
4949

Addition for Vertical Abutment

 Composition by vertical abutment  the addition
of shape functions.

R1

R2

5050

Deriving Shapes of Children

 A choice for the minimal shape of composite cell
fixes the shapes of the shapes of its children cells.

5151

Sizing Algorithm for Slicing Floorplans

 The shape functions of all leaf cells are given as
piecewise linear functions.

 Traverse the slicing tree in order to compute the
shape functions of all composite cells (bottom-up
composition).

 Choose the desired shape of the top-level cell; as
the shape function is piecewise linear, only the
break points of the function need to be evaluated,
when looking for the minimal area.

 Propagate the consequences of the choice down
to the leaf cells (top-down propagation).

 The sizing algorithm runs in polynomial time for
slicing floorplans
 NP-complete for non-slicing floorplans

5252

Feasible Implementations
 Shape curves correspond to different kinds of constraints

where the shaded areas are feasible regions.

5353

Wheel or Spiral Floorplan
 This floorplan is not slicing!
 Wheel is the smallest non-

slicing floorplans.
 Limiting floorplans to those

that have the slicing
property is reasonable: it
certainly facilitates
floorplanning algorithms.

 Taking the shape of a
wheel floorplan and its
mirror image as the basis
of operators leads to
hierarchical descriptions of
order 5.

5454

Order-5 Floorplan Examples

V

V

H

5555

General Floorplan Representation:
Polar Graphs

 vertex: channel segment
 edge: cell/block/module

vertical polar graph

horizontal polar graph

56

B*-Tree: Compacted Floorplan
Representation

 Chang et al., “B*-tree: A new representation for non-slicing
floorplans,” DAC 2000.
 Compact modules to left and bottom
 Construct an ordered binary tree (B*-tree)

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate (xj =

xi)

n1

n2 n3

n4

n5

n6

A non-slicing floorplan Compact to left and down B*-tree

1 2

5
3 4

6

1 2

5
3 4

6

57

B*-tree Packing
 x-coordinates can be determined by the tree structure

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate

(xj = xi)
 Y-coordinates?

 Horizontal contour: Use a doubly linked list to record the
current maximum y-coordinate for each x-range

 Reduce the complexity of computing a y-coordinate to
amortized O(1) time

1 2

5
3 4

6

w1 x2 = x1 + w1
(x1, y1)

x3 = x1

n1

n2 n3

n4

n5

n6

x1

x2 = x1 + w1 x3 = x1

x6 = x3x4 = x3 + w3

x5 = x4 + w4

5858

Contour Data Structure

1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0) (0, 0) (0, 0) (9, 0)

(0, 6)

(9, 0)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 13)

C = <(0,0), (0,6), (9,6),
(9,0), (∞,0)>

C = <(0,0), (0,6), (9,6),
(9,8), (15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), (3,12), (3,6),
(9,6), (9,8), (15,8), (15,0),
(∞,0)>

C = <(0,0), (0,12), (3,12),
(3,13), (6,13), (6,6), (9,6),
(9,8), (15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), (3,12),
(3,13), (6,13), (12,13), (12,8),
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,15), (12,15),
(12,13), (12,8), (15,8), (15,0),
(∞,0)>

5959

B*-tree Perturbation

Op1: rotate a macro
Op2: move a node to another place
Op3: swap two nodes

1
2

4
5

6

1
2

4
5

6

1
2

4
5

6

1
2

3 4
5

6

3

3
3

n1

n2 n3

n4

n5

n6

n1

n2 n3

n4

n5

n6

n1

n2 n3

n5

n4

n6

n2

n1 n3

n5

n4

n6

Op1

Op2

Op3

6060

Simulated Annealing Using B*-tree

 The cost function is
based on problem
requirements

6161

Strengths of B*-tree
 Binary tree based, efficient and easy
 Flexible to deal with various placement constraints by augmenting

the B*-tree data structure (e.g., preplaced, symmetry, alignment,
bus position) and rectilinear modules

 Transformation between a tree and its placement takes only linear
time (vs. O(n2) or O(n lg lgn) for sequence pair to be shown
shortly)

 Operate on only one B*-tree (vs. two O-trees)
 Can evaluate area cost incrementally
 Smaller solution space: only O(n! 4n/n1.5) combinations (vs.

O((n!)2) for sequence pair)
 Directly corresponds to hierarchical and multilevel frameworks for

large-scale floorplan designs
 Can be extended to 3D floorplanning & related applications

6262

Weaknesses of B*-tree

 Representation may
change after packing

Only a partially
topological
representation; less
flexible than a fully
topological
representation
 B*-tree can represent

only compacted
placement

1

3

4

2

n1

n3

n4

n2

1

2 3

4

B*-tree??

63

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

64

Placement

 Course contents:
 Placement metrics
 Constructive placement: cluster growth, min cut
 Iterative placement: force-directed method, simulated

annealing

 Reading
 Chapter 11

65

Placement
 Placement is the problem of automatically assigning

correct positions on the chip to predesigned cells, such that
some cost function is optimized.

 Inputs: A set of fixed cells/modules, a netlist.
 Goal: Find the best position for each cell/module on the

chip according to appropriate cost functions.
 Considerations: routability/channel density, wirelength,

cut size, performance, thermal issues, I/O pads.

66

Placement Objectives and Constraints

 What does a placement algorithm try to optimize?
 total area
 total wire length
 number of horizontal/vertical wire segments crossing a line

 Constraints:
 placement should be routable (no cell overlaps; no density

overflow).
 timing constraints are met (some wires should always be

shorter than a given length).

67

VLSI Placement: Building Blocks

 Different design styles create different placement
problems.
 E.g., building-block, standard-cell, gate-array placement

Building block: The cells to be placed have arbitrary
shapes.

building block example

68

VLSI Placement: Standard Cells
 Standard cells are designed in such a way that power and

clock connections run horizontally through the cell and
other I/O leaves the cell from the top or bottom sides.

 The cells are placed in rows.
 Sometimes feedthrough cells are added to ease wiring.

feedthrough

69

Consequences of Fabrication Method

 Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted to necessity.

 Semi-custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel capacities.

gate array

70

Relation with Routing

Ideally, placement and routing should be
performed simultaneously as they depend
on each other’s results. This is, however,
too complicated.
 P&R: placement and routing

In practice placement is done prior to
routing. The placement algorithm
estimates the wire length of a net using
some metric.

71

Wirelength Estimation
 Semi-perimeter method: Half the perimeter of the bounding

rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

 Steiner-tree approximation: Computationally expensive.
 Minimum spanning tree: Good approximation to Steiner trees.
 Squared Euclidean distance: Squares of all pairwise terminal

distances in a net using a quadratic cost function

 Complete graph: Since #edges in a complete graph is ,

wirelength  (i, j)  netdist(i, j).

(1)

2

n n  
 
 

2

n

72

Wirelength Estimation (cont'd)

73

Placement Algorithms
 The placement problem is NP-complete
 Popular placement algorithms:

 Constructive algorithms: once the position of a cell is fixed,
it is not modified anymore.
Cluster growth, min cut, etc.

 Iterative algorithms: intermediate placements are modified
in an attempt to improve the cost function.
Force-directed method, etc

 Nondeterministic approaches: simulated annealing, genetic
algorithm, etc.

 Most approaches combine multiple elements:
 Constructive algorithms are used to obtain an initial

placement.
 The initial placement is followed by an iterative improvement

phase.
 The results can further be improved by simulated annealing.

74

Bottom-Up Placement: Clustering

Starts with a single cell and finds more
cells that share nets with it.

75

Placement by Cluster Growth
 Greedy method: Selects unplaced components and places

them in available slots.
 SELECT: Choose the unplaced component that is most

strongly connected to all of the placed components (or
most strongly connected to any single placed
component).

 PLACE: Place the selected component at a slot such that
a certain “cost” of the partial placement is minimized.

76

Cluster Growth Example
 # of other terminals connected: ca=3, cb=1, cc=1, cd =1,

ce=4, cf=3, and cg=3  e has the most connectivity.
 Place e in the center, slot 4. a, b, g are connected to e, and

 Place a next to e (say, slot 3). Continue until all cells are
placed.

 Further improve the placement by swapping the gates.

77

Top-down Placement: Min Cut

 Starts with the whole circuit and ends with small
circuits.

 Recursive bipartitioning of a circuit (e.g., K&L)
leads to a min-cut placement.

78

Min-Cut Placement
 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
 Quadrature: suitable for circuits with high density in the

center.
 Bisection: good for standard-cell placement.
 Slice/Bisection: good for cells with high interconnection on

the periphery.

79

Algorithm for Min-Cut Placement
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4 (N1, N2)  CutSurface(N);
5 (n1, C1), (n2, C2)  Partition(n, C);
6 Call Min_Cut_Placement(N1, n1, C1);
7 Call Min_Cut_Placement(N2, n2, C2);
8 end

80

Quadrature Placement Example

 Apply the K-L heuristic to partition + Quadrature
Placement: Cost C1 = 4, C2L= C2R = 2, etc.

81

Min-Cut Placement with Terminal
Propagation

 Dunlop & Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

 Drawback of the original min-cut placement: Does not
consider the positions of terminal pins that enter a region.
 What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7}

in the previous example?

82

Terminal Propagation
 We should use the fact that s is in L1!

 When not to use p to bias partitioning? Net s has cells in
many groups?

83

Terminal Propagation Example

 Partitioning must be done breadth-first, not
depth-first.

84

General Procedure for Iterative
Improvement

Algorithm: Iterative_Improvement()

1 begin

2 s  initial_configuration();

3 c  cost(s);
4 while (not stop()) do

5 s’  perturb(s);

6 c’  cost(s’);
7 if (accept(c, c’))

8 then s  s’;
9 end

85

Placement by the Force-Directed
Method

 Hanan & Kurtzberg, “Placement techniques,” in Design
Automation of Digital Systems, Breuer, Ed, 1972.

 Quinn, Jr. & Breuer, “A force directed component placement
procedure for printed circuit boards,” IEEE Trans. Circuits and
Systems, June 1979.

 Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

 Analogy to Hooke's law: F = kd, F: force, k: spring constant, d:
distance.

 Goal: Map cells to the layout surface.

86

Finding the Zero-Force Target Location
 Cell i connects to several cells j's at distances dij's by wires of weights

wij's. Total force: Fi = jwijdij
 The zero-force target location (,) can be determined by equating

the x- and y-components of the forces to zero:

 In the example, and = 1.50.

87

Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a “most profitable” cell p (e.g.,

maximum F, critical cells) and place it in its
zero-force location.

 “Fix” placement if the zero-location has been
occupied by another cell q.
Popular options to fix:

 Ripple move: place p in the occupied location,
compute a new zero-force location for q, …

 Chain move: place p in the occupied location, move q
to an adjacent location, …

 Move p to a free location close to q.

88

Force-Directed Placement

89

Placement by Simulated Annealing
 Sechen and Sangiovanni-Vincentelli, “The TimberWolf

placement and routing package,” IEEE J. Solid-State
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell
placement and global routing package,” DAC-86.

 TimberWolf: Stage 1
 Modules are moved between different rows as well as

within the same row.
 Modules overlaps are allowed.
 When the temperature is reached below a certain value,

stage 2 begins.
 TimberWolf: Stage 2

 Remove overlaps.
 Annealing process continues, but only interchanges

adjacent modules within the same row.

90

Solution Space & Neighborhood
Structure

 Solution Space: All possible arrangements of
the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves
 M1: Displace a module to a new location.
 M2: Interchange two modules.
 M3: Change the orientation of a module.

91

Neighborhood Structure
 TimberWolf first tries to select a move between M1 and M2:

Prob(M1) = 0.8, Prob(M2) = 0.2.
 If a move of type M1 is chosen and it is rejected, then a move of

type M3 for the same module will be chosen with probability 0.1.
 Restrictions: (1) what row for a module can be displaced? (2)

what pairs of modules can be interchanged?
 Key: Range Limiter

 At the beginning, (WT, HT) is big enough to contain the whole chip.
 Window size shrinks as temperature decreases. Height & width 

log(T).
 Stage 2 begins when window size is so small that no inter-row module

interchanges are possible.

92

Cost Function
 Cost function: C = C1 + C2 + C3.
 C1: total estimated wirelength.

 C1 =  i  Nets(i wi + i hi)
 i, i are horizontal and vertical weights, respectively. (i=1,

i =1  half perimeter of the bounding box of Net i.)
 Critical nets: Increase both i and i .
 If vertical wirings are “cheaper” than horizontal wirings, use

smaller vertical weights: i < i.
 C2: penalty function for module overlaps.

 C2 =   i  j O2
ij, : penalty weight.

 Oij: amount of overlaps in the x-dimension between modules i
and j.

 C3: penalty function that controls the row length.
 C2 =  r  Rows|Lr - Dr|,  : penalty weight.
 Dr: desired row length.
 Lr: sum of the widths of the modules in row r.

93

Annealing Schedule

Tk = rk Tk-1, k = 1, 2, 3, …
rk increases from 0.8 to max value 0.94

and then decreases to 0.8.
At each temperature, a total # of nP

attempts is made.
n: # of modules; P: user specified

constant.
Termination: T < 0.1.

94

Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction

95Filling

Routing

Course contents:
Global routing
Detail rounting

Reading
Chapter 12

96

Routing

97

Routing Constraints
 100% routing completion + area minimization, under a set

of constraints:
 Placement constraint: usually based on fixed placement
 Number of routing layers
 Geometrical constraints: must satisfy design rules
 Timing constraints (performance-driven routing): must satisfy

delay constraints
 Crosstalk?
 Process variations?

98

Classification of Routing

99

Maze Router: Lee Algorithm

 Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

 Discussion mainly on single-layer routing
 Strengths
 Guarantee to find connection between 2 terminals

if it exists.
 Guarantee minimum path.

Weaknesses
 Requires large memory for dense layout.
 Slow.

 Applications: global routing, detailed routing

100

Filling

Lee Algorithm
 Find a path from S to T by “wave propagation”.

 Time & space complexity for an M  N grid: O(MN) (huge!)

