Addition for Vertical Abutment

0 Composition by vertical abutment = the addition
of shape functions.

5x7

(&)}
B A

49

Dertving Shapes of Children

0 A choice for the minimal shape of composite cell
fixes the shapes of the shapes of its children cells.

minimal area
of parent

consequences for

@ children’s shapes

50

Sizing Algorithm for Slicing Floorplans

0 The shape functions of all leaf cells are given as
piecewise linear functions.

] Traverse the slicing tree in order to compute the
shape functions of all composite cells (bottom-up
composition).

0 Choose the desired shape of the top-level cell; as
the shape function is piecewise linear, only the
break points of the function need to be evaluated,
when looking for the minimal area.

0 Propagate the consequences of the choice down
to the leaf cells (top-down propagation).

[The sizing algorithm runs in polynomial time for
slicing floorplans
B NP-complete for non-slicing floorplans

51

Feasible Implementations

0 Shape curves correspond to different kinds of constraints
where the shaded areas are feasible regions.

y
feasible
w, W, region
hy
Wl e
X
“f }.’-‘ — .S‘ll "\: y = SJ_X v
i
4 i
S /
S Boundin ! -
h £ amea i £ 4 *
i 1 e
] -
& Wif’,_ |
W, X w, f, = e . . b" ‘I .
. . e - o o xiz=a yi>=5 xi yi >=
xiz=ayi>=b xiz=ayr=b yoogyis=b o

ar
xiz=b yi>=a
(a)rigid, fixed (b) rigid, free (c) flexible, fixed (d) flexible, free
orientation orientation orientation orientation 52

xiyi>=A xiz=b yir=qg xiyi>=A

Wheel or Spiral Floorplan

00

This floorplan is not slicing!

Wheel is the smallest non-
slicing floorplans.

Limiting floorplans to those
that have the slicing
property is reasonable: it
certainly facilitates
floorplanning algorithms.

Taking the shape of a
wheel floorplan and its
mirror image as the basis
of operators leads to
hierarchical descriptions of
order 5.

53

Order-5 Floorplan Examples

A

54

General Floorplan Representation:

Polar Graphs

O vertex: channel segment
0 edge: cell/block/module

h 1‘;’ 1 Va Vg Vo

55

B*-Tree: Compacted Floorplan
Representation

O Chang et al., “B*-tree: A new representation for non-slicing
floorplans,” DAC 2000.
B Compact modules to left and bottom
B Construct an ordered binary tree (B*-tree)
O Left child: the lowest, adjacent block on the right (x; = x;+w;)
O Right child: the first block above, with the same x-coordinate (X; =

X;)

A non-slicing floorplan Compact to left and down

56

B*-tree Packing

0 x-coordinates can be determined by the tree structure
u Left child: the lowest, adjacent block on the right (x; = x;+w))
B Right child: the first block above, with the same x-coordinate
X = x)
O Y-coordinates?
B Horizontal contour: Use a doubly linked list to record the
current maximum y-coordinate for each x-range
B Reduce the complexity of computing a y-coordinate to
amortized O(1) time

| 6 |

X3= X

1 2 X=Xt Ws (M) (Mg %=Xq
(Xl,yl)’.f T) X5 = X, + W,

57
Contour Data Structure
3
0, 6
1 1 2 1 2
(0,0) (0,0) (9,0 (0, 0) (9, 0)
C = <(0,0), (0,6), (9,6), C = <(0,0), (0,6), (9,6), C = <(0,0), (0,12), (3,12), (3,6),
(9,0), (c,0)> (9.8), (15.8), (15,0), (2,0)> (9,6), (9,8), (15,8), (15,0),
(00,0)>
6
(0, 13
5 5
3|4 3|4 |68 3[4 |8
(0, 6) e ©,)k A ©, 6 55 2
1 2 1 2 1
(0, 0) (9, 0) 0, 0) 9, 0) (0, 0) (9, 0)
C = <(0,0), (0,12), (3,12), C = <(0,0), (0,12), (3,12), B
(3,13), (6,13), (6,6), (9.6), (3,13), (6,13), (12,13), (12,8), €7 =(0.0), (0,15), (12,15),

(12,13), (12,8), (15,8), (15,0), 58

(9,8), (15,8), (15,0), (<°,0)> (15,8), (15,0), (==,0)> (0.0)>

B*-tree Perturbation

0 Opl: rotate a macro
0 Op2: move a node to another place
0 Op3: swap two nodes

I 6 ™ I 6 I

3|4 > Opl al ®
D & |—

1 2 @ 1 2

59

Simulated Annealing Using B*-tree

. T
0 The cost function is
based on problem and Temporature

requirements v

—» Perturb B*-tree

4

Keep new Recover last
B*-tree B*-tree

v

Reduce
Temperature |

60

Strengths ot B*-tree

O Binary tree based, efficient and easy

OO0 Flexible to deal with various placement constraints by augmenting
the B*-tree data structure (e.g., preplaced, symmetry, alignment,
bus position) and rectilinear modules

O Transformation between a tree and its placement takes only linear
time (vs. O(n2) or O(n Ig Ign) for sequence pair to be shown
shortly)

0 Operate on only one B*-tree (vs. two O-trees)

[0 Can evaluate area cost incrementally

0 Smaller solution space: only O(n! 4"/n1-5) combinations (vs.
O((nH?2) for sequence pair)

O Directly corresponds to hierarchical and multilevel frameworks for
large-scale floorplan designs

0 Can be extended to 3D floorplanning & related applications

61

Weaknesses of B*-tree

[0 Representation may 1
change after packing @ 3
0 Only a partially @ @ —
topological VZ 5
representation; less 1
flexible than a fully 4 1,
topological
representation t
B B*-tree can represent
only compacted 2 ¢
placement B*-tree??
. 4

62

Outline

OPartitioning
OFloorplanning
CIPlacement
ORouting

O Compaction

63

Placement

0 Course contents:
B Placement metrics

B Constructive placement: cluster growth, min cut
M Iterative placement: force-directed method, simulated

annealing
0 Reading
B Chapter 11
e o o oo
o [o] [o] [o]
components
oe~fo] [o] o

layout surface

slots

64

Placement

O Placement is the problem of automatically assigning
correct positions on the chip to predesigned cells, such that
some cost function is optimized.

O Inputs: A set of fixed cells/modules, a netlist.

O Goal: Find the best position for each cell/module on the
chip according to appropriate cost functions.

B Considerations: routability/channel density, wirelength,
cut size, performance, thermal issues, 1/0 pads.

Blocks w/ areas Block locations
(shapes) .
netlst (, netlist
—_— —_—-
£ £
Partitioning Floorplanning/Placement Routing

(/Pin assignment)
65

Placement Objectives and Constraints

0 What does a placement algorithm try to optimize?
B total area
B total wire length
B number of horizontal/vertical wire segments crossing a line

O Constraints:
B placement should be routable (no cell overlaps; no density
overflow).
B timing constraints are met (some wires should always be
shorter than a given length).

wirelength = {0 wirelength = {2
Shorter wirelength, 3 tracks reguired.

66

VLSI Placement: Building Blocks

] Different design styles create different placement
problems.

M E.g., building-block, standard-cell, gate-array placement

O Building block: The cells to be placed have arbitrary
shapes.

@ et T

67

VLSI Placement: Standard Cells

O Standard cells are designed in such a way that power and
clock connections run horizontally through the cell and
other 1/0 leaves the cell from the top or bottom sides.

OO0 The cells are placed in rows.
O Sometimes feedthrough cells are added to ease wiring.

feedthrough | | | . 1
N L 1 DD
) CLK
GND

CELL 1 CELL 2
L 11 1 | N I O

1011 T 1T 1T 17 17T T T
68

Consequences of Fabrication Method

O Full-custom fabrication (building block):
B Free selection of aspect ratio (quotient of height and width).
B Height of wiring channels can be adapted to necessity.
[0 Semi-custom fabrication (gate array, standard cell):
B Placement has to deal with fixed carrier dimensions.
B Placement should be able to deal with fixed channel capacities.

%:ZD VO pads

/ A
- om "1 J—I
ptzfabl_'i:tated - ’9 T __\-\ cus[o_l‘?ized
A A
= = L
"lal[A
i " = & = .

Relation with Routing

Clldeally, placement and routing should be
performed simultaneously as they depend
on each other’s results. This is, however,
too complicated.

W P&R: placement and routing

ClIn practice placement is done prior to
routing. The placement algorithm
estimates the wire length of a net using
some metric.

70

Wirelength Estimation

O Semi-perimeter method: Half the perimeter of the bounding
rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

Steiner-tree approximation: Computationally expensive.
Minimum spanning tree: Good approximation to Steiner trees.

Squared Euclidean distance: Squares of all pairwise terminal
distances in a net using a quadratic cost function

%z 2 vl = x)* + ;= 1))

i=1j=1

ooo

0 Complete graph: Since #edges in a complete graph is (—”(”2_1)j ,

wirelength ~ %Z(i, i) < nerdist(i; J).

71

Wirelength Estimation (cont'd)

T e N IR | ;J
- 'i_’ S I __':’_1
IREEEREEERERE T rrrr ’_1
T | lio |_?|:_|_’_[
HEREREERERRERE R SI_H
C LA T l__l_’_1
. I_‘Fl_l__llzllj 13 3 Il:

| | [
I__L___l_fg__fd LT T4 __|_|_JJ

semi—perimeter fen =] complete gruph fen * 2/n = 175

- _(]P_I_I_ _I_I_I_I_I_‘l,_l_]
I:l_l_l_l_ _l:l_‘ I:_I__I_I _l_!_‘
il ’!j R l_l__l_p‘
I_TI_I_I:QI_I_I_I |_|_|_|_[|:_|_’_1
L rrrrprir T rrfzr

= _l_l_’!j NE I__l_ﬂ
- I_I__FFV_‘ - [5 I_F!_‘

3
CLrrr® |__|__|_JJ I__l_l_l___l__l__ﬁ

Steitiar tres fern = 12 Spuntiing tree fen = 13

72

Placement Algorithms

O The placement problem is NP-complete
O Popular placement algorithms:

B Constructive algorithms: once the position of a cell is fixed,
it is not modified anymore.

O Cluster growth, min cut, etc.

B Iterative algorithms: intermediate placements are modified
In an attempt to improve the cost function.

0 Force-directed method, etc
B Nondeterministic approaches: simulated annealing, genetic
algorithm, etc.
0 Most approaches combine multiple elements:

B Constructive algorithms are used to obtain an initial
placement.

B The initial placement is followed by an iterative improvement
phase.

B The results can further be improved by simulated annealing.

73

Bottom-Up Placement: Clustering

[ClStarts with a single cell and finds more
cells that share nets with it.

74

Placement by Cluster Growth

OO0 Greedy method: Selects unplaced components and places
them in available slots.

B SELECT: Choose the unplaced component that is most
strongly connected to all of the placed components (or
most strongly connected to any single placed
component).

B PLACE: Place the selected component at a slot such that
a certain “cost” of the partial placement is minimized.

componem‘s<: slots
e~[o][o] ¢ o o

luyout surfuce 75

Cluster Growth Example

O # of other terminals connected: ¢c,=3, c,=1, c.=1, c, =1,
C.=4, ¢~3, and ¢,=3 = e has the most connectivity.

0 Place e in the center, slot 4. a, b, g are connected to e, and

= Place a next to e (say, slot 3). Continue until all cells are
placed.

O Further improve the placement by swapping the gates.
i 2 3 4 5 6 7

s Gl

density =4
wire length = 16
 — longest path = 6

o2 REREERE

density =2
JE— R wire length = 8
longest path =2

76

Top-down Placement: Min Cut

[0 Starts with the whole circuit and ends with small
circuits.

[0 Recursive bipartitioning of a circuit (e.g., K&L)
leads to a min-cut placement.

7

Min-Cut Placement

0 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
OO0 Quadrature: suitable for circuits with high density in the
center.
O Bisection: good for standard-cell placement.
O Slice/Bisection: good for cells with high interconnection on
the periphery.
3u i
3a 2ex 2
3b 3
{ i o
e 5
3B 28 &
3d 7
da 2 4 BuSubh 4 605664 100 QukOBE 100 95 104
P G R, e
c;_ = M-

11 Nk
GO
th—1n/k .;':: (k—2)nlk

quadrature bisection slice/bisection 78

Algorithm for Min-Cut Placement

Algorithm: Min_Cut Placement(N, n, C)
/* N: the layout surface */
/* n - # of cells to be placed */
/* n0O: # of cells In a slot */
/* C: the connectivity matrix */
1
2 (n £ n0O) PlaceCells(N, n, C)
3
4 (N1, N2) « CutSurface(N);
5 (n1, C1), (n2, C2) « Partition(n, C);
6 Min_Cut Placement(N1l, nl, C1);
7 Min_Cut _Placement(N2, n2, C2);
8
79
Quadrature Placement Example

0 Apply the K-L heuristic to partition + Quadrature
Placement: Cost C;, = 4, C,;= C,x = 2, etc.

- Of
Cda

2] e
2457 (842134 o _E_"\EE_"F@ ﬁ—l .
- >

13,69 0144546 (88

- 02

] C4p
Cl Cﬁ-ﬂ%];@“‘——w

Cla Cl C3b 80

Min-Cut Placement with Terminal
Propagation

OO0 Dunlop & Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

O Drawback of the original min-cut placement: Does not
consider the positions of terminal pins that enter a region.

B What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7}
in the previous example?

e
1

prefer to have them in R1

3y \S./\ .

12 L2 R2

81

Terminal Propagation

O We should use the fact that s is in L,!

center chimmy cell
1

Li \qurpZ\ Rl LI %p\ &I

L2 R L2

Lower cost higher cost

P will stay in RI for the rest of partitioning!

0 When not to use p to bias partitioning? Net s has cells in
many groups? minimum rectiiinear

Steiner tree

p Pﬁ
] |
h ﬂm h w3 |
L |

p3

|

. |

Don’t use p to bias the ; |
solution in either direction! Use p: G 82

Terminal Propagation Example

] Partitioning must be done breadth-first, not
depth-first.

C? C? C? C?

Pl
h it b 7 mu
R L R | -
2
© | @ | 2 \A (rJ_?) &2
unbiased partition with rerminal without terminul
of R propagation propugution

e |
..

83

General Procedure for Iterative
Improvement

Algorithm: lterative_ Improvement()

s « initial_configuration();
C <« cost(s);
(not stop())
S’ « perturb(s);
c’ « cost(s?);
(accept(c, c?))
S « s7;

© 0o NO O & WDN P

84

Placement by the Force-Directed
Method

OO0 Hanan & Kurtzberg, “Placement techniques,” in Design
Automation of Digital Systems, Breuer, Ed, 1972.

O Quinn, Jr. & Breuer, “A force directed component placement
procedure for printed circuit boards,” IEEE Trans. Circuits and
Systems, June 1979.

O Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

O Analogy to Hooke's law: F = kd, F: force, k: spring constant, d:
distance.

O Goal: Map cells to the layout surface.

D EAEREE)
resulting C oo o 0 0@
force * g o s o0 0
\ e e s 0 0
o [(BROAANAE] o0 o0

F=id layout surface

85

Finding the Zero-Force Target Location

O Cell i connects to several cells j's at distances d;;'s by wires of weights
w;'s. Total force: F; = 2,w;dj

The zero-force target Iocatlon (%3 , ¥;) can be determined by equating
the x- and y-components of the forces to zero:

Y
sz‘j-(mjf:&})=o = :Q:ZJ 72
- o)
O In the example, i E,‘:ﬂijyj and ¥; = 1.50.
S wlyi-g)=0 > fH= J
’ 25
8x04+10x2+3x04+3x2 Loss
T = — 1
' §+10+3+3
® Vid
¢ [t o
; O3 via @>’_ out
. h 10 out
. V>O 4 o
3
00)| @ .
¢ OO Gnd

(LO) (2,0) 86

Force-Directed Placement

CJCan be constructive or iterative:
B Start with an initial placement.

M Select a “most profitable” cell p (e.g.,
maximum F, critical cells) and place it in its
zero-force location.

W “Fix” placement if the zero-location has been
occupied by another cell q.

COPopular options to fix:

= Ripple move: place p in the occupied location,
compute a new zero-force location for q, ...

= Chain move: place p in the occupied location, move g
to an adjacent location, ...

= Move p to a free location close to Q.

87
Force-Directed Placement
|
Algorithm: Force-Directed_Placement
1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (FterationCount < IterationLimit) do
5 Seed + next module from L;
3] Declare the position of the seed vacant,
7 while (EndHRipple = FALSE) do
8 Compute target location of the seed;
9 case the target location
10 VACANT:
11 Move seed to the target location and lock;
12 EndHRipple + TRUE, AbortCount + 0,
13 SAME AS PRESENT LOCATION:
14 EndHRipple + TRUE, AbortCount + 0;
15 LOCKED:
16 Move selected cell 1o the nearest vacant location;
17 EndRipple «+ TRHUE, AbortCount « AbortCount 4+ 1;
18 it (AbortCount > AbortLimit) then
19 Unlock all cell locations;
19 DerationCount + HerationCount 4 1;
20 OCCUPIED AND NOT LOCKED:
21 Select cell as the target location for next move;
22 Move seed cell to target location and lock the target location;
23 EndRipple +— FALSE, AbortCount + 0,
26 end

88

Placement by Simulated Annealing

0 Sechen and Sangiovanni-Vincentelli, “The TimberWolf
placement and routing package,” IEEE J. Solid-State
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell
placement and global routing package,” DAC-86.

O TimberWolf: Stage 1

B Modules are moved between different rows as well as
within the same row.

B Modules overlaps are allowed.

B When the temperature is reached below a certain value,
stage 2 begins.

O TimberWolf: Stage 2
B Remove overlaps.

B Annealing process continues, but only interchanges
adjacent modules within the same row.

89

Solution Space & Neighborhood

Structure

[0 Solution Space: All possible arrangements of
the modules into rows, possibly with overlaps.
0 Neighborhood Structure: 3 types of moves
® M,: Displace a module to a new location.
® M,: Interchange two modules.
® M5: Change the orientation of a module.

overiap

M1 M2 M3

90

Neighborhood Structure

TimberWolf first tries to select a move between M; and M,:
Prob(M,) = 0.8, Prob(M,) = 0.2.
If a move of type M, is chosen and it is rejected, then a move of
type M, for the same module will be chosen with probability 0.1.
Restrictions: (1) what row for a module can be displaced? (2)
what pairs of modules can be interchanged?
Key: Range Limiter
B At the beginning, (W5, Hy) is big enough to contain the whole chip.
| }Nir&dg)w size shrinks as temperature decreases. Height & width «
og(T).
B Stage 2 begins when window size is so small that no inter-row module
interchanges are possible.

O O O 0O

o

; N
2 [|
I \\\
ol
2|

91

Cost Function

O Cost function: C=C; + C, + C,.
O C;: total estimated wirelength.
B C=2 ey W+ S hy
B o, B are horizontal and vertical weights, respectively. (=1,
S =1 = half perimeter of the bounding box of Net i.)
B Critical nets: Increase both o; and f; .

® If vertical wirings are “cheaper” than horizontal wirings, use
smaller vertical weights: g < .

O C,: penalty function for module overlaps.

C, =v2,,;0%, y: penalty weight.

L Ori{-aa_lmount of overlaps in the x-dimension between modules i
and j.

O C;: penalty function that controls the row length.
B C, =02 _rowslLs - D], & : penalty weight.
B D,: desired row length.

B L,.: sum of the widths of the modules in row r.

92

Annealing Schedule

OT,=r T, k=1,2, 3, ..

Or, increases from 0.8 to max value 0.94
and then decreases to 0.8.

CJAt each temperature, a total # of nP
attempts is made.

Cn: # of modules; P: user specified
constant.

OTermination: T < 0.1.

93

Outline

O Partitioning
O Floorplanning
O Placement

0 Routing
B Global rounting
B Detailed routing

O Compaction

94

Routing

I
O Course contents:
M Global routing
M Detail rounting
COJReading
® Chapter 12
B 8
8[7[8 1 [[8[78
B|7|6|7|8 B|7|6|7|B
HEBGEHEE [7[6[5]6]7]8
7|6/5]4]5[e [7]B T|7|6|5]4|5|6| 7|8
Bl/|s|5]4[3]4]5]6]7]8 LHEEEEREERR
8]7[6[5]4[3[2]3|%[5|6]7 |8 87[6[5[4[3[2[3[#[5]6]7 |8
8|7|6[5[4|3[2[1 6|7|8 B)7 [6[5]4[3[Z]1 6|78
N 6] 5[4[3[Z[T[g] 8 | ssg’azms 8
[6/ 5[4]3[2[1] 6/5[4[3[2[1
N LUHEEEE I N Bl7]s8]543
7|6 [76 5
H 8573{1‘ I m= 85722 \
8|7|6]7 8]7|8|7
B[7[8] | 8|7]8] |
8 || 8l []
Fl”lng Retrace 95
I
placement
I |
. Oy,
* Generates a "loose” route for each net. il S S
: : : : : |
® Assigns a list of routing regions to each net without J \\ -y
specifying the actual layout of wires. AL /,’ ‘ﬂ'
global routing !
Global routing

! detailed routing

¢ Finds the actual geometric layout of each net within
the assighed routing regions.

compaction

Detailed routing

96

Routing Constraints

O 100% routing completion + area minimization, under a set
of constraints:

B Placement constraint: usually based on fixed placement
B Number of routing layers

B Geometrical constraints: must satisfy design rules

u

Timing constraints (performance-driven routing): must satisfy
delay constraints

Crosstalk?
Process variations?

|
I
|
gl
&
H
|
|
]
DJFFDT

Two—luyer routing Geometrica! constraint

97
Classificati f Routt
_
lobal
genetal
pupose
channel veed
|channel |
power &

ground 98

Maze Router: Lee Algorithm

] Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

] Discussion mainly on single-layer routing

0 Strengths

B Guarantee to find connection between 2 terminals
if it exists.

B Guarantee minimum path.
O Weaknesses
B Requires large memory for dense layout.
® Slow.
0 Applications: global routing, detailed routing

99

Lee Algorithm

O Find a path from S to T by “wave propagation”.

B 8
B[7|B] 8[7|8
8[7[6|7|8 8[7[6[7|8
HEBEHE 7|6[56[7[8
716|545 7|8 7|6|5|4|5|s|7[8
B|7|s6|5|4[34|5]6[7(8 BI76/5 4345 6|78] |
8/7]6|5/4|3[2[3[%[5]6]7 |8 817l 5/4|3[2[2[4[5|6]7 |8
B|7|6/5[4[3]2]1 6[7|8 8[7 8[54 3[2]1 6|7 |6
6|5 432[1[3 8 AEEEELE 8
6| 5/4|3[Z]1 AEEKHEE
Bl7]s[54]3 [B17]s[5/4]3
g|7|6|5[4[5 B|7|6|5(4|5
&8 7[6[5 [B7|6|%
8|7(|6|7 8|7|6[7
B[7[8 B[7[8
[[
Filling Retrace

O Time & space complexity for an M X N grid: O(MN) (huge?!)

100

