

Introduction to Electronic Design Automation

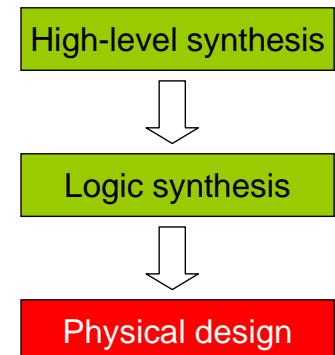
Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2011

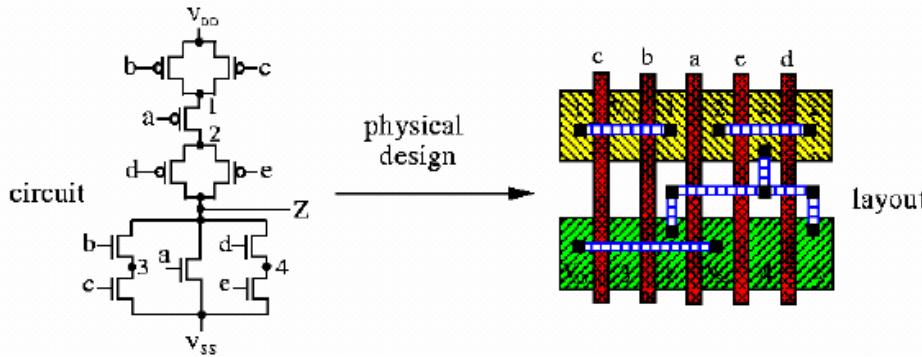
1

Physical Design



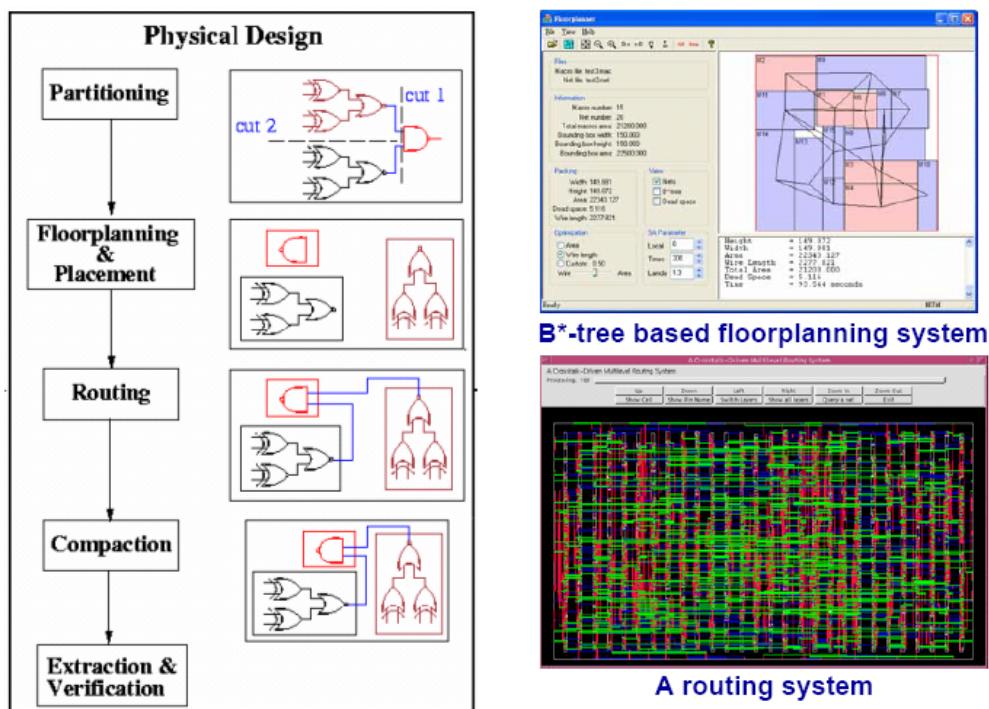
Physical Design

- Physical design converts a circuit description into a geometric description.
- The description is used to manufacture a chip.
- Physical design cycle:
 1. Logic partitioning
 2. Floorplanning and placement
 3. Routing
 4. Compaction
- Others: circuit extraction, timing verification and design rule checking



3

Physical Design Flow



4

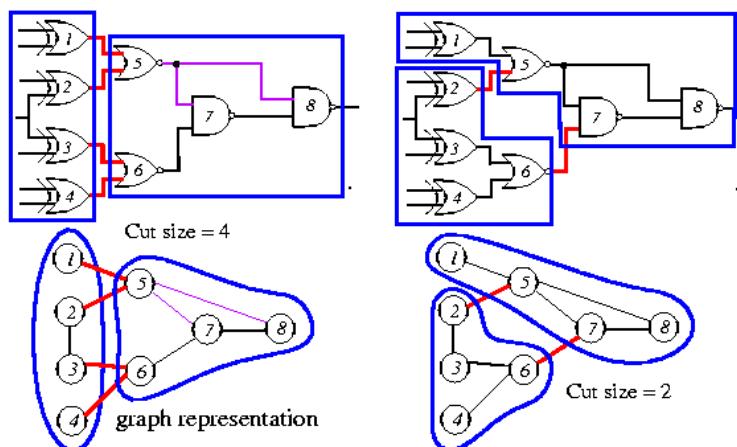
Outline

- Partitioning
- Floorplanning
- Placement
- Routing
- Compaction

5

Circuit Partitioning

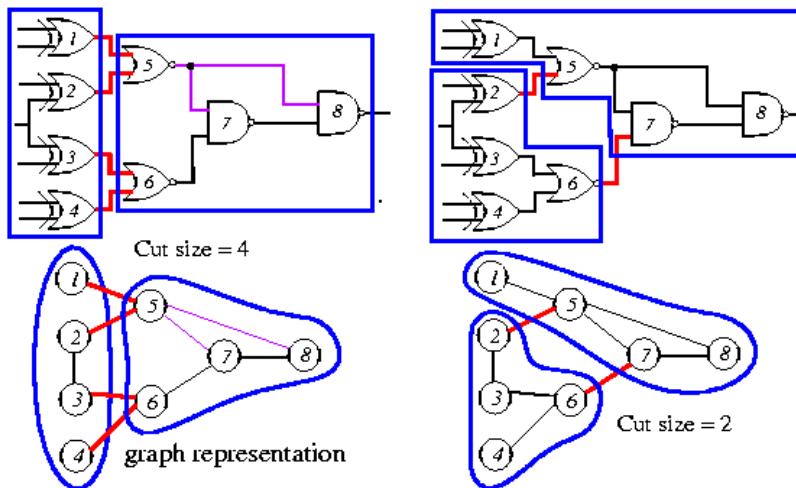
- Course contents:
 - Kernighan-Lin partitioning algorithm
 - Simulated annealing based partitioning algorithm



6

Circuit Partitioning

- ❑ **Objective:** Partition a circuit into parts such that every component is within a prescribed range and the # of connections among the components is minimized.
 - More constraints are possible for some applications.
- ❑ Cutset? Cut size? Size of a component?



7

Problem Definition: Partitioning

- ❑ ***k*-way partitioning:** Given a graph $G(V, E)$, where each vertex $v \in V$ has a **size** $s(v)$ and each edge $e \in E$ has a **weight** $w(e)$, the problem is to divide the set V into k disjoint subsets V_1, V_2, \dots, V_k , such that an objective function is optimized, subject to certain constraints.
- ❑ **Bounded size constraint:** The size of the i -th subset is bounded by B_i (i.e., $\sum_{v \in V_i} s(v) \leq B_i$).
 - Is the partition balanced?
- ❑ **Min-cut cost between two subsets:** Minimize $\sum_{\forall e=(u,v) \wedge p(u) \neq p(v)} w(e)$, where $p(u)$ is the partition # of node u .
- ❑ The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

8

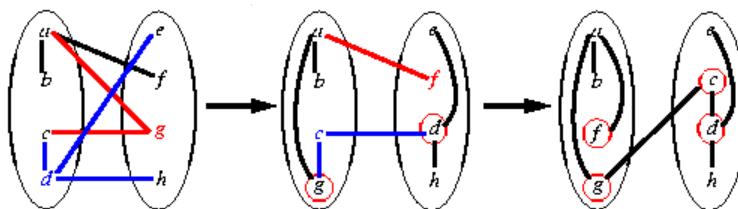
Kernighan-Lin Algorithm

- ❑ Kernighan and Lin, “An efficient heuristic procedure for partitioning graphs,” *The Bell System Technical Journal*, vol. 49, no. 2, Feb. 1970.
- ❑ An **iterative, 2-way, balanced** partitioning (bi-sectioning) heuristic.
- ❑ Till the cut size keeps decreasing
 - Vertex pairs which give the largest decrease **or the smallest increase** in cut size are exchanged.
 - These vertices are then **locked** (and thus are prohibited from participating in any further exchanges).
 - This process continues until all the vertices are locked.
 - Find the set with the largest partial sum for swapping.
 - Unlock all vertices.

9

K-L Algorithm: A Simple Example

- ❑ Each edge has a unit weight.



Step #	Vertex pair	Cost reduction	Cut cost
0	-	0	5
1	{d, g}	3	2
2	{c, f}	1	1
3	{b, h}	-2	3
4	{a, e}	-2	5

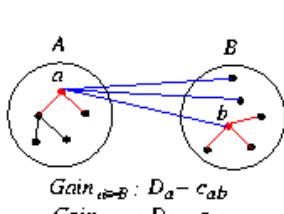
- ❑ Questions: How to compute cost reduction? What pairs to be swapped?
 - Consider the change of internal & external connections.

10

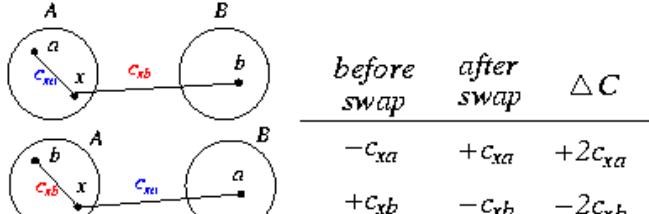
Properties

- Two sets A and B such that $|A| = n = |B|$ and $A \cap B = \emptyset$.
- External cost** of $a \in A$: $E_a = \sum_{v \in B} c_{av}$.
- Internal cost** of $a \in A$: $I_a = \sum_{v \in A} c_{av}$.
- D -value of a vertex a : $D_a = E_a - I_a$ (cost reduction for moving a).
- Cost reduction (gain) for swapping a and b : $g_{ab} = D_a + D_b - 2c_{ab}$.
- If $a \in A$ and $b \in B$ are interchanged, then the new D -values, D' , are given by

$$\begin{aligned} D'_x &= D_x + 2c_{xa} - 2c_{xb}, \forall x \in A - \{a\} \\ D'_y &= D_y + 2c_{yb} - 2c_{ya}, \forall y \in B - \{b\}. \end{aligned}$$



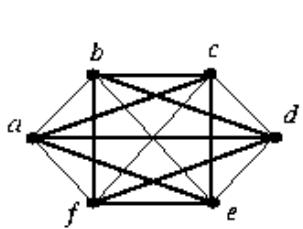
Internal cost vs. External cost



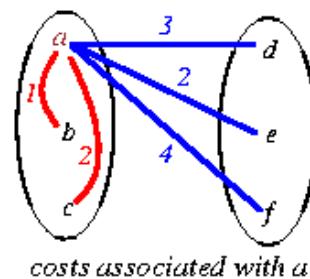
updating D -values

11

A Weighted Example



	a	b	c	d	e	f
a	0	1	2	3	2	4
b	1	0	1	4	2	1
c	2	1	0	3	2	1
d	3	4	3	0	4	3
e	2	2	2	4	0	2
f	4	1	1	3	2	0



Initial cut cost = $(3+2+4)+(4+2+1)+(3+2+1) = 22$

- Iteration 1

$$\begin{aligned} I_a &= 1 + 2 = 3; & E_a &= 3 + 2 + 4 = 9; & D_a &= E_a - I_a = 9 - 3 = 6 \\ I_b &= 1 + 1 = 2; & E_b &= 4 + 2 + 1 = 7; & D_b &= E_b - I_b = 7 - 2 = 5 \\ I_c &= 2 + 1 = 3; & E_c &= 3 + 2 + 1 = 6; & D_c &= E_c - I_c = 6 - 3 = 3 \\ I_d &= 4 + 3 = 7; & E_d &= 3 + 4 + 3 = 10; & D_d &= E_d - I_d = 10 - 7 = 3 \\ I_e &= 4 + 2 = 6; & E_e &= 2 + 2 + 2 = 6; & D_e &= E_e - I_e = 6 - 6 = 0 \\ I_f &= 3 + 2 = 5; & E_f &= 4 + 1 + 1 = 6; & D_f &= E_f - I_f = 6 - 5 = 1 \end{aligned}$$

12

A Weighted Example (cont'd)

□ Iteration 1:

$$\begin{aligned}
 I_a &= 1 + 2 = 3; & E_a &= 3 + 2 + 4 = 9; & D_a &= E_a - I_a = 9 - 3 = 6 \\
 I_b &= 1 + 1 = 2; & E_b &= 4 + 2 + 1 = 7; & D_b &= E_b - I_b = 7 - 2 = 5 \\
 I_c &= 2 + 1 = 3; & E_c &= 3 + 2 + 1 = 6; & D_c &= E_c - I_c = 6 - 3 = 3 \\
 I_d &= 4 + 3 = 7; & E_d &= 3 + 4 + 3 = 10; & D_d &= E_d - I_d = 10 - 7 = 3 \\
 I_e &= 4 + 2 = 6; & E_e &= 2 + 2 + 2 = 6; & D_e &= E_e - I_e = 6 - 6 = 0 \\
 I_f &= 3 + 2 = 5; & E_f &= 4 + 1 + 1 = 6; & D_f &= E_f - I_f = 6 - 5 = 1
 \end{aligned}$$

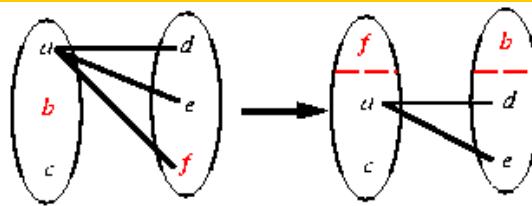
$$\square g_{xy} = D_x + D_y - 2c_{xy}.$$

$$\begin{aligned}
 g_{ad} &= D_a + D_d - 2c_{ad} = 6 + 3 - 2 \times 3 = 3 \\
 g_{ae} &= 6 + 0 - 2 \times 2 = 2 \\
 g_{af} &= 6 + 1 - 2 \times 4 = -1 \\
 g_{bd} &= 5 + 3 - 2 \times 4 = 0 \\
 g_{be} &= 5 + 0 - 2 \times 2 = 1 \\
 g_{bf} &= 5 + 1 - 2 \times 1 = 4 \text{ (maximum)} \quad (\hat{g}_1 = 4) \\
 g_{cd} &= 3 + 3 - 2 \times 3 = 0 \\
 g_{ce} &= 3 + 0 - 2 \times 2 = -1 \\
 g_{cf} &= 3 + 1 - 2 \times 1 = 2
 \end{aligned}$$

□ Swap b and f .

13

A Weighted Example (cont'd)



$$\square D'_x = D_x + 2c_{xp} - 2c_{xq}, \forall x \in A - \{p\} \text{ (swap } p \text{ and } q, p \in A, q \in B\}$$

$$\begin{aligned}
 D'_a &= D_a + 2c_{ab} - 2c_{af} = 6 + 2 \times 1 - 2 \times 4 = 0 \\
 D'_c &= D_c + 2c_{cb} - 2c_{cf} = 3 + 2 \times 1 - 2 \times 1 = 3 \\
 D'_d &= D_d + 2c_{df} - 2c_{db} = 3 + 2 \times 3 - 2 \times 4 = 1 \\
 D'_e &= D_e + 2c_{ef} - 2c_{eb} = 0 + 2 \times 2 - 2 \times 2 = 0
 \end{aligned}$$

$$\square g_{xy} = D'_x + D'_y - 2c_{xy}.$$

$$\begin{aligned}
 g_{ad} &= D'_a + D'_d - 2c_{ad} = 0 + 1 - 2 \times 3 = -5 \\
 g_{ae} &= D'_a + D'_e - 2c_{ae} = 0 + 0 - 2 \times 2 = -4 \\
 g_{ad} &= D'_c + D'_d - 2c_{cd} = 3 + 1 - 2 \times 3 = -2 \\
 g_{ce} &= D'_c + D'_e - 2c_{ce} = 3 + 0 - 2 \times 2 = -1 \text{ (maximum)} \quad (\hat{g}_2 = -1)
 \end{aligned}$$

□ Swap c and e .

14

A Weighted Example (cont'd)



◻ $D''_x = D'_x + 2 c_{xp} - 2 c_{xq}, \forall x \in A - \{p\}$

$$\begin{aligned} D''_a &= D'_a + 2c_{ac} - 2c_{ae} = 0 + 2 \times 2 - 2 \times 2 = 0 \\ D''_d &= D'_d + 2c_{de} - 2c_{dc} = 1 + 2 \times 4 - 2 \times 3 = 3 \end{aligned}$$

◻ $g_{xy} = D''_x + D''_y - 2c_{xy}$

$$g_{ad} = D''_a + D''_d - 2c_{ad} = 0 + 3 - 2 \times 3 = -3 (\hat{g}_3 = -3)$$

■ Note that this step is redundant

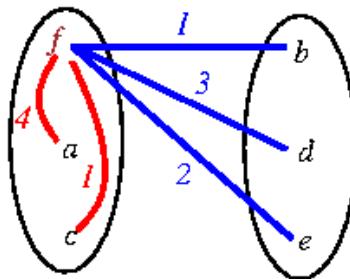
◻ Summary: $\hat{g}_1 = g_{bf} = 4, \hat{g}_2 = g_{ce} = -1, \hat{g}_3 = g_{ad} = -3$. ($\sum_{i=1}^n \hat{g}_i = 0$).

◻ Largest partial sum $\max \sum_{i=1}^k \hat{g}_i = 4$ ($k = 1$) \Rightarrow Swap b and f .

15

A Weighted Example (cont'd)

	a	b	c	d	e	f
a	0	1	2	3	2	4
b	1	0	1	4	2	1
c	2	1	0	3	2	1
d	3	4	3	0	4	3
e	2	2	2	4	0	2
f	4	1	1	3	2	0



$$\text{Initial cut cost} = (1+3+2) + (1+3+2) + (1+3+2) = 18 (22-4)$$

◻ Iteration 2: Repeat what we did at Iteration 1
(Initial cost = $22-4 = 18$).

◻ Summary: $\hat{g}_1 = g_{ce} = -1, \hat{g}_2 = g_{ab} = -3, \hat{g}_3 = g_{fd} = 4$.

◻ Largest partial sum = $\max \sum_{i=1}^k \hat{g}_i = 0$ ($k = 3$) \Rightarrow Stop!

16

Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin(G)

Input: $G = (V, E)$, $|V| = 2n$.

Output: Balanced bi-partition A and B with “small” cut cost.

```
1 begin
2 Bipartition  $G$  into  $A$  and  $B$  such that  $|V_A| = |V_B|$ ,  $V_A \cap V_B = \emptyset$ ,
   and  $V_A \cup V_B = V$ .
3 repeat
4   Compute  $D_v$ ,  $\forall v \in V$ .
5   for  $i = 1$  to  $n$  do
6     Find a pair of unlocked vertices  $v_{ai} \in V_A$  and  $v_{bi} \in V_B$  whose
       exchange makes the largest decrease or smallest increase in
       cut cost;
7     Mark  $v_{ai}$  and  $v_{bi}$  as locked, store the gain  $\hat{g}_i$ , and compute
       the new  $D_v$ , for all unlocked  $v \in V$ ;
8     Find  $k$ , such that  $G_k = \sum_{i=1}^k \hat{g}_i$  is maximized;
9     if  $G_k > 0$  then
10       Move  $v_{a1}, \dots, v_{ak}$  from  $V_A$  to  $V_B$  and  $v_{b1}, \dots, v_{bk}$  from  $V_B$  to  $V_A$ ;
11     Unlock  $v$ ,  $\forall v \in V$ .
12 until  $G_k \leq 0$ ;
13 end
```

17

Time Complexity

- Line 4: Initial computation of D : $O(n^2)$
- Line 5: The **for**-loop: $O(n)$
- The body of the loop: $O(n^2)$.
 - Lines 6--7: Step i takes $(n - i + 1)^2$ time.
- Lines 4--11: Each pass of the repeat loop: $O(n^3)$.
- Suppose the repeat loop terminates after r passes.
- The total running time: $O(rn^3)$.
 - Polynomial-time algorithm?

18

Extensions of K-L Algorithm

- **Unequal sized subsets** (assume $n_1 < n_2$)
 1. Partition: $|A| = n_1$ and $|B| = n_2$.
 2. Add $n_2 - n_1$ dummy vertices to set A. Dummy vertices have no connections to the original graph.
 3. Apply the Kernighan-Lin algorithm.
 4. Remove all dummy vertices.
- **Unequal sized “vertices”**
 1. Assume that the smallest “vertex” has unit size.
 2. Replace each vertex of size s with s vertices which are fully connected with edges of infinite weight.
 3. Apply the Kernighan-Lin algorithm.
- **k -way partition**
 1. Partition the graph into k equal-sized sets.
 2. Apply the Kernighan-Lin algorithm for each pair of subsets.
 3. Time complexity? Can be reduced by recursive bi-partition.

19

Outline

- Partitioning
- Floorplanning
- Placement
- Routing
- Compaction

20

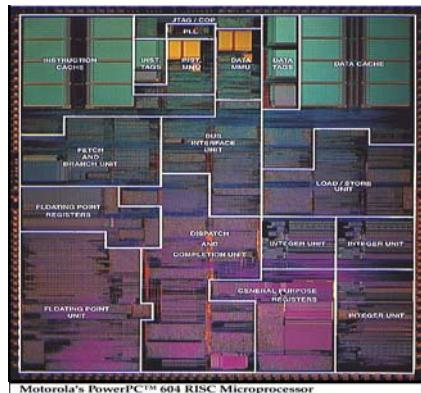
Floorplanning

Course contents

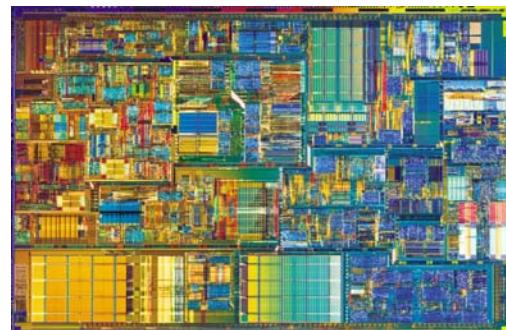
- Floorplan basics
- Normalized Polish expression for slicing floorplans
- B*-trees for non-slicing floorplans

□ Readings

■ Chapter 10



PowerPC 604



Pentium 4

21

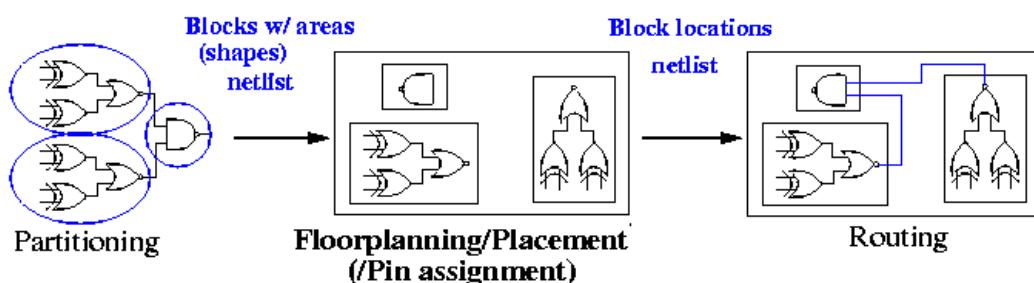
Floorplanning

□ Partitioning leads to

- Blocks with well-defined **areas and shapes** (rigid/hard blocks).
- Blocks with approximate areas and no particular shapes (flexible/soft blocks).
- A **netlist** specifying connections between the blocks.

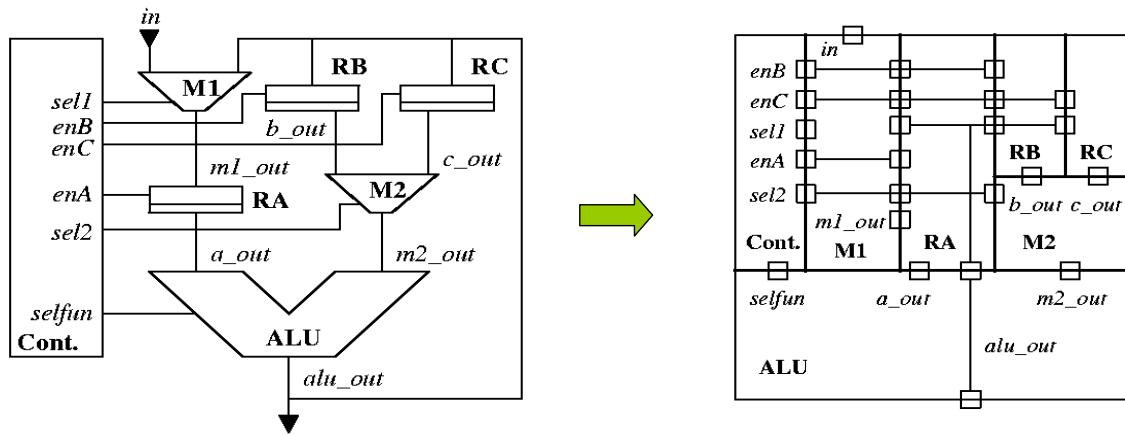
□ Objectives

- Find **locations** for all blocks.
- Consider shapes of soft block and pin locations of all the blocks.



22

Early Layout Decision Example



23

Early Layout Decision Methodology

- ❑ An integrated circuit is essentially a two-dimensional medium; taking this aspect into account in early stages of the design helps in creating designs of good quality.
- ❑ Floorplanning gives early feedback: thinking of layout at early stages may suggest valuable architectural modifications; floorplanning also aids in estimating delay due to wiring.
- ❑ Floorplanning fits very well in a *top-down* design strategy, the *step-wise refinement* strategy also propagated in software design.
- ❑ Floorplanning assumes, however, *flexibility* in layout design, the existence of cells that can adapt their shapes and terminal locations to the environment.

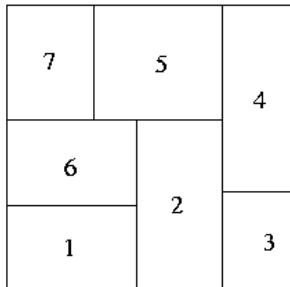
24

Floorplanning Problem

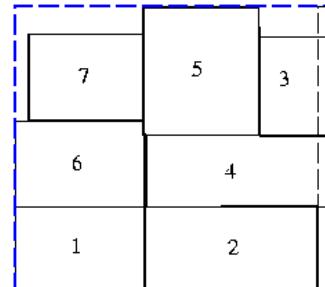
Inputs to the floorplanning problem:

- A set of blocks, hard or soft.
- Pin locations of hard blocks.
- A netlist.

Objectives: minimize **area**, reduce **wirelength** for (critical) nets, maximize **routability** (minimize **congestion**), determine shapes of soft blocks, etc.



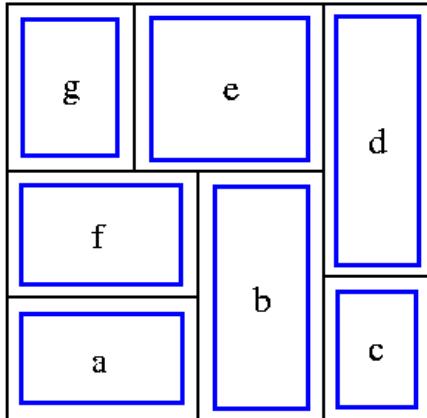
An optimal floorplan,
in terms of area

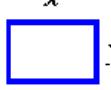
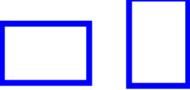


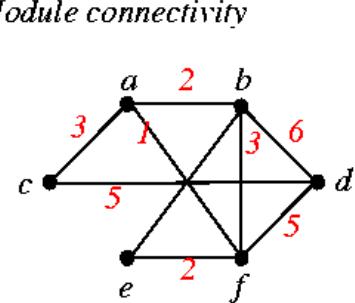
A non-optimal floorplan

25

Floorplan Design



- **Modules:** 
- **Area:** $A = xy$
- **Aspect ratio:** $r \leq y/x \leq s$
- **Rotation:** 
- **Module connectivity**



26

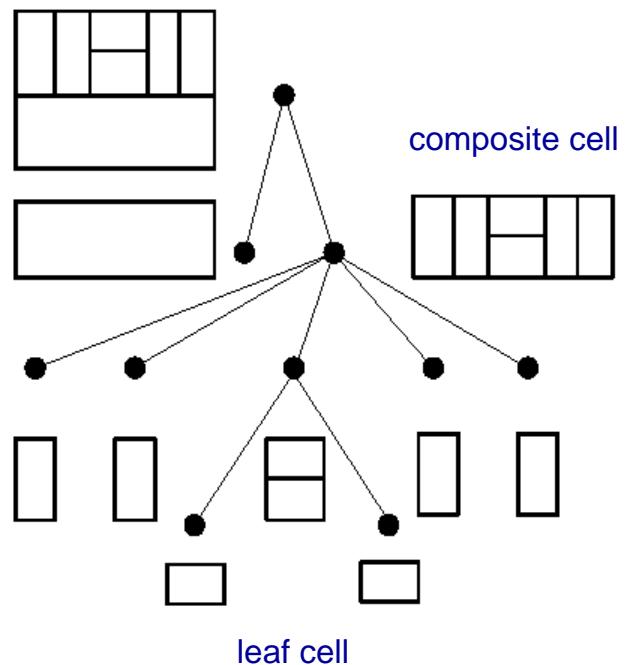
Floorplanning Concepts

❑ Leaf cell

(block/module): a cell at the lowest level of the hierarchy; it does not contain any other cell.

❑ Composite cell

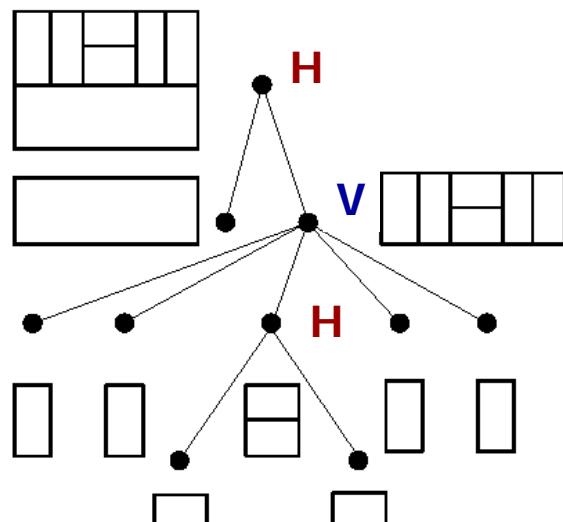
(block/module): a cell that is composed of either leaf cells or composite cells. The entire IC is the highest- level composite cell.



27

Slicing Floorplan + Slicing Tree

- ❑ A composite cell's subcells are obtained by a horizontal or vertical *bisection* of the composite cell.
- ❑ Slicing floorplans can be represented by a **slicing tree**.
- ❑ In a slicing tree, all cells (except for the top-level cell) have a *parent*, and all composite cells have *children*.
- ❑ A slicing floorplan is also called a floorplan of **order 2**.



H: horizontal cut

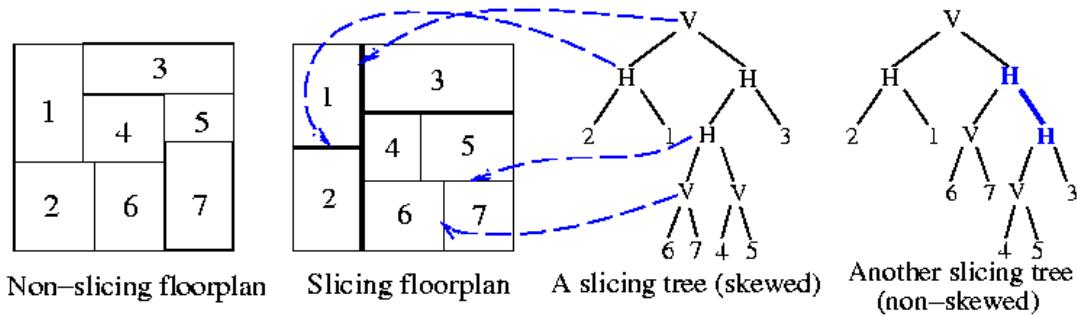
V: vertical cut

different from the definitions in the textbook!!

28

Skewed Slicing Tree

- **Rectangular dissection:** Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of non-overlapping rectangles.
- **Slicing structure:** a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- **Slicing tree:** A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- **Skewed slicing tree:** One in which no node and its **right** child are the same.



29

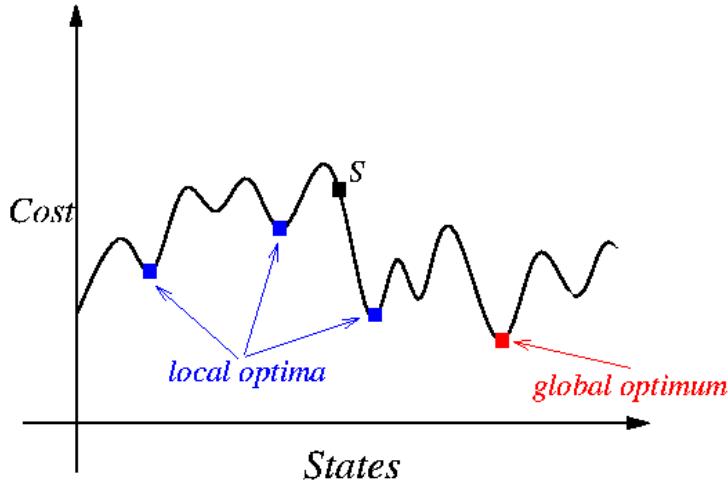
Slicing Floorplan Design by Simulated Annealing

- Related work
 - Wong & Liu, "A new algorithm for floorplan design," DAC-86.
 - Considers slicing floorplans.
 - Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 - Also considers L-shaped modules.
 - Wong, Leong, Liu, *Simulated Annealing for VLSI Design*, pp. 31--71, Kluwer Academic Publishers, 1988.

30

Simulated Annealing

- ❑ Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," *Science*, May 1983.
- ❑ Greene and Supowitz, "Simulated annealing without rejected moves," ICCD-84.



31

Simulated Annealing Basics

- ❑ Non-zero probability for "up-hill" moves.
- ❑ Probability depends on
 1. magnitude of the "up-hill" movement
 2. total search time

$$Prob(S \rightarrow S') = \begin{cases} 1 & \text{if } \Delta C \leq 0 \text{ /* "down-hill" moves */} \\ e^{-\frac{\Delta C}{T}} & \text{if } \Delta C > 0 \text{ /* "up-hill" moves */} \end{cases}$$

- ❑ $\Delta C = cost(S') - Cost(S)$
- ❑ T : Control parameter (temperature)
- ❑ Annealing schedule: $T = T_0, T_1, T_2, \dots$, where $T_i = r^i T_0$ with $r < 1$.

32

Generic Simulated Annealing Algorithm

```
1 begin
2 Get an initial solution  $S$ ;
3 Get an initial temperature  $T > 0$ ;
4 while not yet “frozen” do
5   for  $1 \leq i \leq P$  do
6     Pick a random neighbor  $S'$  of  $S$ ;
7      $\Delta \leftarrow cost(S') - cost(S)$ ;
     /* downhill move */
8     if  $\Delta \leq 0$  then  $S \leftarrow S'$ 
     /* uphill move */
9     if  $\Delta > 0$  then  $S \leftarrow S'$  with probability  $e^{-\frac{\Delta}{T}}$  ;
10     $T \leftarrow rT$ ; /* reduce temperature */
11  return  $S$ 
12 end
```

33

Basic Ingredients for Simulated Annealing

□ Analogy:

Physical system	Optimization problem
state	configuration
energy	cost function
ground state	optimal solution
quenching	iterative improvement
careful annealing	simulated annealing

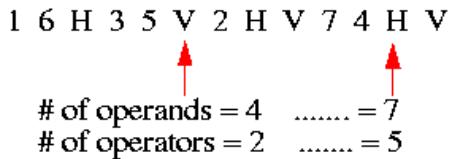
□ Basic Ingredients for Simulated Annealing:

- **Solution space**
- **Neighborhood structure**
- **Cost function**
- **Annealing schedule**

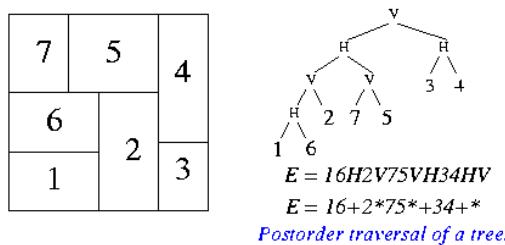
34

Solution Representation of Slicing Floorplan

- An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}$, $1 \leq i \leq 2n-1$, is a **Polish expression** of length $2n-1$ iff
 1. every operand j , $1 \leq j \leq n$, appears exactly once in E ;
 2. (the **ballotting property**) for every subexpression $E_i = e_1 \dots e_i$, $1 \leq i \leq 2n-1$, $\# \text{operands} > \# \text{operators}$.

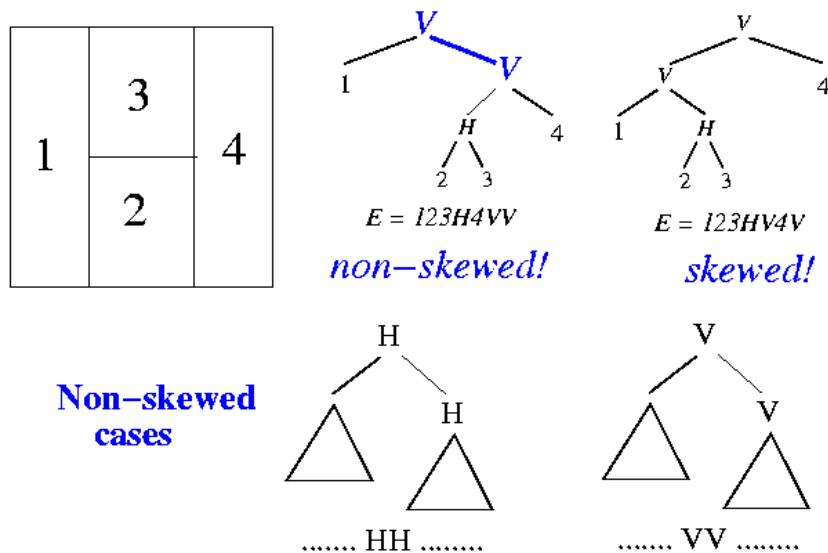


- ❑ Polish expression \leftrightarrow Postorder traversal.
- ❑ ijH : rectangle i on bottom of j ; ijV : rectangle i on the left of j .



35

Redundant Representations

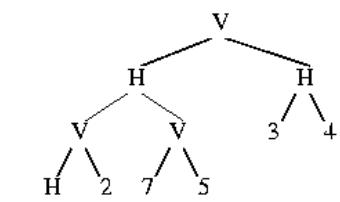


❑ **Question:** How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E = e_1 e_2 \dots e_{2n-1}$ is called **normalized** iff E has no consecutive operators of the same type (H or V), i.e. skewed.
- Given a **normalized** Polish expression, we can construct a **unique** rectangular slicing structure.

7	5	4
6		2
1		3

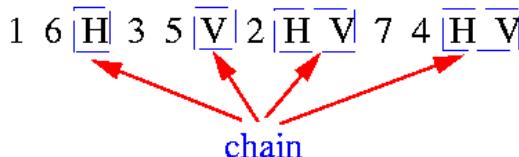


$E = 16H2V75VH34HV$
A normalized Polish expression

37

Neighborhood Structure

- **Chain:** $HVHVH \dots$ or $VH VHV \dots$



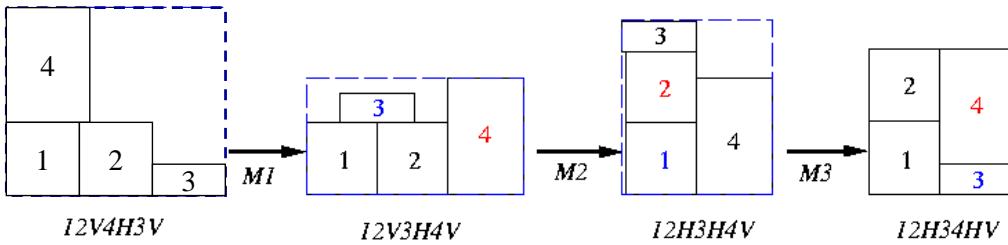
- **Adjacent:** 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.

- 3 types of moves:

- **M1 (Operand Swap):** Swap two adjacent operands.
- **M2 (Chain Invert):** Complement some chain ($\bar{V} = H$, $\bar{H} = V$).
- **M3 (Operator/Operand Swap):** Swap two adjacent operand and operator.

38

Effects of Perturbation

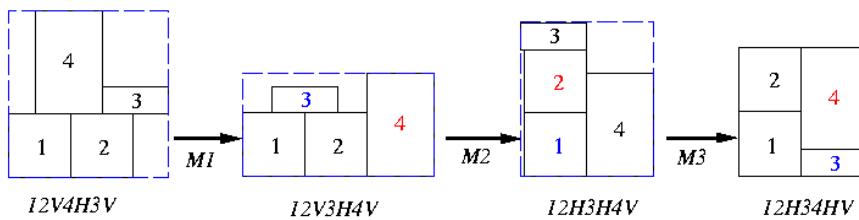


- **Question:** The balloting property holds during the moves?
 - $M1$ and $M2$ moves are OK.
 - **Check the $M3$ moves!** Reject “illegal” $M3$ moves.
- **Check $M3$ moves:** Assume that the $M3$ move swaps the operand e_i with the operator e_{i+1} , $1 \leq i \leq k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - N_k : # of operators in the Polish expression $E = e_1 e_2 \dots e_k$, $1 \leq k \leq 2n-1$

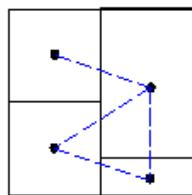
39

Cost Function

- $\phi = A + \lambda W$.
 - A : area of the smallest rectangle
 - W : overall wiring length
 - λ : user-specified parameter



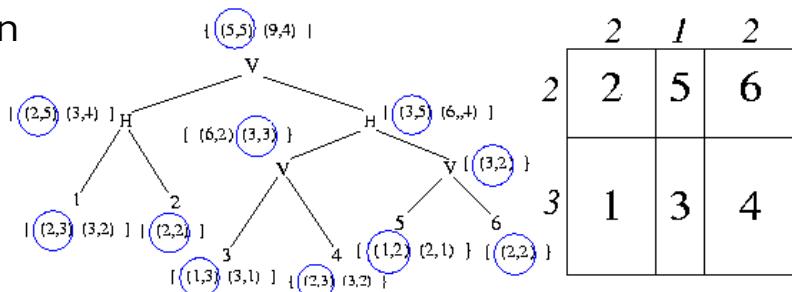
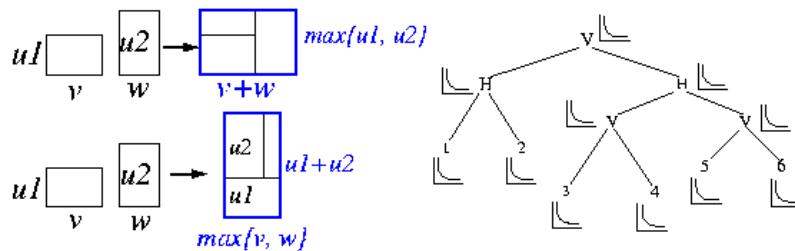
- $W = \sum_{ij} c_{ij} d_{ij}$.
 - c_{ij} : # of connections between blocks i and j .
 - d_{ij} : center-to-center distance between basic rectangles i and j .



40

Area Computation for Hard Blocks

- Allow rotation



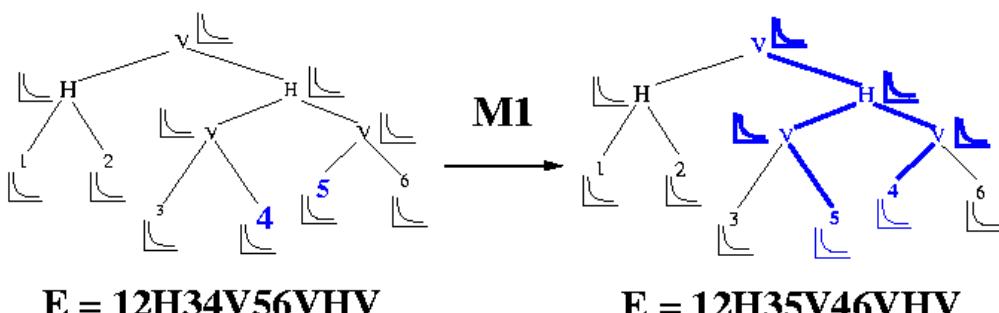
- Wiring cost?

- Center-to-center interconnection length

41

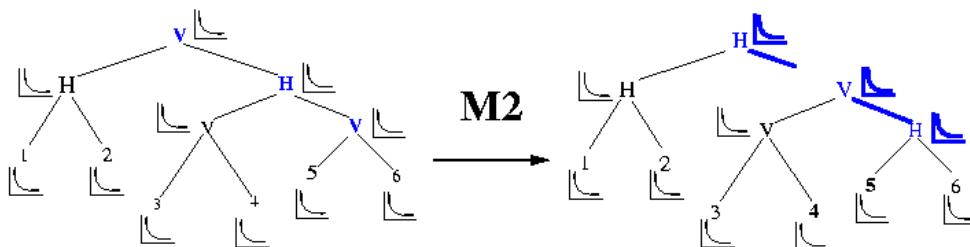
Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.



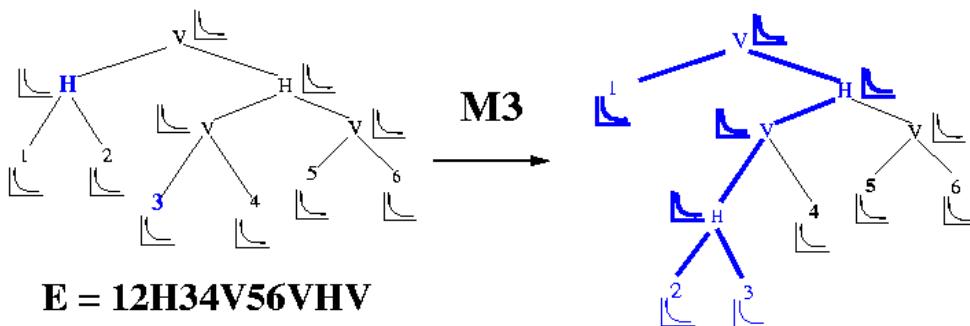
42

Incremental Computation of Cost Function (cont'd)



E = 12H34V56VHV

E = 12H34V56HVH



E = 12H34V56VHV

E = 123H4V56VHV

43

Annealing Schedule

- Initial solution: $1V3V \dots nV$.

1	2	3		n
---	---	---	--	-----

- $T_i = r^i T_0$, $i = 1, 2, 3, \dots$; $r = 0.85$.
- At each temperature, try kn moves ($k = 5-10$).
- Terminate the annealing process if
 - # of accepted moves $< 5\%$,
 - temperature is low enough, or
 - run out of time.

44

Wong-Liu Algorithm

```

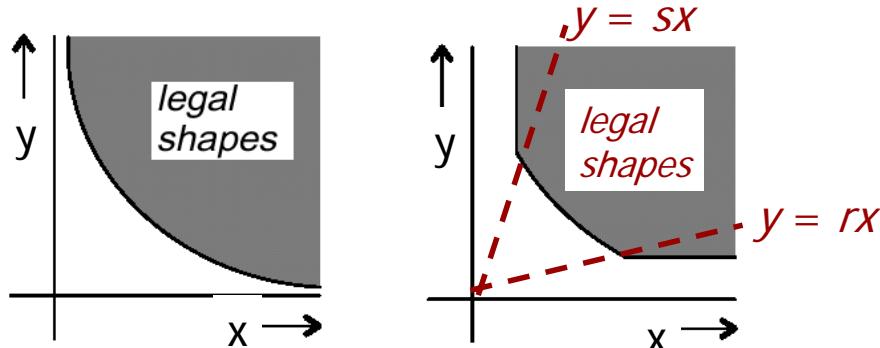
Input:  $(P, \varepsilon, r, K)$ 
1 begin
2  $E \leftarrow 12V3V4V \dots pV$ ; /* initial solution */
3  $Best \leftarrow E$ ;  $T_0 \leftarrow \frac{\Delta_{avg}}{\ln(P)}$ ;  $M \leftarrow MT \leftarrow uphill \leftarrow 0$ ;  $N = kn$ ;
4 repeat
5    $MT \leftarrow uphill \leftarrow reject \leftarrow 0$ ;
6   repeat
7     SelectMove( $M$ );
8     Case  $M$  of
9        $M_1$ : Select two adjacent operands  $e_i$  and  $e_j$ ;  $NE \leftarrow Swap(E, e_i, e_j)$ ;
10       $M_2$ : Select a nonzero length chain  $C$ ;  $NE \leftarrow Complement(E, C)$ ;
11       $M_3$ : done  $\leftarrow$  FALSE;
12      while not (done) do
13        Select two adjacent operand  $e_i$  and operator  $e_{i+1}$ ;
14        if  $(e_{i-1} \neq e_{i+1})$  and  $(2N_{i+1} < l)$  then done  $\leftarrow$  TRUE;
13'       Select two adjacent operator  $e_i$  and operand  $e_{i+1}$ ;
14'       if  $(e_i \neq e_{i+2})$  then done  $\leftarrow$  TRUE;
15        $NE \leftarrow Swap(E, e_i, e_{i+1})$ ;
16        $MT \leftarrow MT + 1$ ;  $\Delta cost \leftarrow cost(NE) - cost(E)$ ;
17       if  $(\Delta cost \leq 0)$  or  $(Random < e^{-\Delta cost/T})$ 
18       then
19         if  $(\Delta cost > 0)$  then  $uphill \leftarrow uphill + 1$ ;
20          $E \leftarrow NE$ ;
21         if  $cost(E) < cost(best)$  then  $best \leftarrow E$ ;
22       else  $reject \leftarrow reject + 1$ ;
23     until  $(uphill > N)$  or  $(MT > 2N)$ ;
24      $T \leftarrow rT$ ; /* reduce temperature */
25 until  $(reject/MT > 0.95)$  or  $(T < \varepsilon)$  or OutOfTime;
26 end

```

45

Shape Curve

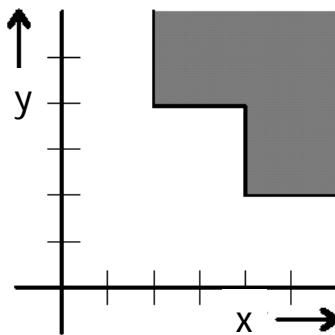
- Flexible cells imply that cells can have different aspect ratios.
- The relation between the width x and the height y is: $xy = A$, or $y = A/x$. The shape function is a hyperbola.
- Very thin cells are not interesting and often not feasible to design. The shape function is a combination of a hyperbola and two straight lines.
 - Aspect ratio: $r \leq y/x \leq s$.



46

Shape Curve (cont'd)

- Leaf cells are built from discrete transistors: it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a cell is rigid: it can only be rotated and mirrored during floorplanning or placement.

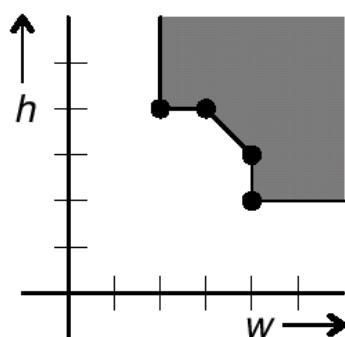


The shape function of a 2×4 inset cell.

47

Shape Curve (cont'd)

- In general, a *piecewise linear* function can be used to approximate any shape function.
- The points where the function changes its direction, are called the *corner (break) points* of the piecewise linear function.



48