Reducing Memory Requirement

O Akers's Observations (1967)
B Adjacent labels for k are either k-1 or k+1.
B Want a labeling scheme such that each label has its preceding label
different from its succeeding label.
O Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty,
blocked (3 bits required)
O Way 2: coding sequence 1,1, 2, 2,1, 1, 2, 2, ...; states: 1, 2, empty,
blocked (need only 2 bits)

Z Z
2(1|2 2l 2|2
HEIEKIE ZZ[1]2[2
HEIFEIRIE FRIKEAE
HEBEHEBRE 2[1[1[z[1[1]=2]2
2| 1[alz[T][3[1][2][3]1]Z 2zl 2[2[2[T]1]2]=2
HEEEIHNEEUBELUE HERHEALUEELLEE
Z[1[3|2[1[3]2][] HELNEBlmm BEE
HHIBELE Z HINEARDE z
HE 32132 NN SIREEHEE
ANBELE HHUIEBEE ]
Ha 2[1]3[z[1]2 O 2[2[1[1]2]2
] Z[1[3]z | B HEEL
HEIE FHFR
2[1]2] | HAE
HEN 2] |1
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Reducing Running Time

O Starting point selection: Choose the point farthest from the
center of the grid as the starting point.

O Double fan-out: Propagate waves from both the source and
the target cells.

OO0 Framing: Search inside a rectangle area 10--20% larger
than the bounding box containing the source and target.

B Need to enlarge the rectangle and redo if the search fails.

starting point selection double fan—out framing

.S T
o
|+ 7l
v
4 L_ -]

102




Hadlock's Algorithm

0 Hadlock, “A shortest path algorithm for grid graphs,”
Networks, 1977.

[0 Uses detour number (instead of labeling wavefront in
Lee's router)

B Detour number, d(P): # of grid cells directed away
from its target on path P.

B MD(S, T): the Manhattan distance between S and T.

B Path length of P, I(P): I(P) = MD(S, T) + 2 d(P).

B MD(S, T) fixed! = Minimize d(P) to find the shortest
path.

B For any cell labeled i, label its adjacent unblocked cells
away from T i+1; label i otherwise.

0 Time and space complexities: O(MN), but
substantially reduces the # of searched cells.

] Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)

O d(P): # of grid cells directed away from its target on path P.
O MD(S, T): the Manhattan distance between S and T.

O Path length of P, I(P): I(P) = MD(S, T) + 2d(P).

O MD(S, T) fixed! = Minimize d(P) to find the shortest path.

O For any cell labeled i, label its adjacent unblocked cells away
from T i+1; label i otherwise.

3[a[4(4|4[4(a]4
HEEIE N B E !
A3[2[22] [A[4[A[%
3[2[1[1[1] [A[4[4[T
32|11
L
SEIBIRIE || obstacle
4/3|3|3
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Soukup's Algorithm

O Soukup, “Fast maze router,” DAC-78.
[0 Combined breadth-first and depth-first search.

B Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

B Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle Is reached.

0 Time and space complexities: O(MN), but 10—50 times faster
than Lee's algorithm.

O Find a path between S and T, but may not be the shortest!

v eeeoe
Q|G L
Sl e o DFs
Slsle ® BFS
S [] obstade
@]
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Mikami-Tabuchi's Algorithm

O Mikami & Tabuchi, “A computer program for optimal routing
of printed circuit connectors,” IFIP, H47, 1968.

O Every grid point is an escape point.

1 1101 . . .22 22
mtersection point

il

.

S = = = =

i
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S source pin

N
N

T target pin

=

obstacle
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-

N

= = = = e

=

S

)
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Hightower's Algorithm

O Hightower, “A solution to line-routing problem on the
continuous plane,” DAC-69.

0 A single escape point on each line segment.

O If a line parallels to the blocked cells, the escape point is
placed just past the endpoint of the segment.

S source pin

= 2 1 T target pin

intersection point obstacle
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Global Routing Graph

ClEach cell is represented by a vertex.

CO0Two vertices are joined by an edge if the
corresponding cells are adjacent to each
other.

ol I I i i
o e o 1
oo tto O—O
Palztai;?:ted Resource Modeling GIObg:,E:# ting
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Global-Routing Problem

O Given a netlist N={N,, N,, ..., N, }, a routing
graph G=(V,E), find a Steiner tree T, for each net
N;, 1 <i<n, such that U(e;) < c(e), V ¢ € E and
Y L(T)) is minimized, where

® c(e)): capacity of edge e,

m x;=1 if ; is in T;; x;=0 otherwise

m U(g) = 2 x;: # of wires that pass through the channel
corresponding to edge ¢

W L(T)): total wirelength of Steiner tree T,

[ For high performance, the maximum wirelength
maxi L(T;) is minimized (or the longest path
between two points in T, is minimized).
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Classification of Global-Routing
Algorithms

0 Sequential approach:

B Select a net order and route nets sequentially in the
order

M Earlier routed nets might block the routing of
subsequent nets

B Routing quality heavily depends on net ordering
B Strategy: Heuristic net ordering + rip-up and rerouting
0 Concurrent approach:

®m All nets are considered simultaneously
COE.g., 0-1 integer linear programming (0-1 ILP)
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Net Ordering

0 Net ordering greatly affects routing solutions.
O In the example, we should route net b before net a.

b b b
(1 - € &l
" y *

route net «a before net b

&
]

o
-

route net b before net a 111

Net Ordering (cont’d)

C1O0rder the nets in the ascending order of
the # of pins within their bounding boxes.

CIOrder the nets in the ascending
(descending) order of their lengths if

routability (timing) is the most critical
metric.

CIOrder the nets based on their timing
criticality.
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Rip-Up and Re-routing

0 Rip-up and re-routing is required if a global or
detailed router fails in routing all nets.

0 Approaches: the manual approach? the automatic
procedure?

0 Two steps in rip-up and re-routing

1. Identify bottleneck regions, rip off some already routed
nets.

2.Route the blocked connections, and re-route the ripped-
up connections.

[0 Repeat the above steps until all connections are
routed or a time limit is exceeded.
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Top-down Hierarchical Global Routing

0 Recursively divides routing regions into
successively smaller super cells, and nets at
each hierarchical level are routed sequentially or
concurrently.

e o) e
= =

o) o) ®

o e e
level 3 Q2 level 2
o o
« .
o © @ pin
O— C

level O level 1
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Bottom-up Hierarchical Global Routing

[0 At each hierarchical level, routing is restrained
within each super cell individually.

0 When the routing at the current level is finished,
every four super cells are merged to form a new
larger super cell at the next higher level.

© MR R O] B ! L !
(S) N (ST N N R R N S ,
e e e el i e s oo e
mdembede b den e 1 1 !
o i (2:5] I ?-ajw _____ - |
© ?—o T ! i
level O level 1 level 2

© pin
© merging point

115

Hybrid Hierarchical Global Routing

0 (1) neighboring propagation, (2) preference
partitioning, and (3) bounded routing

Map to the upper <53 \ P ==

leveland finda »* i s 44 .

routingpath /'  eZmmgbmirmasr ) s
! b2 g B G v e 7

Map back to
the lower level to

Erri ~==" form preferred regions
(a) (b)
Find a routing path TRy [] preferred regions
inthe preferred S22 =="2gF- [l obstacle
regions 7 @ pin

Z Snibemineinningi i v

— routing path
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The Routing-Tree Problem

O Problem: Given a set of pins of a net, interconnect the pins by a
“routing tree.”

. LT T 41
. [T T 1
o N [+
LT T7T1 1
gate array standard cell butlding block

O Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

O MRST(P) = MST(P U S), where P and S are the sets of original
points and Steiner points, respectively.

Steiner
I } points
miinitium spanning tree MRST

MST 117

Theoretical Results for the MRST
Problem

O Hanan’s Thm: There exists an MRST with all Steiner points (set
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.

B Hanan, “On Steiner's problem with rectilinear distance,” SIAM
J. Applied Math., 1966. Cost(MST(P)) 3
<

O Hwang’s Theorem: For any point set P, Cont(MRST(FY) = 2

B Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

0 Best existing approximation algorithm: Performance bound 61/48

by Foessmeler et al.
MRST ‘—{—‘—%—‘—}—’—}—.
1

{_f_T_T

| |
l__l__|_+| | ° ' e
#_I_ﬂ_j T MST E 8 & s 8
L_J__‘__| _ = = 2

Hanan grid Cost{MST)/Cost{MRST) —= 3/2
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Coping with the MRST Problem

O Ho, Vijayan, Wong, “New algorithms for the rectilinear
Steiner problem,”

1.Construct an MRST from an MST.

2.Each edge is straight or L-shaped.

3. Maximize overlaps by dynamic programming.
O About 8% smaller than Cost(MST).

Two L—shaped MRST of the given MST

\A rTT.H

Two possible L—shaped layouts per edge
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Iterated 1-Steiner Heuristic for MRST

0 Kahng & Robins, “A new class of Steiner tree heuristics with good
performance: the iterated 1-Steiner approach,” ICCAD-90.

Algorithm: Iterated_1-Steiner(P)
P: set of n points.

1 begin

2S «

[* H(P U S): set of Hanan points */

I* AMST(A, B) = Cost(MST(A)) - Cost(MST(A L B)) */
3while (Cand <~ {x e HP US)|AMST(P U S, {x})>0}#d ) do
4 Find x € C and which maximizes A MST(P u S), {x});

5 S« Su{x}

6 Remove points in S which have degree <2 in MST(P u S);
7 return MST(P U S);

8 end

! ': Remove degree-2
Steiner point
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Outline

O Partitioning
O Floorplanning
O Placement

0 Routing
B Global rounting
M Detailed routing

O Compaction
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Channel Routing

] In earlier process technologies, channel routing

was pervasively used since most wires were
routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows)

Channel routing

block J
—0—0—

O

=1
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Routing Region Decomposition

CThere are often various ways to
decompose a routing region.

C0The order of routing regions significantly
affects the channel-routing process.

channel 1 channel 1 channel 2
channel 3

channel 2
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Routing Models

0 Grid-based model:
B A grid is super-imposed on the routing region.
B Wires follow paths along the grid lines.
B Pitch: distance between two gridded lines
B Gridless model:
B Any model that does not follow this “gridded” approach.

e pin
mvia
e Metal 1
== Metal 2
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Models for Multi-Layer Routing

0 Unreserved layer model: Any net segment is
allowed to be placed in any layer.

[0 Reserved layer model: Certain type of
segments are restricted to particular layer(s).

® Two-layer: HV (Horizontal-Vertical), VH
B Three-layer: HVH, VHV

-=—track 2 - track 3
i - teack 1 track 2
H ::::::::l: ::::::FH‘/ track 1 track 1

unreserved layer model HVH model VHV model

3 types of 3—layer models

125

Terminology for Channel Routing

] Local density at |

1 3 3
column i, d(i): total T E ﬁ_‘l © pin
# of nets that Channel height q—Doglelg @ via
crosses column i. l - - = track
@, > == metal l
2 I 2 1 I —

O Channel density:

maximum local Trunk Branch
density ! 33
® # of horizontal R
tracks required > _ _ o pin

channel density. == metal |
2

column: |

density: |

[T S )
Mo~ -
— OO

2
2

[ ]
N

3
2

126

metal 2

== pmetal 2




Channel Routing Problem

O Assignments of horizontal segments of nets to tracks

0 Assignments of vertical segments to connect the following:
B horizontal segments of the same net in different tracks, and
B terminals of the net to horizontal segments of the net.

0 Horizontal and vertical constraints must not be violated

B Horizontal constraints between two nets: the horizontal span
of two nets overlaps each other.

B Vertical constraints between two nets: there exists a column
such that the terminal on top of the column belongs to one net
and the terminal on bottom of the column belongs to another
net.

O Objective: Channel height is minimized (i.e., channel area
IS minimized).
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Horizontal Constraint Graph (HCG)

O HCG G = (V, E) is undirected graph where
®m V={v| v represents a net n;}
m E = {(vi, vy a horizontal constraint exists between n,
and n;}.

O For graph G: vertices < nets; edge (i, j) < net i overlaps
net j.

i 5 2 0 2 1 1 0 3 4 0 5
e o o e e T o e o o

-ttt
3 0 1 2 5 3 4 0 0 2 3 2

A routing problem and its HCG. 3
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Vertical Constraint Graph (VCG)

OVCG G = (V, E) is directed graph where
m V={v]| v represents a net n;}
m E = {(v;, vyl a vertical constraint exists between
n; and n;}.
0 For graph G: vertices < nets; edge i -] < net |
must be above net j.

15 2 o0 2 1 1 0 3 4 0
——0—0—0—0—0—0—0—0—0—0

——0—0—0—0—0—0—0—0—0—0
3 01 2 5 3 4 0 0 2 3

A routing problem and its VCG. 3
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2-I. Channel Routing: Basic Left-Edge
Algorithm

Hashimoto & Stevens, “Wire routing by optimizing channel
assignment within large apertures,” DAC-71.

No vertical constraint.

HV-layer model is used.

Doglegs are not allowed.

Treat each net as an interval.

Intervals are sorted according to their left-end x-
coordinates.

Intervals (nets) are routed one-by-one according to the
order.

For a net, tracks are scanned from top to bottom, and the
first track that can accommodate the net is assigned to the
net.

Optimality: produces a routing solution with the minimum
# of tracks (if no vertical constraint).

O O OOOoOoO 0O

O
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Basic Left-Edge Algorithm

Algorithm: Basic_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) 11, ..., In;

Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;

track[j]: track to which net j is assigned.

1 begin

2U « {11,122, ..., In};

3t« 0;

4 while (U= J ) do

5 tet+1;

6 watermark « O;

7  while (there is an Ij € U s.t. sj = watermark) do

8 Pick the interval 1j € U with sj > watermark,

nearest watermark;

9 track[j] « t;

10 watermark « ej;

11 U« U-{lj};

12 end

131
Basic Left-Edge Example
OU=L0,, | I, =1[1,3],1,=[2, 6] 1,=[4, 8] 1, =[5,
10], I = {7411 i, = 9. 121

O t=

L Route I,: watermark = 3;

B Route I; : watermark = 8;

B Route I4: watermark = 12;
O t=2:

B Route I, : watermark = 6;

B Route I : watermark = 11;
O t=3: Route I,

columm: 1 2 3 4 5 6 7 8 9 10 JI j2
I 0 0 0 4 2 0 3 0 4 0 6

—T—.—.—‘—.—.—.—T—.—.—.—T—

e ==l

0o 2 I 3 0 0 5 0 6 0 5 0
density: 7 2 2 2 3 3 3 3 3 3 2 1
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Basic Left-Edge Algorithm

O If there is no vertical o 2l o2 0 2 1 o 2
constraint, the basic ; S S S O
left-edge algorithm is [ T .1
optimal. I 00 3 3 1 0 0 3 3

. . result from basic optimal routing: 2 tracks

O If there is any vertical  fofi;edse algorithn
constraint, the
algorithm no longer I 23 5 1 VeG
guarantees optimal | 0)
solution. ©

_[._J_._._._J_ o
2 5 4 0 3 0 4
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Constrained Left-Edge Algorithm

Algorithm: Constrained_ Left-Edge(U, track[j])

U: set of unassigned intervals (nets) 11, ..., In;

lj=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin

22U« { 11,12, ..., In};

3t« 0;

4 while (U # @) do

5 tet+1;

6 watermark « O;

7 while (there is an unconstrained Ij € U s.t. sj = watermark) do

8 Pick the interval 1j € U that is unconstrained,
with sj = watermark, nearest watermark;

9 track[j] <« t;

10 watermark <« ej;

11 U« U-{lj};

12 end
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Constrained Left-Edge Example

oL =11,3],1,=11,5], I =16, 8], I, =[10, 11], Is= [2,
6], Is = [7, 9].

O Track 1: Route I, (cannot route I;); Route l4; Route I,.

O Track 2: Route l,; f 1 1 2 2 5 6 3 0 4 0

O Track 3: Route Is.
O Track 4: Route I;.
2 50 5 5 3 3 0 6 0 4

%, %

track 2 track 3 track 4
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Dogleg Channel Router

OO0 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
O Drawback of Left-Edge: cannot handle the cases with

constraint cycles. 11 2
I 1 2 —q—o—
—‘—.—0— —o_b_
2 0 1 2 0 1

O Drawback of Left-Edge: the entire net is on a single track.

® Doglegs are used to place parts of a net on different tracks to
minimize channel height.

B Might incur penalty for additional vias.
6 1 2 2 0 3 0 4

save 2 tracks, with via penalty

2 2 0 3 0 4
12 0 3 3 4 4 0 i 2 0 3 3 4 4 0
no dogleg with dogleg
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Dogleg Channel Router

O Each multi-pin net is broken into a set of 2-pin nets.
0 Modified Left-Edge Algorithm is applied to each subnet.
column: ] 2 3 4 56 7 8 column] 2 3 4 56 7 8
1 41 53 1, 4{L.1}) 5 3
-_—— 00— 00— -_r————0—0—0o—0—
lﬂ,—I
2 b
3_
4— .
J—
-_—r—0—o—o—0o— 00— -_—er——C—C—o—0—0—
24 2 315 24 2 3153
A routing instance MuRti-pin net decompositin
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Dogleg Channel Routing Example

Net Range o
e | bes Q o ®
LBl o7 DO @

4 [2,4]

1 [5.7] © @

3 [6.8]
S (78] (b) 1, and 3 are assigned (c) 4 and 5 are assigned
_ . to the 15t track to the 2M track

(a) Nets ordere_ed by column: 1 2 3 4 5 6 7 8
left-end coordinates 1 3

15t track
2nd track
3dtrack -~

(d) 1, and 2 are assigned

2 / 9) 3 g
to the 34 track 2 - T Lo
{e) The final routing result with doglegs 138




Modern Routing Considerations

0 Signal/power Integrity
B Capacitive crosstalk
B Inductive crosstalk
® IR drop

0 Manufacturability
B Process variation
B Optical proximity correction (OPC)
B Chemical mechanical polishing (CMP)
B Phase-Shift Mask (PSM)
0 Reliability
B Double via insertion
B Process antenna effect
B Electromigration (EM)
B Electrostatic discharge (ESD)
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Outline
OPartitioning
OFloorplanning
OPlacement
ORouting
C0Compaction
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Layout Compaction

0 Course contents
M Design rules
B Symbolic layout
M Constraint-graph compaction
141
Design Rules
O Design rules: restrictions O Patterns and design rules
on the mask patterns to are often expressed in A
increase the probability of rules.
successful fabrication. [0 Most common design
rules:
T T T T T T T T T T T T T T B minimum-width rules
e T e s T o e e (valid for
I A I L]
NN 5 O HREEE a mask pattern of a
(g (S5 o I B e specific layer): (a).
—+ - — b+ — (c) +—| - —1 . .
1 | _|_ L I L1 L_ B minimum-separation rules
L (b) e ¥ N (between mask patterns of
IR s g } the same layer or different
Y I O S I layers): (b), (c).
|l e | | RN >
—TTr T T T 1T~ TT ] | mlnlmum-overlap rules

P N R T T T T R T (mask patterns in different
layers): (e).
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CMOS Inverter Layout Example

Vi Vad
_QO
In QOut .
) n 0% Out
p/n diffusion
.3 ## polysilicon
Vs

Bl contact cut

2 metal

Symbolic layout
Geometric layout
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Symbolic Layout

O Geometric (mask) layout: coordinates of the layout
patterns (rectangles) are absolute (or in multiples of A).

O Symbolic (topological) layout: only relations between layout
elements (below, left to, etc) are known.

B Symbols are used to represent elements located in several
layers, e.g. transistors, contact cuts.

B The length, width or layer of a wire or other layout element
might be left unspecified.

B Mask layers not directly related to the functionality of the
circuit do not need to be specified, e.g. n-well, p-well.
O The symbolic layout can work with a technology file that
contains all design rule information for the target
technology to produce the geometric layout.
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Compaction and Its Applications

0 A compaction program or compactor generates
layout at the mask level. It attempts to make the
layout as dense as possible.

0 Applications of compaction:

B Area minimization: remove redundant space in
layout at the mask level.

B Layout compilation: generate mask-level layout
from symbolic layout.

B Redesign: automatically remove design-rule
violations.

B Rescaling: convert mask-level layout from one
technology to another.
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Aspects of Compaction

0 Dimension:

B 1-dimensional (1D) compaction: layout
elements only are moved or shrunk in one
dimension (x or y direction).

Ols often performed first in the x-dimension and then
in the y-dimension (or vice versa).

m 2-dimensional (2D) compaction: layout
elements are moved and shrunk
simultaneously in two dimensions.

O Complexity:
® 1D compaction can be done in polynomial
time.
® 2D compaction is NP-hard.
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1D Compaction: X Followed By Y

0 Each square is 2 A * 2 A, minimum separation is
1.

O Initially, the layoutis 11 A * 11 A.

0 After compacting along the x direction, then the y
direction, we have the layout size of 8 A * 11 A.
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1D Compaction: Y Followed By X

0 Each square is 2 A * 2 A, minimum separation is
1.

O Initially, the layout is 11 A * 11 A.

0 After compacting along the y direction, then the x
direction, we have the layout size of 11 A * 8 A.




2D Compaction

0 Each square is 2 A * 2 A, minimum separation is 1 A.
O Initially, the layoutis 11 A * 11 A.
O After 2D compaction, the layout size is only 8 A * 8 A.

0 Since 2D compaction is NP-complete, most compactors are
based on repeated 1D compaction.
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Inequalities for Distance Constraints

O Minimum-distance O For example, if the
design rules can be minimum width is a
expressed as and the minimum
inequalities. separation is b, then

Xj — X; 2 dj. X, — Xy 2 a
X3 —Xg2b
— —
- -—
X1 X2
- -
o -
> -
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The Constraint Graph

O The inequalities can be used to construct a constraint graph
G(V, E):
B There is a vertex v, for each variable x.
B For each inequality x; — x; > d;; there is an edge (v;, v;) with
weight d;; .
B There is an extra source vertex, v,; it is located at x = 0 ; all
other vertices are at its right.
O If all the inequalities express minimum-distance
constraints, the graph is acyclic (DAG).

O The longest path in a constraint graph determines the
layout dimension.

—> —
> h—
X X
= -—

—» -

== .— .
constraint graph
_ XS xé X3 .\,'4 151

Maximum-Distance Constraints

0 Sometimes the distance of layout elements is bounded by a
maximum, e.g., when the user wants a maximum wire
width, maintains a wire connecting to a via, etc.

B A maximum distance constraint gives an inequality of the
form: x; — x; < ¢;0r X, — %, 2 -Cj;

B Consequence for the constraint graph: backward edge

O (v, v;) with weight d;; = -c;; the graph is not acyclic anymore.
O The longest path in a constraint graph determines the
layout dimension.

1’6
X)X, c
<:> - d -
.4 b w!
> (| - min. distance ; . |
; ' —xpl 2 d
» ) - max. distance ;r c W
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Longest-Paths in Cyclic Graphs

O Constraint-graph compaction with maximum-distance
constraints requires solving the longest-path problem in
cyclic graphs.

0 Two cases are distinguished:

B There are positive cycles: No feasible solution for
longest paths. We shall detect the cycles.

m All cycles are negative: Polynomial-time algorithms
exist.

153

Longest and Shortest Paths

0 Longest paths become shortest paths and vice
versa when edge weights are multiplied by —1.

] Situation in DAGs: both the longest and shortest
path problems can be solved in linear time.
] Situation in cyclic directed graphs:

B All weights are positive: shortest-path problem in P
(Dijkstra), no feasible solution for the longest-path
problem.

m All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

® No positive cycles: longest-path problem is in P.
® No negative cycles: shortest-path problem is in P.

154




Remarks on Constraint-Graph
Compaction

O Noncritical layout elements: Every element outside the
critical paths has freedom on its best position => may use
this freedom to optimize some cost function.

O Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

o n

O Hierarchy: A method to reduce complexity is hierarchical
compaction, e.g., consider cells only.
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Constraint Generation

0 The set of constraints should be irredundant and
generated efficiently.
O An edge (v;, V) is redundant if edges (v;, vk) and (v, v;)
exist and W((v,, Vi) S w((Vvi, vi)) + w((vy, vV
B The minimum- dlstance constraints for (A, B) and (B, C)
make that for (A, C) redundant.

B C
- <
A
o =
- o~

[0 Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log

n).
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