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Reducing Memory Requirement
 Akers's Observations (1967)

 Adjacent labels for k are either k-1 or k+1.
 Want a labeling scheme such that each label has its preceding label 

different from its succeeding label.
 Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty, 

blocked (3 bits required)
 Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, empty, 

blocked (need only 2 bits)
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Reducing Running Time
 Starting point selection: Choose the point farthest from the 

center of the grid as the starting point.
 Double fan-out: Propagate waves from both the source and 

the target cells.
 Framing: Search inside a rectangle area 10--20% larger 

than the bounding box containing the source and target.
 Need to enlarge the rectangle and redo if the search fails.



103

Hadlock's Algorithm
 Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
 Uses detour number (instead of labeling wavefront in 

Lee's router)
 Detour number, d(P): # of grid cells directed away 

from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest 

path.
 For any cell labeled i, label its adjacent unblocked cells 

away from T i+1; label i otherwise.
 Time and space complexities: O(MN), but 

substantially reduces the # of searched cells.
 Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)
 d(P): # of grid cells directed away from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest path.
 For any cell labeled i, label its adjacent unblocked cells away 

from T i+1; label i otherwise.
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Soukup's Algorithm
 Soukup, “Fast maze router,” DAC-78.
 Combined breadth-first and depth-first search.

 Depth-first (line) search is first directed toward target T until 
an obstacle or T is reached.

 Breadth-first (Lee-type) search is used to “bubble” around an 
obstacle if an obstacle is reached.

 Time and space complexities: O(MN), but 10~50 times faster 
than Lee's algorithm.

 Find a path between S and T, but may not be the shortest!
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Mikami-Tabuchi's Algorithm
 Mikami & Tabuchi, “A computer program for optimal routing 

of printed circuit connectors,” IFIP, H47, 1968.
 Every grid point is an escape point.
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Hightower's Algorithm
 Hightower, “A solution to line-routing problem on the 

continuous plane,” DAC-69.
 A single escape point on each line segment.
 If a line parallels to the blocked cells, the escape point is 

placed just past the endpoint of the segment.
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Global Routing Graph

Each cell is represented by a vertex.
Two vertices are joined by an edge if the 

corresponding cells are adjacent to each 
other.
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Global-Routing Problem

 Given a netlist N={N1, N2, …, Nn }, a routing 
graph G=(V,E), find a Steiner tree Ti for each net 
Ni, 1  i  n, such that U(ej)  c(ej),  ej  E and 
i L(Ti) is minimized, where
 c(ej): capacity of edge ej

 xij=1 if ej is in Ti; xij=0 otherwise
 U(ej) = i xij:  of wires that pass through the channel 

corresponding to edge ej

 L(Ti): total wirelength of Steiner tree Ti

 For high performance, the maximum wirelength
maxi L(Ti) is minimized (or the longest path 
between two points in Ti is minimized).

110

Classification of Global-Routing 
Algorithms

 Sequential approach:
 Select a net order and route nets sequentially in the 

order
 Earlier routed nets might block the routing of 

subsequent nets
 Routing quality heavily depends on net ordering
 Strategy: Heuristic net ordering + rip-up and rerouting

 Concurrent approach:
 All nets are considered simultaneously

E.g., 0-1 integer linear programming (0-1 ILP)
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Net Ordering
 Net ordering greatly affects routing solutions.
 In the example, we should route net b before net a.
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Net Ordering (cont’d)

Order the nets in the ascending order of 
the # of pins within their bounding boxes.

Order the nets in the ascending 
(descending) order of their lengths if 
routability (timing) is the most critical 
metric.

Order the nets based on their timing 
criticality.
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Rip-Up and Re-routing

 Rip-up and re-routing is required if a global or 
detailed router fails in routing all nets.

 Approaches: the manual approach? the automatic 
procedure?

 Two steps in rip-up and re-routing
1.Identify bottleneck regions, rip off some already routed 

nets.
2.Route the blocked connections, and re-route the ripped-

up connections.

 Repeat the above steps until all connections are 
routed or a time limit is exceeded.
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Top-down Hierarchical Global Routing

 Recursively divides routing regions into 
successively smaller super cells, and nets at 
each hierarchical level are routed sequentially or 
concurrently.



115

Bottom-up Hierarchical Global Routing

 At each hierarchical level, routing is restrained 
within each super cell individually. 

When the routing at the current level is finished, 
every four super cells are merged to form a new 
larger super cell at the next higher level.
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Hybrid Hierarchical Global Routing

 (1) neighboring propagation, (2) preference 
partitioning, and (3) bounded routing
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The Routing-Tree Problem
 Problem: Given a set of pins of a net, interconnect the pins by a 

“routing tree.”

 Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear 
edges which connects the points.

 MRST(P) = MST(P  S), where P and S are the sets of original 
points and Steiner points, respectively.
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Theoretical Results for the MRST 
Problem

 Hanan’s Thm: There exists an MRST with all Steiner points (set 
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.
 Hanan, “On Steiner's problem with rectilinear distance,” SIAM 

J. Applied Math., 1966.
 Hwang’s Theorem: For any point set P, 

 Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

 Best existing approximation algorithm: Performance bound 61/48 
by Foessmeier et al.



119

Coping with the MRST Problem
 Ho, Vijayan, Wong, “New algorithms for the rectilinear 

Steiner problem,”
1.Construct an MRST from an MST.
2.Each edge is straight or L-shaped.
3.Maximize overlaps by dynamic programming.

 About 8% smaller than Cost(MST).
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Iterated 1-Steiner Heuristic for MRST
 Kahng & Robins, “A new class of Steiner tree heuristics with good 

performance: the iterated 1-Steiner approach,” ICCAD-90. 

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2 S  ;

/* H(P  S): set of Hanan points */ 
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */ 

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }   ) do
4     Find x  C and which maximizes   MST(P  S), {x}); 
5     S  S  {x}; 
6     Remove points in S which have degree  2 in MST(P  S); 
7 return MST(P  S); 
8 end
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Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction
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Channel Routing

 In earlier process technologies, channel routing 
was pervasively used since most wires were 
routed in the free space (i.e., routing channel) 
between a pair of logic blocks (cell rows)
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Routing Region Decomposition

There are often various ways to 
decompose a routing region.

The order of routing regions significantly 
affects the channel-routing process. 
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Routing Models

Grid-based model:
 A grid is super-imposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two gridded lines
 Gridless model:
 Any model that does not follow this “gridded” approach.
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Models for Multi-Layer Routing

Unreserved layer model: Any net segment is 
allowed to be placed in any layer.

Reserved layer model: Certain type of 
segments are restricted to particular layer(s).
 Two-layer: HV (Horizontal-Vertical), VH
 Three-layer: HVH, VHV
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Terminology for Channel Routing

 Local density at 
column i, d(i): total 
# of nets that 
crosses column i.

 Channel density:
maximum local 
density
 # of horizontal 

tracks required 
channel density.
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Channel Routing Problem
 Assignments of horizontal segments of nets to tracks
 Assignments of vertical segments to connect the following:

 horizontal segments of the same net in different tracks, and
 terminals of the net to horizontal segments of the net.

 Horizontal and vertical constraints must not be violated
 Horizontal constraints between two nets: the horizontal span 

of two nets overlaps each other.
 Vertical constraints between two nets: there exists a column 

such that the terminal on top of the column belongs to one net 
and the terminal on bottom of the column belongs to another 
net.

 Objective: Channel height is minimized (i.e., channel area 
is minimized).
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Horizontal Constraint Graph (HCG)
 HCG G = (V, E) is undirected graph where

 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a horizontal constraint exists between ni

and nj}.

 For graph G: vertices  nets; edge (i, j)  net i overlaps 
net j.
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Vertical Constraint Graph (VCG)

 VCG G = (V, E) is directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between 

ni and nj}.
 For graph G: vertices  nets; edge i j  net i

must be above net j.
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2-L Channel Routing: Basic Left-Edge 
Algorithm

 Hashimoto & Stevens, “Wire routing by optimizing channel 
assignment within large apertures,” DAC-71.

 No vertical constraint.
 HV-layer model is used.
 Doglegs are not allowed.
 Treat each net as an interval.
 Intervals are sorted according to their left-end x-

coordinates.
 Intervals (nets) are routed one-by-one according to the 

order.
 For a net, tracks are scanned from top to bottom, and the 

first track that can accommodate the net is assigned to the 
net.

 Optimality: produces a routing solution with the minimum 
# of tracks (if no vertical constraint).
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Basic Left-Edge Algorithm
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U   ) do
5     t  t + 1; 
6     watermark  0; 
7     while (there is an Ij  U s.t. sj > watermark) do
8        Pick the interval Ij  U with sj > watermark,

nearest watermark; 
9        track[j]  t; 
10     watermark  ej; 
11     U  U - {Ij}; 
12 end
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Basic Left-Edge Example
 U = {I1, I2, …, I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5, 

10], I5 = [7, 11], I6 = [9, 12].
 t =1:

 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

 t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

 t = 3: Route I4
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Basic Left-Edge Algorithm

 If there is no vertical 
constraint, the basic 
left-edge algorithm is 
optimal.

 If there is any vertical 
constraint, the 
algorithm no longer 
guarantees optimal 
solution.
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Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do
5     t  t + 1; 
6     watermark  0; 
7      while (there is an unconstrained Ij  U s.t. sj > watermark) do
8     Pick the interval Ij  U that is unconstrained, 

with sj > watermark, nearest watermark; 
9        track[j]   t; 
10      watermark  ej; 
11      U  U - {Ij}; 
12 end
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Constrained Left-Edge Example

 I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2, 
6], I6 = [7, 9].

 Track 1: Route I1 (cannot route I3); Route I6; Route I4.
 Track 2: Route I2; cannot route I3.
 Track 3: Route I5.
 Track 4: Route I3.
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Dogleg Channel Router
 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with 

constraint cycles.

 Drawback of Left-Edge: the entire net is on a single track.
 Doglegs are used to place parts of a net on different tracks to 

minimize channel height.
 Might incur penalty for additional vias.
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Dogleg Channel Router
 Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.
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Dogleg Channel Routing Example
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Modern Routing Considerations

 Signal/power Integrity
 Capacitive crosstalk 
 Inductive crosstalk
 IR drop

Manufacturability
 Process variation
 Optical proximity correction (OPC)
 Chemical mechanical polishing (CMP)
 Phase-Shift Mask (PSM)

 Reliability
 Double via insertion
 Process antenna effect
 Electromigration (EM)
 Electrostatic discharge (ESD)
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Layout Compaction

Course contents
Design rules
Symbolic layout
Constraint-graph compaction
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Design Rules
 Design rules: restrictions 

on the mask patterns to 
increase the probability of 
successful fabrication. 

 Patterns and design rules 
are often expressed in 
rules. 

 Most common design 
rules:
 minimum-width rules 

(valid for
a mask pattern of a 
specific layer): (a).

 minimum-separation rules 
(between mask patterns of 
the same layer or different 
layers): (b), (c).

 minimum-overlap rules 
(mask patterns in different 
layers): (e).
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CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout
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Symbolic Layout
 Geometric (mask) layout: coordinates of the layout 

patterns (rectangles) are absolute (or in multiples of ).
 Symbolic (topological) layout: only relations between layout 

elements (below, left to, etc) are known.
 Symbols are used to represent elements located in several 

layers, e.g. transistors, contact cuts.
 The length, width or layer of a wire or other layout element 

might be left unspecified.
 Mask layers not directly related to the functionality of the 

circuit do not need to be specified, e.g. n-well, p-well.
 The symbolic layout can work with a technology file that 

contains all design rule information for the target 
technology to produce the geometric layout.
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Compaction and Its Applications

 A compaction program or compactor generates 
layout at the mask level. It attempts to make the 
layout as dense as possible.

 Applications of compaction:
 Area minimization: remove redundant space in 

layout at the mask level.
 Layout compilation: generate mask-level layout 

from symbolic layout.
 Redesign: automatically remove design-rule 

violations.
 Rescaling: convert mask-level layout from one 

technology to another.
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Aspects of Compaction

 Dimension:
1-dimensional (1D) compaction: layout 

elements only are moved or shrunk in one 
dimension (x or y direction).
Is often performed first in the x-dimension and then 

in the y-dimension (or vice versa).
2-dimensional (2D) compaction: layout 

elements are moved and shrunk 
simultaneously in two dimensions.

 Complexity:
1D compaction can be done in polynomial 

time.
2D compaction is NP-hard.
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1D Compaction: X Followed By Y

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the x direction, then the y

direction, we have the layout size of 8  * 11 .
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1D Compaction: Y Followed By X

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the y direction, then the x

direction, we have the layout size of 11  * 8 .
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2D Compaction
 Each square is 2  * 2 , minimum separation is 1 .
 Initially, the layout is 11  * 11 .
 After 2D compaction, the layout size is only 8  * 8 .

 Since 2D compaction is NP-complete, most compactors are 
based on repeated 1D compaction.
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Inequalities for Distance Constraints

Minimum-distance 
design rules can be 
expressed as 
inequalities.

xj – xi  dij.

 For example, if the 
minimum width is a
and the minimum 
separation is b, then 

x2 – x1  a
x3 – x2  b
x3 – x6  b
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The Constraint Graph
 The inequalities can be used to construct a constraint graph 

G(V, E):
 There is a vertex vi for each variable xi.
 For each inequality xj – xi  dij there is an edge (vi, vj) with 

weight dij .
 There is an extra source vertex, v0; it is located at x = 0 ; all 

other vertices are at its right.
 If all the inequalities express minimum-distance 

constraints, the graph is acyclic (DAG). 
 The longest path in a constraint graph determines the 

layout dimension.

constraint graph

152

Maximum-Distance Constraints
 Sometimes the distance of layout elements is bounded by a 

maximum, e.g., when the user wants a maximum wire 
width, maintains a wire connecting to a via, etc.
 A maximum distance constraint gives an inequality of the 

form: xj – xi  cij or xi – xj  -cij
 Consequence for the constraint graph: backward edge

 (vj, vi) with weight dji = -cij; the graph is not acyclic anymore.
 The longest path in a constraint graph determines the 

layout dimension.

d
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Longest-Paths in Cyclic Graphs
 Constraint-graph compaction with maximum-distance 

constraints requires solving the longest-path problem in 
cyclic graphs.

 Two cases are distinguished:
 There are positive cycles: No feasible solution for 

longest paths. We shall detect the cycles.
 All cycles are negative: Polynomial-time algorithms 

exist.
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Longest and Shortest Paths

 Longest paths become shortest paths and vice 
versa when edge weights are multiplied by –1.

 Situation in DAGs: both the longest and shortest 
path problems can be solved in linear time.

 Situation in cyclic directed graphs:
 All weights are positive: shortest-path problem in P 

(Dijkstra), no feasible solution for the longest-path 
problem.

 All weights are negative: longest-path problem in P 
(Dijkstra), no feasible solution for the shortest-path 
problem.

 No positive cycles: longest-path problem is in P.
 No negative cycles: shortest-path problem is in P.
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Remarks on Constraint-Graph 
Compaction

 Noncritical layout elements: Every element outside the 
critical paths has freedom on its best position => may use 
this freedom to optimize some cost function.

 Automatic jog insertion: The quality of the layout can 
further be improved by automatic jog insertion.

 Hierarchy: A method to reduce complexity is hierarchical 
compaction, e.g., consider cells only.
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Constraint Generation
 The set of constraints should be irredundant and 

generated efficiently.
 An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj) 

exist and w((vi, vj))  w((vi, vk)) + w((vk, vj)).
 The minimum-distance constraints for (A, B) and (B, C) 

make that for (A, C) redundant.

 Doenhardt and Lengauer have proposed a method for 
irredundant constraint generation with complexity O(n log 
n).


