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Addition for Vertical Abutment

 Composition by vertical abutment  the addition 
of shape functions.

R1

R2
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Deriving Shapes of Children

 A choice for the minimal shape of composite cell 
fixes the shapes of the shapes of its children cells.
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Sizing Algorithm for Slicing Floorplans

 The shape functions of all leaf cells are given as 
piecewise linear functions.

 Traverse the slicing tree in order to compute the 
shape functions of all composite cells (bottom-up 
composition).

 Choose the desired shape of the top-level cell; as 
the shape function is piecewise linear, only the 
break points of the function need to be evaluated, 
when looking for the minimal area.

 Propagate the consequences of the choice down 
to the leaf cells (top-down propagation).

 The sizing algorithm runs in polynomial time for 
slicing floorplans
 NP-complete for non-slicing floorplans

5252

Feasible Implementations
 Shape curves correspond to different kinds of constraints 

where the shaded areas are feasible regions.



5353

Wheel or Spiral Floorplan
 This floorplan is not slicing!
 Wheel is the smallest non-

slicing floorplans.
 Limiting floorplans to those 

that have the slicing 
property is reasonable: it 
certainly facilitates 
floorplanning algorithms.

 Taking the shape of a 
wheel floorplan and its 
mirror image as the basis 
of operators leads to 
hierarchical descriptions of 
order 5.

5454

Order-5 Floorplan Examples

V

V

H
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General Floorplan Representation: 
Polar Graphs

 vertex: channel segment
 edge: cell/block/module

vertical polar graph

horizontal polar graph
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B*-Tree: Compacted Floorplan
Representation

 Chang et al., “B*-tree: A new representation for non-slicing 
floorplans,” DAC 2000.
 Compact modules to left and bottom
 Construct an ordered binary tree (B*-tree)

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate (xj = 

xi)

n1

n2 n3

n4

n5

n6

A non-slicing floorplan Compact to left and down B*-tree

1 2

5
3 4

6

1 2

5
3 4

6
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B*-tree Packing
 x-coordinates can be determined by the tree structure

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate 

(xj = xi)
 Y-coordinates?

 Horizontal contour: Use a doubly linked list to record the 
current maximum y-coordinate for each x-range

 Reduce the complexity of computing a y-coordinate to 
amortized O(1) time

1 2

5
3 4

6

w1 x2 = x1 + w1
(x1, y1)

x3 = x1

n1

n2 n3

n4

n5

n6

x1

x2 = x1 + w1 x3 = x1

x6 = x3x4 = x3 + w3

x5 = x4 + w4
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Contour Data Structure

1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0) (0, 0) (0, 0) (9, 0)

(0, 6)

(9, 0)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 13)

C = <(0,0), (0,6), (9,6), 
(9,0), (∞,0)> 

C = <(0,0), (0,6), (9,6), 
(9,8), (15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), (3,12), (3,6),
(9,6), (9,8), (15,8), (15,0), 
(∞,0)>

C = <(0,0), (0,12), (3,12), 
(3,13), (6,13), (6,6), (9,6), 
(9,8), (15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), (3,12), 
(3,13), (6,13), (12,13), (12,8),
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,15), (12,15), 
(12,13), (12,8), (15,8), (15,0), 
(∞,0)>
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B*-tree Perturbation

Op1: rotate a macro
Op2: move a node to another place
Op3: swap two nodes

1
2

4
5

6

1
2

4
5

6

1
2

4
5

6

1
2

3 4
5

6

3

3
3

n1

n2 n3

n4

n5

n6

n1

n2 n3

n4

n5

n6

n1

n2 n3

n5

n4

n6

n2

n1 n3

n5

n4

n6

Op1

Op2

Op3
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Simulated Annealing Using B*-tree

 The cost function is 
based on problem 
requirements
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Strengths of B*-tree
 Binary tree based, efficient and easy
 Flexible to deal with various placement constraints by augmenting 

the B*-tree data structure (e.g., preplaced, symmetry, alignment, 
bus position) and rectilinear modules

 Transformation between a tree and its placement takes only linear 
time (vs. O(n2) or O(n lg lgn) for sequence pair to be shown 
shortly)

 Operate on only one B*-tree (vs. two O-trees)
 Can evaluate area cost incrementally
 Smaller solution space: only O(n! 4n/n1.5) combinations (vs. 

O((n!)2) for sequence pair)
 Directly corresponds to hierarchical and multilevel frameworks for 

large-scale floorplan designs
 Can be extended to 3D floorplanning & related applications

6262

Weaknesses of B*-tree

 Representation may 
change after packing

Only a partially 
topological 
representation; less 
flexible than a fully 
topological 
representation
 B*-tree can represent 

only compacted 
placement

1

3

4

2

n1

n3

n4

n2

1

2 3

4

B*-tree??
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Placement

 Course contents:
 Placement metrics
 Constructive placement: cluster growth, min cut
 Iterative placement: force-directed method, simulated 

annealing

 Reading
 Chapter 11
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Placement
 Placement is the problem of automatically assigning 

correct positions on the chip to predesigned cells, such that 
some cost function is optimized.

 Inputs: A set of fixed cells/modules, a netlist.
 Goal: Find the best position for each cell/module on the 

chip according to appropriate cost functions.
 Considerations: routability/channel density, wirelength, 

cut size, performance, thermal issues, I/O pads.
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Placement Objectives and Constraints

 What does a placement algorithm try to optimize? 
 total area
 total wire length
 number of horizontal/vertical wire segments crossing a line

 Constraints:
 placement should be routable (no cell overlaps; no density 

overflow).
 timing constraints are met (some wires should always be 

shorter than a given length).
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VLSI Placement: Building Blocks

 Different design styles create different placement 
problems. 
 E.g., building-block, standard-cell, gate-array placement

Building block: The cells to be placed have arbitrary 
shapes.

building block example
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VLSI Placement: Standard Cells
 Standard cells are designed in such a way that power and 

clock connections run horizontally through the cell and 
other I/O leaves the cell from the top or bottom sides.

 The cells are placed in rows.
 Sometimes feedthrough cells are added to ease wiring.

feedthrough
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Consequences of Fabrication Method

 Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted to necessity.

 Semi-custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel capacities.

gate array
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Relation with Routing

Ideally, placement and routing should be 
performed simultaneously as they depend 
on each other’s results. This is, however, 
too complicated.
 P&R: placement and routing 

In practice placement is done prior to 
routing. The placement algorithm 
estimates the wire length of a net using 
some metric.
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Wirelength Estimation
 Semi-perimeter method: Half the perimeter of the bounding 

rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

 Steiner-tree approximation: Computationally expensive.
 Minimum spanning tree: Good approximation to Steiner trees.
 Squared Euclidean distance: Squares of all pairwise terminal 

distances in a net using a quadratic cost function

 Complete graph: Since #edges in a complete graph is            ,   

wirelength  (i, j)  netdist(i, j).

( 1)

2

n n  
 
 

2

n
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Wirelength Estimation (cont'd)
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Placement Algorithms
 The placement problem is NP-complete
 Popular placement algorithms:

 Constructive algorithms: once the position of a cell is fixed, 
it is not modified anymore.
Cluster growth, min cut, etc.

 Iterative algorithms: intermediate placements are modified 
in an attempt to improve the cost function.
Force-directed method, etc

 Nondeterministic approaches: simulated annealing, genetic 
algorithm, etc.

 Most approaches combine multiple elements:
 Constructive algorithms are used to obtain an initial 

placement.
 The initial placement is followed by an iterative improvement

phase.
 The results can further be improved by simulated annealing.
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Bottom-Up Placement: Clustering

Starts with a single cell and finds more 
cells that share nets with it.
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Placement by Cluster Growth
 Greedy method: Selects unplaced components and places 

them in available slots.
 SELECT: Choose the unplaced component that is most 

strongly connected to all of the placed components (or 
most strongly connected to any single placed 
component).

 PLACE: Place the selected component at a slot such that 
a certain “cost” of the partial placement is minimized.
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Cluster Growth Example
 # of other terminals connected: ca=3, cb=1, cc=1, cd =1, 

ce=4, cf=3, and cg=3  e has the most connectivity.
 Place e in the center, slot 4. a, b, g are connected to e, and        

 Place a next to e (say, slot 3). Continue until all cells are 
placed.

 Further improve the placement by swapping the gates.



77

Top-down Placement: Min Cut

 Starts with the whole circuit and ends with small 
circuits.

 Recursive bipartitioning of a circuit (e.g., K&L) 
leads to a min-cut placement.
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Min-Cut Placement
 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
 Quadrature: suitable for circuits with high density in the 

center.
 Bisection: good for standard-cell placement.
 Slice/Bisection: good for cells with high interconnection on 

the periphery.
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Algorithm for Min-Cut Placement
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */ 
/* C: the connectivity matrix */ 

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4     (N1, N2)  CutSurface(N);
5     (n1, C1), (n2, C2)  Partition(n, C); 
6  Call Min_Cut_Placement(N1, n1, C1); 
7  Call Min_Cut_Placement(N2, n2, C2); 
8 end
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Quadrature Placement Example

 Apply the K-L heuristic to partition + Quadrature
Placement: Cost C1 = 4, C2L= C2R = 2, etc.
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Min-Cut Placement with Terminal 
Propagation

 Dunlop & Kernighan, “A procedure for placement of 
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

 Drawback of the original min-cut placement: Does not 
consider the positions of terminal pins that enter a region.
 What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} 

in the previous example?
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Terminal Propagation
 We should use the fact that s is in L1!

 When not to use p to bias partitioning? Net s has cells in 
many groups?
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Terminal Propagation Example

 Partitioning must be done breadth-first, not 
depth-first.

84

General Procedure for Iterative 
Improvement

Algorithm: Iterative_Improvement()

1  begin

2  s  initial_configuration();

3  c  cost(s);
4  while (not stop()) do

5      s’  perturb(s); 

6      c’  cost(s’); 
7      if (accept(c, c’))

8 then s  s’;
9  end
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Placement by the Force-Directed 
Method

 Hanan & Kurtzberg, “Placement techniques,” in Design 
Automation of Digital Systems, Breuer, Ed, 1972.

 Quinn, Jr. & Breuer, “A force directed component placement 
procedure for printed circuit boards,” IEEE Trans. Circuits and 
Systems, June 1979.

 Reduce the placement problem to solving a set of simultaneous 
linear equations to determine equilibrium locations for cells.

 Analogy to Hooke's law: F = kd, F: force, k: spring constant, d: 
distance.

 Goal: Map cells to the layout surface.
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Finding the Zero-Force Target Location
 Cell i connects to several cells j's at distances dij's by wires of weights 

wij's. Total force: Fi = jwijdij
 The zero-force target location (     ,      ) can be determined by equating 

the x- and y-components of the forces to zero:

 In the example,                                                 and       = 1.50.
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Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a “most profitable” cell  p (e.g., 

maximum F, critical cells) and place it in its 
zero-force location.

 “Fix” placement if the zero-location has been 
occupied by another cell q.
Popular options to fix:

 Ripple move: place p in the occupied location, 
compute a new zero-force location for q, …

 Chain move: place p in the occupied location, move q
to an adjacent location, …

 Move p to a free location close to q.
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Force-Directed Placement
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Placement by Simulated Annealing
 Sechen and Sangiovanni-Vincentelli, “The TimberWolf

placement and routing package,” IEEE J. Solid-State 
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell 
placement and global routing package,” DAC-86.

 TimberWolf: Stage 1
 Modules are moved between different rows as well as 

within the same row.
 Modules overlaps are allowed.
 When the temperature is reached below a certain value, 

stage 2 begins.
 TimberWolf: Stage 2

 Remove overlaps.
 Annealing process continues, but only interchanges 

adjacent modules within the same row.
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Solution Space & Neighborhood 
Structure

 Solution Space: All possible arrangements of 
the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves
 M1: Displace a module to a new location.
 M2: Interchange two modules.
 M3: Change the orientation of a module.
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Neighborhood Structure
 TimberWolf first tries to select a move between M1 and M2: 

Prob(M1) = 0.8, Prob(M2) = 0.2.
 If a move of type M1 is chosen and it is rejected,  then a move of 

type M3 for the same module will be chosen with probability 0.1.
 Restrictions: (1) what row for a module can be displaced? (2) 

what pairs of modules can be interchanged?
 Key: Range Limiter

 At the beginning, (WT, HT) is big enough to contain the whole chip.
 Window size shrinks as temperature decreases. Height & width 

log(T).
 Stage 2 begins when window size is so small that no inter-row module 

interchanges are possible.
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Cost Function
 Cost function: C = C1 + C2 + C3.
 C1: total estimated wirelength.

 C1 =  i  Nets(i wi + i hi)
 i, i are horizontal and vertical weights, respectively. (i=1, 

i =1  half perimeter of the bounding box of Net i.)
 Critical nets: Increase both i and i .
 If vertical wirings are “cheaper” than horizontal wirings, use 

smaller vertical weights: i < i.
 C2: penalty function for module overlaps.

 C2 =   i  j O2
ij, : penalty weight.

 Oij: amount of overlaps in the x-dimension between modules i
and j.

 C3: penalty function that controls the row length.
 C2 =  r  Rows|Lr - Dr|,  : penalty weight.
 Dr: desired row length.
 Lr: sum of the widths of the modules in row r.
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Annealing Schedule

Tk = rk Tk-1, k = 1, 2, 3, …
rk increases from 0.8 to max value 0.94 

and then decreases to 0.8.
At each temperature, a total # of nP

attempts is made.
n: # of modules; P: user specified 

constant.
Termination: T < 0.1.

94

Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction
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Routing

Course contents:
Global routing
Detail rounting

Reading
Chapter 12

96

Routing
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Routing Constraints
 100% routing completion + area minimization, under a set 

of constraints:
 Placement constraint: usually based on fixed placement
 Number of routing layers
 Geometrical constraints: must satisfy design rules
 Timing constraints (performance-driven routing): must satisfy 

delay constraints
 Crosstalk?
 Process variations?
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Classification of Routing
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Maze Router: Lee Algorithm

 Lee, “An algorithm for path connection and its 
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

 Discussion mainly on single-layer routing
 Strengths
 Guarantee to find connection between 2 terminals 

if it exists.
 Guarantee minimum path.

Weaknesses
 Requires large memory for dense layout.
 Slow.

 Applications: global routing, detailed routing
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Filling

Lee Algorithm
 Find a path from S to T by “wave propagation”.

 Time & space complexity for an M  N grid: O(MN) (huge!)


