Addition for Vertical Abutment

O Composition by vertical abutment = the addition
of shape functions.

1]
Is X 5 I {5 % 7! +
h
ha(w) = hy(W) + hy(w)

Al

&)}
R A S

3Ix9

49

Deriving Shapes of Children

O A choice for the minimal shape of composite cell
fixes the shapes of the shapes of its children cells.

|

minimal area
of parent

consequences for
children’s shapes

50

Sizing Algorithm for Slicing Floorplans

O The shape functions of all leaf cells are given as
piecewise linear functions.

O Traverse the slicing tree in order to compute the
shape functions of all composite cells (bottom-up
composition).

0 Choose the desired shape of the top-level cell; as
the shape function is piecewise linear, only the
break points of the function need to be evaluated,
when looking for the minimal area.

O Propagate the consequences of the choice down
to the leaf cells (top-down propagation).

O The sizing algorithm runs in polynomial time for
slicing floorplans

B NP-complete for non-slicing floorplans

51

Feasible Implementations

O Shape curves correspond to different kinds of constraints
where the shaded areas are feasible regions.

feasible
W W,
LA
i h
wl] L"
X
y ¥ =81 ¥ =58x , y=sr y=gx y=L
// s / / / s
E P v=rx || £
/Bourd _ - a
Sy / = hx / - I y=2x
hs " .-~ : A 7 e T
£ - 7
/ W, - ; - | i//// -
x Lk \ =
W, w,] ‘ b i o M
. . = | >= e _— xiz=a, yi>=b xiyi»>=
xiz=ayi>=8 xiz=gyiz=b xiz=ag yi»=£b or

ar
xiz=b yiz=a
(a)rigid, fixed (b) rigid, free (c) flexible, fixed (d) flexible, free
orientation orientation orientation orientation 52

xiyi>=A xiz=bh yr=gxiyr=A

Wheel or Spiral Floorplan

Order-5 Floorplan Examples

This floorplan is not slicing! A

Wheel is the smallest non- B C

slicing floorplans. B 5 5 5 2

Limiting floorplans to those D 4 1 1

that have the slicing F G 3 4 3

property is reasonable: it H

certainly facilitates I 1l L

floorplanning algorithms.

Taking the shape of a

wheel floorplan and its

mirror image as the basis

of operators leads to

hierarchical descriptions of

order 5.

53 54

General Floorplan Representation: B*-Tree: Compacted Floorplan
Polar Graphs Representation

O vertex: channel segment
O edge: cell/block/module

hlvl \74 \76 \’7
A
fiy B | C
ol E
G hy
hy F hg
H h
1 L 6
I K
h
\’2 \’3 \’5 7

55

O Chang et al., “B*-tree: A new representation for non-slicing
floorplans,” DAC 2000.
B Compact modules to left and bottom
B Construct an ordered binary tree (B*-tree)
O Left child: the lowest, adjacent block on the right (x; = X;+w;)
O Right child: the first block above, with the same x-coordinate (x; =

;)

& | [—® |
| 5 —1 B
4] = C%}@ =

A non-slicing floorplan Compact to left and down

56

B*-tree Packing

O x-coordinates can be determined by the tree structure

Contour Data Structure

j|
.6

B Left child: the lowest, adjacent block on the right (x; = x;+w,)
B Right child: the first block above, with the same x-coordinate 2 2
;= %) 1 1 1
O Y-coordinates?
B Horizontal contour: Use a doubly linked list to record the ©.0) ©.0) ©.0 ©.0) ©. 0)
current maximum y-coordinate for each x-range C = <(0.0), (0.6), (9.6). € =<(0,0), (0,6), (9,6), C=<(0,0),(012). (3.12), (3.6),
B Reduce the complexity of computing a y-coordinate to .0). (=.0)> (9.8), (158). (15.0). (=0.0> Eis())’)ig’s)' (158). (15,0).
amortized O(1) time .
(0, 13— ®
6 5 5
. 3|4 3[4 |68 3|4 |68
3 4 0,6 | (0, 6), (0,86
(3.6) 3.6) 3.6)
X3=X% 1 2 1 2 1 2
1 2
(0,0) (9,0) (0,0) (9. 0) (0,0) (9,0)
C=<(0,0), (0,12), (3,12), C =<(0,0), (0,12), (3,12),
O X, = X, + W, (3.13), (6.13), (6.6), (9,6), (3.13), (6,13), (12,13), (12,8), C==(0.0). (0.15), (12,15),
57 (9.8), (15,8), (15,0), (0,0)> (15,8), (15,0), (c0,0)> 233)33 (12,8), (15,8), (15,0), g4
B*-tree Perturbation Simulated Annealing Using B*-tree
0 Opl: rotate a macro 0 The cost function is
O Op2: move a node to another place based on problem
O Op3: swap two nodes requirements -
Perturb B*-tree
6 Q 6
] op1 ould we
s|a] °® @ @ a| S
3
My @9
[6
5 |* : .
3 3 5 4 @ @ Coolir;‘g
enough?
)))] CHO
@ 59 60

Strengths of B*-tree

O Binary tree based, efficient and easy

O Flexible to deal with various placement constraints by augmenting
the B*-tree data structure (e.g., preplaced, symmetry, alignment,
bus position) and rectilinear modules

O Transformation between a tree and its placement takes only linear
time (vs. O(n2) or O(n Ig Ign) for sequence pair to be shown
shortly)

O Operate on only one B*-tree (vs. two O-trees)

[0 Can evaluate area cost incrementally

O Smaller solution space: only O(n! 47/n1-5) combinations (vs.
O((n1)2) for sequence pair)

O Directly corresponds to hierarchical and multilevel frameworks for
large-scale floorplan designs

O Can be extended to 3D floorplanning & related applications

61

Weaknesses of B*-tree

[0 Representation may
change after packing @ 3
O Only a partially —
topological @ /® I S
representation; less 1
flexible than a fully 4]

topological
representation

B B*-tree can represent
only compacted 2
placement B*-tree??

62

Outline

OPartitioning
OFloorplanning
OPlacement
ORouting

O Compaction

63

Placement

0 Course contents:
B Placement metrics
B Constructive placement: cluster growth, min cut

B |terative placement: force-directed method, simulated
annealing

O Reading
B Chapter 11

components > El IEI El
<E| [o] o

®

t
[
o
3
[

luyout surfuce
4 1 64

Placement

O Placement is the problem of automatically assigning
correct positions on the chip to predesigned cells, such that
some cost function is optimized.

O Inputs: A set of fixed cells/modules, a netlist.

O Goal: Find the best position for each cell/module on the
chip according to appropriate cost functions.

B Considerations: routability/channel density, wirelength,
cut size, performance, thermal issues, 1/0 pads.

Blocks w/ areas Block locations
(shapes) .
netlst f netlist
—_— —_—
> =
Partitioning Floorplanning/Placement Routing

(/Pin assigniment)
65

Placement Objectives and Constraints

O What does a placement algorithm try to optimize?

B total area

m total wire length

B number of horizontal/vertical wire segments crossing a line
O Constraints:

B placement should be routable (no cell overlaps; no density
overflow).

B timing constraints are met (some wires should always be
shorter than a given length).

AR AR AT
11
—
Density = 2 (2 tracks reguired)

eafeafeagen

Shorter wirelength, 3 tracks reqguired.

wirelength = {0 wirelength = 12

66

VLSI Placement: Building Blocks

O Different design styles create different placement
problems.

B E.g., building-block, standard-cell, gate-array placement
OBuilding block: The cells to be placed have arbitrary

_ ——
00

]
-

67

VLSI Placement: Standard Cells

O Standard cells are designed in such a way that power and
clock connections run horizontally through the cell and
other 1/0 leaves the cell from the top or bottom sides.

O The cells are placed in rows.
O Sometimes feedthrough cells are added to ease wiring.

T 1T T T T T1 T T 1
L feedthrough 1 1 1 v |
RN IR R N L1 1272] B
¥ CLK L
T T T T T T T T | 0 GND = | =
CELL 1 CELL 2
Ll 11 N N

68

Relation with Routing

Cldeally, placement and routing should be
performed simultaneously as they depend
on each other’s results. This is, however,
too complicated.

Consequences of Fabrication Method

O Full-custom fabrication (building block):
B Free selection of aspect ratio (quotient of height and width).
B Height of wiring channels can be adapted to necessity.
O Semi-custom fabrication (gate array, standard cell):
B Placement has to deal with fixed carrier dimensions.
B Placement should be able to deal with fixed channel capacities.

T | B P&R: placement and routing
B> AN OIn practice placement is done prior to
"= morm o w routing. The placement algorithm
ettt | B) TR TS| estimates the wire length of a net using
Tl EA [some metric.
l . - . | |]
69 70

Wirelength Estimation Wirelength Estimation (cont'd)

O Semi-perimeter method: Half the perimeter of the bounding e LT [FI*F*I*J;ITJ
rectangle that encloses all the pins of the net to be connected. Crirr I [l T [
Most widely used approximation! T rrriri— i :I_ﬁ

O Steiner-tree approximation: Computationally expensive. |_’E ’EEEFIE,EI |_|@_,EZE_’E’_I

O Minimum spanning tree: Good approximation to Steiner trees. l—,— ,—l I—P,—,—I l—,——,——l—i,—H

O Squared Euclidean distance: Squares of all pairwise terminal LT, !—“J!;Frfﬁ I % 3 F!_‘
distances in a net using a quadratic cost function |_| ’[F |E|[|DJ |_I :4 _|[le

LL L1 it I T T+ 1T 1

320 2l = 5t + 0y =)

i=1j=1

O Complete graph: Since #edges in a complete graph is (@j ,

wirelength =~ %Z(i,j) < netdist(i, J).

71

semi—perimeter fen = 11

complete gruph len * 2/m = 175

Steiner tree len = 2

|1l
SRR

LR

IREEEEEEN

,_
|_
|_
|
|
|
|
|
|

Spunning tree fen = {3

72

Placement Algorithms

O The placement problem is NP-complete
O Popular placement algorithms:

B Constructive algorithms: once the position of a cell is fixed,
it is not modified anymore.

OCluster growth, min cut, etc.

B Iterative algorithms: intermediate placements are modified
in an attempt to improve the cost function.

O Force-directed method, etc

B Nondeterministic approaches: simulated annealing, genetic
algorithm, etc.

O Most approaches combine multiple elements:

B Constructive algorithms are used to obtain an initial
placement.

B The initial placement is followed by an iterative improvement
phase.

B The results can further be improved by simulated annealing.

73

Bottom-Up Placement: Clustering

O Starts with a single cell and finds more
cells that share nets with it.

@ @

D0.
x
CIEREAC
X

H @
lw) 0l

9.0-

.

X
80 o°C
X
o

74

Placement by Cluster Growth

O Greedy method: Selects unplaced components and places
them in available slots.

B SELECT: Choose the unplaced component that is most
strongly connected to all of the placed components (or
most strongly connected to any single placed
component).

B PLACE: Place the selected component at a slot such that
a certain “cost” of the partial placement is minimized.

BEE . -
co poe:<: . . ./.s'lot.s‘

9 [] [] [] [] []
layout surfuce 75

Cluster Growth Example

O # of other terminals connected: ¢,=3, ¢,=1, c,=1, ¢4 =1,
c.=4, ¢=3, and c¢,;=3 = e has the most connectivity.

O Place e in the center, slot 4. a, b, g are connected to e, and
= Place a next to e (say, slot 3). Continue until all cells are
placed.

O Further improve the placement by swapping the gates.
2 3 4 5 3] 7

S HEHDEER
o>

density =4
wire length = 16
_— longest path = &

ARRNREARE

density = 2
—_— —_— wire length=8
longest path =2

76

Top-down Placement: Min Cut

O Starts with the whole circuit and ends with small
circuits.

O Recursive bipartitioning of a circuit (e.g., K&L)
leads to a min-cut placement.

77

Min-Cut Placement

O Breuer, “A class of min-cut placement algorithms,” DAC, 1977.

O Quadrature: suitable for circuits with high density in the
center.

O Bisection: good for standard-cell placement.

O Slice/Bisection: good for cells with high interconnection on
the periphery.

LRI NV ST .

da 2 4 6uSuth 4 6035864 100 QectOB& 100 95 1061

n2 ek aw ok
- l!! ci

Cladd= @ nik

nﬂ D - .__ C2
thoDmk {43) (k=2prk

bisection slice/bisection 78

Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */

/* n - # of cells to be placed */

/* n0: # of cells in a slot */

/* C: the connectivity matrix */

(n £ n0) PlaceCells(N, n, C)

(N1, N2) « CutSurface(N);

(n1, C1), (n2, C2) « Partition(n, C);
Min_Cut_Placement(N1, nl1, C1);
Min_Cut_Placement(N2, n2, C2);

oO~NOUTDA WN P

79

Quadrature Placement Example

O Apply the K-L heuristic to partition + Quadrature
Placement: Cost C; = 4, C,,= C,x = 2, etc.

-G

pmtias| IO Lo et
|]
> -

2,457 |84213,14

c2 C2

13,69 014516 J[>0-L Y i L o2
0 Bans

C4b
Ci R4

o S e L

Cla (&) C3b 80

Min-Cut Placement with Terminal
Propagation

Terminal Propagation

O Dunlop & Kernighan, “A procedure for placement of O We should use the fact that s is in L,!
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985. conter ey cell
O Drawback of the original min-cut placement: Does not \s L s lp
consider the positions of terminal pins that enter a region. L ‘—‘Tf\.\ £l L3 &1
B What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7}
in the previous example? r g E \\ w2
prefer to have them in R1 Lower cost bigher cost
P will stay in RI for the rest of partitioning!
g S \' O When not to use p to bias partitioning? Net s has cells in
Li .\.//o L1 \.//. RI many groups: mm;:g::rrf;:gmear
\. R P pZT
P I
l _______ Bl 378 h w3 . | k
12 L2 R2 - . |
‘ p—O
\ 3
on't use p to bias the |
81 cotution b ebther direction: Use p! G 82
General Procedure for Iterative
Terminal Propagation Example Improvement

O Partitioning must be done breadth-first, not
depth-first.

Cl Cl Cl cl
¥y
C) & ® Lt r[}»—ﬁ_@ e A{‘(b a1
L R L R | - ‘
2
© @ | @ = @ @ e gg &
unbiased partition with terminal without terinirul

af R prapagation propugution o3

Algorithm: Iterative_ Improvement()

s « initial_configuration();
C « cost(s);
(not stop())
S” « perturb(s);
C” « cost(s”);
(accept(c, c?))
S « S7;

© 0 ~NO O &~ WN P

84

Placement by the Force-Directed
Method

O Hanan & Kurtzberg, “Placement techniques,” in Design
Automation of Digital Systems, Breuer, Ed, 1972.

O Quinn, Jr. & Breuer, “A force directed component placement
procedure for printed circuit boards,” IEEE Trans. Circuits and
Systems, June 1979.

O Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

O Analogy to Hooke's law: F = kd, F: force, k: spring constant, d:
distance.

O Goal: Map cells to the layout surface.

o " 0 0
resulting " ER
force e e e e
* * 0 0 00
ey e s 00

layout surface

Finding the Zero-Force Target Location

O Cell i connects to several cells j's at distances d;i's by wires of weights
w;'s. Total force: F; = Xyw;d; N
O The zero-force target location (& , ¥;) can be determined by equating

the x- and y-components of the forces to zero:

s
S wijlej-dy=0 = @=M
/ ¥y R
O In the example, J Lo i 150
E‘”ij'(!ﬁ—ﬁ?ﬁ:g - fi= 7
’ Ty
8x0410x24+3x0+3x2
g = DT AT 108
8+10+3+3
¢ | e
O v ?» out
(0.1)
o+ -
OO Gni
fLO) (20) o

Force-Directed Placement

O Can be constructive or iterative:
B Start with an initial placement.

M Select a “most profitable” cell p (e.g.,
maximum F, critical cells) and place it in its
zero-force location.

B “Fix” placement if the zero-location has been
occupied by another cell q.
OPopular options to fix:

= Ripple move: place p in the occupied location,
compute a new zero-force location for q, ...

= Chain move: place p in the occupied location, move q

to an adjacent location, ...
= Move p to a free location close to g.

Force-Directed Placement

I
Algorithm: Force-Directed_Placement
1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (TterationCount < IterationLimit) do
5 Seed «+ next maodule from L;
6 Declare the position of the seed vacant;
7 while (EndRipple = FALSE) do
8 Compute target location of the seed,
9 case the target location
10 VACANT:
11 Maove seed to the target location and lack;
12 EndHRipple «— TRUE,; AbortCount + O;
13 SAME AS PRESENT LOCATION:
14 EndHRipple «— TRUE,; AbortCount + O;
15 LOCKED:
16 Move selected cell to the nearest vacant location;
17 EndRipple «— TRUE,; AbortCount + AbortCount +1;
18 if (AbortCount > AbortLimit) then
19 Unlock all cell locations;
19 TterationCount «— lerationCount + 1,
20 OCCUPIED AND NCT LOCKED:
21 Select cell as the target location for next maove;
22 Move seed cell to target location and lock the target location,
23 EndRipple + FALSE, AbortCount < 0;
26 end

88

Placement by Simulated Annealing

O Sechen and Sangiovanni-Vincentelli, “The TimberWolf
placement and routing package,” IEEE J. Solid-State
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell
placement and global routing package,” DAC-86.

O TimberWolf: Stage 1

B Modules are moved between different rows as well as
within the same row.

B Modules overlaps are allowed.

B When the temperature is reached below a certain value,
stage 2 begins.

O TimberWolf: Stage 2
B Remove overlaps.

B Annealing process continues, but only interchanges
adjacent modules within the same row.

89

Solution Space & Neighborhood
Structure

O Solution Space: All possible arrangements of
the modules into rows, possibly with overlaps.
OO0 Neighborhood Structure: 3 types of moves
B M;: Displace a module to a new location.
B M,: Interchange two modules.
B M;: Change the orientation of a module.

L B (-1 8 | # ‘\E [& 1 -TH 1 [# (- [# |
NN

e

(| |'H| (I - (I [o []
[f 1 CHE]d ZI EDNE LA T 1
[4 3

overlap
M1 M2 M3

90

Neighborhood Structure

TimberWolf first tries to select a move between M; and M,:
Prob(M,) = 0.8, Prob(M,) = 0.2.
If a move of type M, is chosen and it is rejected, then a move of
type M, for the same module will be chosen with probability 0.1.
Restrictions: (1) what row for a module can be displaced? (2)
what pairs of modules can be interchanged?
Key: Range Limiter
B At the beginning, (W, Hy) is big enough to contain the whole chip.
B Window size shrinks as temperature decreases. Height & width «
log(T).
B Stage 2 begins when window size is so small that no inter-row module
interchanges are possible.

O O o O

91

Cost Function

O Cost function: C=C, + C, + Cj,.
O C,: total estimated wirelength.
BC =2 nes(ywW;+ B h)
B o, B are horizontal and vertical weights, respectively. (=1,
£ =1 = half perimeter of the bounding box of Net i.)
B Critical nets: Increase both o; and ;.

B If vertical wirings are “cheaper” than horizontal wirings, use
smaller vertical weights: g < o,.

O C,: penalty function for module overlaps.
B C, =7 2X,;,;0%.,y: penalty weight.
[| OHd r}\mount of overlaps in the x-dimension between modules i
a .
O C;: penalty function that controls the row length.
B C, =382 _rowslls - D/, 8 : penalty weight.
B D.: desired row length.
B L : sum of the widths of the modules in row r.

92

Annealing Schedule

Outline

OT,=r T, k=1,2,3, .. O Partitioning
Or, increases from 0.8 to max value 0.94 :
O Floorplanning
and then decreases to 0.8.
C0At each temperature, a total # of nP [0 Placement
attempts is made.
On: # of modules; P: user specified O Routing
constant B Global rounting
) B B Detailed routing
COTermination: T < 0.1.
O Compaction
93 94
Routing Routing
laceine nt
[ICourse contents: d
¥ Global routing ‘ij‘* D‘f i
. . + Generates a "loose” route for each net. L Y
- Detall rountlng * Assigns a list of routing regions to each net without I:” ><jl .y
H specifying the actual layout of wires. AL !
OReading Eﬁ/\ i
obal routi ‘
u Chapter 12 global routing Global routing
111 L TIT
IMLI| 1] [N &
s':';':s 1 L= sﬂ:a"'
HH L E J E ; z :,;'_—: HH [T é 5% E ;.f_.a. detailed routing
BEECi b RRER e i g o of ch it a
] LEEELE 1 HEEELE) 1
a "LEE:E&[1 - J”ZEEE:] |
T 8:;:5'T H ‘ i ; BT_' H compaction Detailed routing
Filling Retrace 95 9%

Routing Constraints

O 100% routing completion + area minimization, under a set
of constraints:
B Placement constraint: usually based on fixed placement
B Number of routing layers
B Geometrical constraints: must satisfy design rules
[|

Timing constraints (performance-driven routing): must satisfy
delay constraints

Crosstalk?
Process variations?

s

&

Two—luyer routing Geometrical constraint 97

Classification of Routing

graph search

—{glubal

general
purpose

TOUTETS

—tnver—thexell

power &
ground 98

Maze Router: Lee Algorithm

O Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

O Discussion mainly on single-layer routing
O Strengths

B Guarantee to find connection between 2 terminals
if it exists.

B Guarantee minimum path.
0 Weaknesses
B Requires large memory for dense layout.
B Slow.
O Applications: global routing, detailed routing

99

Lee Algorithm

O Find a path from S to T by “wave propagation”.

8 8
8[7[8 878
8]7]6|7]8 87678
HEBEHEB HEBGEEE
7[6]5]4|5e[7]8 T7|6/5|45/6|7|8
B7e[54[345678 871654325678 |
B[7|6[5]4[3]|2[3]3|5]s8]7|8 57554323456|'-Bfa
B|7[6[54]3[Z[1 6|78 B[7[6[5]4]3[Z[1 6|7[8
6 5[4[3[Z]T[g] 8 65] 8
1 [6]5[4[3[Z[1 [551|321
L] LIFGEEE | E(7(6/ 543
O 8[76[5|4|5 O 8[76[5]4|5
] B7|9|° T] AEEE
8|7|6]7 8|7]6|7
8[7[8] | 8[7[8] |
B] B |]
Filling Retrace

O Time & space complexity for an M X N grid: O(MN) (huge!)

100

