
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

2

Physical Design

Logic synthesis

High-level synthesis

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang

3

Physical Design
 Physical design converts a circuit description into a geometric

description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule
checking

4

Physical Design Flow

5

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

6

Circuit Partitioning

 Course contents:
 Kernighang-Lin partitioning algorithm
 Simulated annealing based partitioning algorithm

7

Circuit Partitioning
 Objective: Partition a circuit into parts such that every

component is within a prescribed range and the # of
connections among the components is minimized.
 More constraints are possible for some applications.

 Cutset? Cut size? Size of a component?

8

(,) () ()
()

e u v p u p v
w e

   

Problem Definition: Partitioning
 k-way partitioning: Given a graph G(V, E), where each

vertex v  V has a size s(v) and each edge e  E has a
weight w(e), the problem is to divide the set V into k disjoint
subsets V1, V2, …, Vk, such that an objective function is
optimized, subject to certain constraints.

 Bounded size constraint: The size of the i-th subset is
bounded by Bi (i.e.,).
 Is the partition balanced?

 Min-cut cost between two subsets:
Minimize , where p(u) is the partition # of
node u.

 The 2-way, balanced partitioning problem is NP-complete,
even in its simple form with identical vertex sizes and unit
edge weights.

9

Kernighan-Lin Algorithm
 Kernighan and Lin, “An efficient heuristic procedure for

partitioning graphs,” The Bell System Technical Journal, vol.
49, no. 2, Feb. 1970.

 An iterative, 2-way, balanced partitioning (bi-sectioning)
heuristic.

 Till the cut size keeps decreasing
 Vertex pairs which give the largest decrease or the

smallest increase in cut size are exchanged.
 These vertices are then locked (and thus are prohibited

from participating in any further exchanges).
 This process continues until all the vertices are locked.
 Find the set with the largest partial sum for swapping.
 Unlock all vertices.

10

K-L Algorithm: A Simple Example
 Each edge has a unit weight.

 Questions: How to compute cost reduction? What pairs to
be swapped?
 Consider the change of internal & external connections.

11

Properties
 Two sets A and B such that |A| = n = |B| and A  B = .
 External cost of a  A: Ea = cav.
 Internal cost of a  A: Ia = cav.
 D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
 Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
 If a  A and b  B are interchanged, then the new D-values, D’,

are given by

v B
v A

12

A Weighted Example

 Iteration 1

13

A Weighted Example (cont’d)
 Iteration 1:

 gxy = Dx + Dy - 2cxy.

 Swap b and f.

14

A Weighted Example (cont’d)

 D’x = Dx + 2 cxp - 2 cxq,  x  A – {p} (swap p and q, p  A, q  B)

 gxy = D’x + D’y - 2cxy.

 Swap c and e.

15

A Weighted Example (cont’d)

 D’’x = D’x + 2 cxp - 2 cxq,  x  A – {p}

 gxy = D’’x + D’’y - 2cxy.

 Note that this step is redundant

 Summary:

 Largest partial sum (k = 1)  Swap b and f.

16

A Weighted Example (cont’d)

 Iteration 2: Repeat what we did at Iteration 1
(Initial cost = 22-4 =18).

 Summary:

 Largest partial sum = (k = 3)  Stop!

17

Kernighan-Lin Algorithm

18

Time Complexity

Line 4: Initial computation of D: O(n2)
Line 5: The for-loop: O(n)
The body of the loop: O(n2).
Lines 6--7: Step i takes (n – i + 1)2 time.

Lines 4--11: Each pass of the repeat loop:
O(n3).

Suppose the repeat loop terminates after r
passes.

The total running time: O(rn3).
Polynomial-time algorithm?

19

Extensions of K-L Algorithm
 Unequal sized subsets (assume n1 < n2)

1. Partition: |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have no

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

 Unequal sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

 k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

20

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

21

Floorplanning

 Course contents
 Floorplan basics
 Normalized Polish expression for slicing flooprlans
 B*-trees for non-slicing floorplans

 Readings
 Chapter 10

Pentium 4
PowerPC 604

22

Floorplanning
 Partitioning leads to

 Blocks with well-defined areas and shapes (rigid/hard
blocks).

 Blocks with approximate areas and no particular shapes
(flexible/soft blocks).

 A netlist specifying connections between the blocks.
 Objectives

 Find locations for all blocks.
 Consider shapes of soft block and pin locations of all the blocks.

23

Early Layout Decision Example

24

Early Layout Decision Methodology
 An integrated circuit is essentially a two-dimensional

medium; taking this aspect into account in early stages of
the design helps in creating designs of good quality.

 Floorplanning gives early feedback: thinking of layout at
early stages may suggest valuable architectural
modifications; floorplanning also aids in estimating delay
due to wiring.

 Floorplanning fits very well in a top-down design strategy,
the step-wise refinement strategy also propagated in
software design.

 Floorplanning assumes, however, flexibility in layout design,
the existence of cells that can adapt their shapes and
terminal locations to the environment.

25

Floorplanning Problem

 Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.
 A netlist.

Objectives: minimize area, reduce wirelength for
(critical) nets, maximize routability (minimize
congestion), determine shapes of soft blocks, etc.

26

Floorplan Design

27

Floorplanning Concepts

 Leaf cell
(block/module): a
cell at the lowest level
of the hierarchy; it
does not contain any
other cell.

 Composite cell
(block/module): a
cell that is composed
of either leaf cells or
composite cells. The
entire IC is the
highest- level
composite cell.

leaf cell

composite cell

28

Slicing Floorplan + Slicing Tree
 A composite cell’s subcells

are obtained by a
horizontal or vertical
bisection of the composite
cell.

 Slicing floorplans can be
represented by a slicing
tree.

 In a slicing tree, all cells
(except for the top-level
cell) have a parent, and all
composite cells have
children.

 A slicing floorplan is also
called a floorplan of order
2.

H

V

H

H: horizontal cut
V: vertical cut
different from the definitions in the
textbook!!

29

Skewed Slicing Tree
 Rectangular dissection: Subdivision of a given rectangle by a

finite # of horizontal and vertical line segments into a finite # of
non-overlapping rectangles.

 Slicing structure: a rectangular dissection that can be obtained
by repetitively subdividing rectangles horizontally or vertically.

 Slicing tree: A binary tree, where each internal node represents
a vertical cut line or horizontal cut line, and each leaf a basic
rectangle.

 Skewed slicing tree: One in which no node and its right child
are the same.

30

Slicing Floorplan Design by
Simulated Annealing

Related work
Wong & Liu, “A new algorithm for floorplan

design,” DAC-86.
Considers slicing floorplans.

Wong & Liu, “Floorplan design for rectangular
and L-shaped modules,” ICCAD'87.
Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for
VLSI Design, pp. 31--71, Kluwer Academic
Publishers, 1988.

31

Simulated Annealing
 Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated

annealing,” Science, May 1983.
 Greene and Supowit, “Simulated annealing without rejected

moves,” ICCD-84.

32

Simulated Annealing Basics

 Non-zero probability for “up-hill” moves.
 Probability depends on

1.magnitude of the “up-hill” movement
2.total search time

 C = cost(S') - Cost(S)
 T: Control parameter (temperature)
 Annealing schedule: T=T0, T1, T2, …, where Ti =

ri T0 with r < 1.

33

Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0;
4 while not yet “frozen” do
5 for 1  i  P do
6 Pick a random neighbor S' of S;
7   cost(S') - cost(S);

/* downhill move */
8 if   0 then S  S'

/* uphill move */
9 if  > 0 then S  S' with probability ;
10 T  rT; /* reduce temperature */
11 return S
12 end

34

Basic Ingredients for Simulated
Annealing

 Analogy:

 Basic Ingredients for Simulated Annealing:
 Solution space
 Neighborhood structure
 Cost function
 Annealing schedule

35

Solution Representation of Slicing
Floorplan
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i 

2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1  j  n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 … ei, 1  i 

2n-1, # operands > # operators.

 Polish expression  Postorder traversal.
 ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

36

Redundant Representations

 Question: How to eliminate ambiguous representation?

37

Normalized Polish Expression

 A Polish expression E = e1 e2 … e2n-1 is called
normalized iff E has no consecutive operators of
the same type (H or V), i.e. skewed.

 Given a normalized Polish expression, we can
construct a unique rectangular slicing structure.

38

Neighborhood Structure
 Chain: HVHVH … or VHVHV …

 Adjacent: 1 and 6 are adjacent operands; 2 and 7 are
adjacent operands; 5 and V are adjacent operand and
operator.

 3 types of moves:
 M1 (Operand Swap): Swap two adjacent operands.
 M2 (Chain Invert): Complement some chain (V = H, H = V).
 M3 (Operator/Operand Swap): Swap two adjacent operand

and operator.

39

Effects of Perturbation

 Question: The balloting property holds during the moves?
 M1 and M2 moves are OK.
 Check the M3 moves! Reject “illegal” M3 moves.

 Check M3 moves: Assume that the M3 move swaps the
operand ei with the operator ei+1, 1  i  k-1. Then, the
swap will not violate the balloting property iff 2Ni+1 < i.
 Nk: # of operators in the Polish expression E = e1 e2 … ek, 1 

k  2n-1

1 2
3

4

40

Cost Function
  = A +  W.

 A: area of the smallest rectangle
 W: overall wiring length
  : user-specified parameter

 W= ijcij dij.
 cij: # of connections between blocks i and j.
 dij: center-to-center distance between basic rectangles i and j.

41

Area Computation for Hard Blocks
 Allow rotation

 Wiring cost?
 Center-to-center interconnection length

42

Incremental Computation of Cost
Function

 Each move leads to only a minor modification of
the Polish expression.

 At most two paths of the slicing tree need to be
updated for each move.

43

Incremental Computation of Cost
Function (cont'd)

44

Annealing Schedule

 Initial solution: 12V3V … nV.

 Ti = ri T0, i = 1, 2, 3, …; r =0.85.
 At each temperature, try kn moves (k = 5-10).
 Terminate the annealing process if
 # of accepted moves < 5%,
 temperature is low enough, or
 run out of time.

45

Wong-Liu Algorithm
Input: (P, , r, k)
1 begin
2 E  12V3V4V … nV; /* initial solution */
3 Best  E; T0  ; M  MT  uphill  0; N = kn;
4 repeat
5 MT  uphill  reject  0;
6 repeat
7 SelectMove(M);
8 Case M of
9 M1: Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
10 M2: Select a nonzero length chain C; NE  Complement(E, C);
11 M3: done  FALSE;
12 while not (done) do
13 Select two adjacent operand ei and operator ei+1;
14 if (ei-1  ei+1) and (2 Ni+1 < i) then done  TRUE;
13’ Select two adjacent operator ei and operand ei+1;
14’ if (ei ei+2) then done  TRUE;
15 NE  Swap(E, ei, ei+1);
16 MT  MT+1; cost  cost(NE) - cost(E);

17 if (cost  0) or (Random <)
18 then
19 if (cost > 0) then uphill  uphill + 1;
20 E  NE;
21 if cost(E) < cost(best) then best  E;
22 else reject  reject + 1;
23 until (uphill > N) or (MT > 2N);
24 T  rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ) or OutOfTime;
26 end

46

Shape Curve
 Flexible cells imply that cells can have different aspect

ratios.
 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola.
 Very thin cells are not interesting and often not feasible

to design. The shape function is a combination of a
hyperbola and two straight lines.
 Aspect ratio: r <= y/x <= s.

y = sx

y = rx

legal
shapesy

xx

y

47

Shape Curve (cont’d)

 Leaf cells are built from discrete transistors: it is
not realistic to assume that the shape function
follows the hyperbola continuously.

 In an extreme case, a cell is rigid: it can only be
rotated and mirrored during floorplanning or
placement.

The shape function of a 2  4 inset cell.

y

x

48

Shape Curve (cont’d)

 In general, a piecewise linear function can be
used to approximate any shape function.

 The points where the function changes its
direction, are called the corner (break) points of
the piecewise linear function.

