */
9         if  > 0 then S  S' with probability           ;
10 T  rT;  /* reduce temperature */  
11 return S
12 end
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Basic Ingredients for Simulated 
Annealing

 Analogy:

 Basic Ingredients for Simulated Annealing:
 Solution space
 Neighborhood structure
 Cost function
 Annealing schedule
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Solution Representation of Slicing 
Floorplan
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i 

2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1  j  n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 … ei, 1  i 

2n-1, # operands > # operators.

 Polish expression  Postorder traversal.
 ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.
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Redundant Representations

 Question: How to eliminate ambiguous representation?
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Normalized Polish Expression

 A Polish expression E = e1 e2 … e2n-1 is called  
normalized iff E has no consecutive operators of 
the same type (H or V), i.e. skewed.

 Given a normalized Polish expression, we can 
construct a unique rectangular slicing structure.
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Neighborhood Structure
 Chain: HVHVH … or VHVHV …

 Adjacent: 1 and 6 are adjacent operands; 2 and 7 are 
adjacent operands; 5 and V are adjacent operand and 
operator.

 3 types of moves:
 M1 (Operand Swap): Swap two adjacent operands.
 M2 (Chain Invert): Complement some chain (V = H, H = V).
 M3 (Operator/Operand Swap): Swap two adjacent operand 

and operator.
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Effects of Perturbation

 Question: The balloting property holds during the moves?
 M1 and M2 moves are OK.
 Check the M3 moves! Reject “illegal” M3 moves.

 Check M3 moves: Assume that the M3 move swaps the 
operand ei with the operator ei+1, 1  i  k-1. Then, the 
swap will not violate the balloting property iff 2Ni+1 < i.
 Nk: # of operators in the Polish expression E = e1 e2 … ek, 1 

k  2n-1

1 2
3

4
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Cost Function
  = A +  W.

 A: area of the smallest rectangle
 W: overall wiring length
  : user-specified parameter

 W= ijcij dij.
 cij: # of connections between blocks i and j.
 dij: center-to-center distance between basic rectangles i and j.



41

Area Computation for Hard Blocks
 Allow rotation

 Wiring cost?
 Center-to-center interconnection length
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Incremental Computation of Cost 
Function

 Each move leads to only a minor modification of 
the Polish expression.

 At most two paths of the slicing tree need to be 
updated for each move.
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Incremental Computation of Cost 
Function (cont'd)
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Annealing Schedule

 Initial solution: 12V3V … nV.

 Ti = ri T0, i = 1, 2, 3, …; r =0.85.
 At each temperature, try kn moves (k = 5-10).
 Terminate the annealing process if
 # of accepted moves < 5%,
 temperature is low enough, or
 run out of time.
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Wong-Liu Algorithm
Input: (P, , r, k)
1 begin
2 E  12V3V4V … nV; /* initial solution */
3 Best  E; T0  ; M  MT  uphill  0; N = kn; 
4 repeat 
5    MT  uphill  reject  0; 
6    repeat 
7       SelectMove(M); 
8       Case M of 
9       M1:  Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
10     M2:  Select a nonzero length chain C; NE  Complement(E, C);
11     M3:  done  FALSE;
12         while not (done) do
13              Select two adjacent operand ei and operator ei+1;
14              if (ei-1  ei+1)  and (2 Ni+1 < i) then done  TRUE; 
13’ Select two adjacent operator ei and operand ei+1;
14’ if (ei ei+2) then done  TRUE; 
15         NE  Swap(E, ei, ei+1);
16     MT  MT+1; cost  cost(NE) - cost(E);

17     if (cost  0) or (Random <                    )
18      then
19           if (cost > 0) then uphill  uphill + 1;
20           E  NE;
21           if cost(E) < cost(best) then best  E;
22       else reject  reject + 1; 
23    until (uphill > N) or (MT > 2N); 
24    T  rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ) or OutOfTime; 
26 end

46

Shape Curve
 Flexible cells imply that cells can have different aspect 

ratios.
 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola. 
 Very thin cells are not interesting and often not feasible 

to design. The shape function is a combination of a 
hyperbola and two straight lines. 
 Aspect ratio: r <= y/x <= s.

y = sx

y = rx

legal 
shapesy

xx

y
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Shape Curve (cont’d)

 Leaf cells are built from discrete transistors: it is 
not realistic to assume that the shape function 
follows the hyperbola continuously.

 In an extreme case, a cell is rigid: it can only be 
rotated and mirrored during floorplanning or 
placement. 

The shape function of a 2  4 inset cell.

y

x
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Shape Curve (cont’d)

 In general, a piecewise linear function can be 
used to approximate any shape function.

 The points where the function changes its 
direction, are called the corner (break) points of 
the piecewise linear function.


