
101

Reducing Memory Requirement
 Akers's Observations (1967)

 Adjacent labels for k are either k-1 or k+1.
 Want a labeling scheme such that each label has its preceding label

different from its succeeding label.
 Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty,

blocked (3 bits required)
 Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, empty,

blocked (need only 2 bits)

102

Reducing Running Time
 Starting point selection: Choose the point farthest from the

center of the grid as the starting point.
 Double fan-out: Propagate waves from both the source and

the target cells.
 Framing: Search inside a rectangle area 10--20% larger

than the bounding box containing the source and target.
 Need to enlarge the rectangle and redo if the search fails.

103

Hadlock's Algorithm
 Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
 Uses detour number (instead of labeling wavefront in

Lee's router)
 Detour number, d(P): # of grid cells directed away

from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest

path.
 For any cell labeled i, label its adjacent unblocked cells

away from T i+1; label i otherwise.
 Time and space complexities: O(MN), but

substantially reduces the # of searched cells.
 Finds the shortest path between S and T.

104

Hadlock's Algorithm (cont'd)
 d(P): # of grid cells directed away from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest path.
 For any cell labeled i, label its adjacent unblocked cells away

from T i+1; label i otherwise.

105

Soukup's Algorithm
 Soukup, “Fast maze router,” DAC-78.
 Combined breadth-first and depth-first search.

 Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

 Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle is reached.

 Time and space complexities: O(MN), but 10~50 times faster
than Lee's algorithm.

 Find a path between S and T, but may not be the shortest!

106

Mikami-Tabuchi's Algorithm
 Mikami & Tabuchi, “A computer program for optimal routing

of printed circuit connectors,” IFIP, H47, 1968.
 Every grid point is an escape point.

107

Hightower's Algorithm
 Hightower, “A solution to line-routing problem on the

continuous plane,” DAC-69.
 A single escape point on each line segment.
 If a line parallels to the blocked cells, the escape point is

placed just past the endpoint of the segment.

108

Global Routing Graph

Each cell is represented by a vertex.
Two vertices are joined by an edge if the

corresponding cells are adjacent to each
other.

109

Global-Routing Problem

 Given a netlist N={N1, N2, …, Nn }, a routing
graph G=(V,E), find a Steiner tree Ti for each net
Ni, 1  i  n, such that U(ej)  c(ej),  ej  E and
i L(Ti) is minimized, where
 c(ej): capacity of edge ej

 xij=1 if ej is in Ti; xij=0 otherwise
 U(ej) = i xij:  of wires that pass through the channel

corresponding to edge ej

 L(Ti): total wirelength of Steiner tree Ti

 For high performance, the maximum wirelength
maxi L(Ti) is minimized (or the longest path
between two points in Ti is minimized).

110

Classification of Global-Routing
Algorithms

 Sequential approach:
 Select a net order and route nets sequentially in the

order
 Earlier routed nets might block the routing of

subsequent nets
 Routing quality heavily depends on net ordering
 Strategy: Heuristic net ordering + rip-up and rerouting

 Concurrent approach:
 All nets are considered simultaneously

E.g., 0-1 integer linear programming (0-1 ILP)

111

Net Ordering
 Net ordering greatly affects routing solutions.
 In the example, we should route net b before net a.

112

Net Ordering (cont’d)

Order the nets in the ascending order of
the # of pins within their bounding boxes.

Order the nets in the ascending
(descending) order of their lengths if
routability (timing) is the most critical
metric.

Order the nets based on their timing
criticality.

113

Rip-Up and Re-routing

 Rip-up and re-routing is required if a global or
detailed router fails in routing all nets.

 Approaches: the manual approach? the automatic
procedure?

 Two steps in rip-up and re-routing
1.Identify bottleneck regions, rip off some already routed

nets.
2.Route the blocked connections, and re-route the ripped-

up connections.

 Repeat the above steps until all connections are
routed or a time limit is exceeded.

114

Top-down Hierarchical Global Routing

 Recursively divides routing regions into
successively smaller super cells, and nets at
each hierarchical level are routed sequentially or
concurrently.

115

Bottom-up Hierarchical Global Routing

 At each hierarchical level, routing is restrained
within each super cell individually.

When the routing at the current level is finished,
every four super cells are merged to form a new
larger super cell at the next higher level.

116

Hybrid Hierarchical Global Routing

 (1) neighboring propagation, (2) preference
partitioning, and (3) bounded routing

117

The Routing-Tree Problem
 Problem: Given a set of pins of a net, interconnect the pins by a

“routing tree.”

 Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

 MRST(P) = MST(P  S), where P and S are the sets of original
points and Steiner points, respectively.

118

Theoretical Results for the MRST
Problem

 Hanan’s Thm: There exists an MRST with all Steiner points (set
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.
 Hanan, “On Steiner's problem with rectilinear distance,” SIAM

J. Applied Math., 1966.
 Hwang’s Theorem: For any point set P,

 Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

 Best existing approximation algorithm: Performance bound 61/48
by Foessmeier et al.

119

Coping with the MRST Problem
 Ho, Vijayan, Wong, “New algorithms for the rectilinear

Steiner problem,”
1.Construct an MRST from an MST.
2.Each edge is straight or L-shaped.
3.Maximize overlaps by dynamic programming.

 About 8% smaller than Cost(MST).

120

Iterated 1-Steiner Heuristic for MRST
 Kahng & Robins, “A new class of Steiner tree heuristics with good

performance: the iterated 1-Steiner approach,” ICCAD-90.

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2 S  ;

/* H(P  S): set of Hanan points */
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }  ) do
4 Find x  C and which maximizes  MST(P  S), {x});
5 S  S  {x};
6 Remove points in S which have degree  2 in MST(P  S);
7 return MST(P  S);
8 end

121

Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction

122

Channel Routing

 In earlier process technologies, channel routing
was pervasively used since most wires were
routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows)

123

Routing Region Decomposition

There are often various ways to
decompose a routing region.

The order of routing regions significantly
affects the channel-routing process.

124

Routing Models

Grid-based model:
 A grid is super-imposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two gridded lines
 Gridless model:
 Any model that does not follow this “gridded” approach.

125

Models for Multi-Layer Routing

Unreserved layer model: Any net segment is
allowed to be placed in any layer.

Reserved layer model: Certain type of
segments are restricted to particular layer(s).
 Two-layer: HV (Horizontal-Vertical), VH
 Three-layer: HVH, VHV

126

Terminology for Channel Routing

 Local density at
column i, d(i): total
of nets that
crosses column i.

 Channel density:
maximum local
density
 # of horizontal

tracks required 
channel density.

127

Channel Routing Problem
 Assignments of horizontal segments of nets to tracks
 Assignments of vertical segments to connect the following:

 horizontal segments of the same net in different tracks, and
 terminals of the net to horizontal segments of the net.

 Horizontal and vertical constraints must not be violated
 Horizontal constraints between two nets: the horizontal span

of two nets overlaps each other.
 Vertical constraints between two nets: there exists a column

such that the terminal on top of the column belongs to one net
and the terminal on bottom of the column belongs to another
net.

 Objective: Channel height is minimized (i.e., channel area
is minimized).

128

Horizontal Constraint Graph (HCG)
 HCG G = (V, E) is undirected graph where

 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a horizontal constraint exists between ni

and nj}.

 For graph G: vertices  nets; edge (i, j)  net i overlaps
net j.

129

Vertical Constraint Graph (VCG)

 VCG G = (V, E) is directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between

ni and nj}.
 For graph G: vertices  nets; edge i j  net i

must be above net j.

130

2-L Channel Routing: Basic Left-Edge
Algorithm

 Hashimoto & Stevens, “Wire routing by optimizing channel
assignment within large apertures,” DAC-71.

 No vertical constraint.
 HV-layer model is used.
 Doglegs are not allowed.
 Treat each net as an interval.
 Intervals are sorted according to their left-end x-

coordinates.
 Intervals (nets) are routed one-by-one according to the

order.
 For a net, tracks are scanned from top to bottom, and the

first track that can accommodate the net is assigned to the
net.

 Optimality: produces a routing solution with the minimum
of tracks (if no vertical constraint).

131

Basic Left-Edge Algorithm
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U  ) do
5 t  t + 1;
6 watermark  0;
7 while (there is an Ij  U s.t. sj > watermark) do
8 Pick the interval Ij  U with sj > watermark,

nearest watermark;
9 track[j]  t;
10 watermark  ej;
11 U  U - {Ij};
12 end

132

Basic Left-Edge Example
 U = {I1, I2, …, I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5,

10], I5 = [7, 11], I6 = [9, 12].
 t =1:

 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

 t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

 t = 3: Route I4

133

Basic Left-Edge Algorithm

 If there is no vertical
constraint, the basic
left-edge algorithm is
optimal.

 If there is any vertical
constraint, the
algorithm no longer
guarantees optimal
solution.

134

Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do
5 t  t + 1;
6 watermark  0;
7 while (there is an unconstrained Ij  U s.t. sj > watermark) do
8 Pick the interval Ij  U that is unconstrained,

with sj > watermark, nearest watermark;
9 track[j]  t;
10 watermark  ej;
11 U  U - {Ij};
12 end

135

Constrained Left-Edge Example

 I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2,
6], I6 = [7, 9].

 Track 1: Route I1 (cannot route I3); Route I6; Route I4.
 Track 2: Route I2; cannot route I3.
 Track 3: Route I5.
 Track 4: Route I3.

136

Dogleg Channel Router
 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with

constraint cycles.

 Drawback of Left-Edge: the entire net is on a single track.
 Doglegs are used to place parts of a net on different tracks to

minimize channel height.
 Might incur penalty for additional vias.

137

Dogleg Channel Router
 Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.

138

Dogleg Channel Routing Example

139

Modern Routing Considerations

 Signal/power Integrity
 Capacitive crosstalk
 Inductive crosstalk
 IR drop

Manufacturability
 Process variation
 Optical proximity correction (OPC)
 Chemical mechanical polishing (CMP)
 Phase-Shift Mask (PSM)

 Reliability
 Double via insertion
 Process antenna effect
 Electromigration (EM)
 Electrostatic discharge (ESD)

140

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

141

Layout Compaction

Course contents
Design rules
Symbolic layout
Constraint-graph compaction

142

Design Rules
 Design rules: restrictions

on the mask patterns to
increase the probability of
successful fabrication.

 Patterns and design rules
are often expressed in 
rules.

 Most common design
rules:
 minimum-width rules

(valid for
a mask pattern of a
specific layer): (a).

 minimum-separation rules
(between mask patterns of
the same layer or different
layers): (b), (c).

 minimum-overlap rules
(mask patterns in different
layers): (e).

143

CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout

144

Symbolic Layout
 Geometric (mask) layout: coordinates of the layout

patterns (rectangles) are absolute (or in multiples of ).
 Symbolic (topological) layout: only relations between layout

elements (below, left to, etc) are known.
 Symbols are used to represent elements located in several

layers, e.g. transistors, contact cuts.
 The length, width or layer of a wire or other layout element

might be left unspecified.
 Mask layers not directly related to the functionality of the

circuit do not need to be specified, e.g. n-well, p-well.
 The symbolic layout can work with a technology file that

contains all design rule information for the target
technology to produce the geometric layout.

145

Compaction and Its Applications

 A compaction program or compactor generates
layout at the mask level. It attempts to make the
layout as dense as possible.

 Applications of compaction:
 Area minimization: remove redundant space in

layout at the mask level.
 Layout compilation: generate mask-level layout

from symbolic layout.
 Redesign: automatically remove design-rule

violations.
 Rescaling: convert mask-level layout from one

technology to another.

146

Aspects of Compaction

 Dimension:
1-dimensional (1D) compaction: layout

elements only are moved or shrunk in one
dimension (x or y direction).
Is often performed first in the x-dimension and then

in the y-dimension (or vice versa).
2-dimensional (2D) compaction: layout

elements are moved and shrunk
simultaneously in two dimensions.

 Complexity:
1D compaction can be done in polynomial

time.
2D compaction is NP-hard.

147

1D Compaction: X Followed By Y

 Each square is 2  * 2 , minimum separation is
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the x direction, then the y

direction, we have the layout size of 8  * 11 .

148

1D Compaction: Y Followed By X

 Each square is 2  * 2 , minimum separation is
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the y direction, then the x

direction, we have the layout size of 11  * 8 .

149

2D Compaction
 Each square is 2  * 2 , minimum separation is 1 .
 Initially, the layout is 11  * 11 .
 After 2D compaction, the layout size is only 8  * 8 .

 Since 2D compaction is NP-complete, most compactors are
based on repeated 1D compaction.

150

Inequalities for Distance Constraints

Minimum-distance
design rules can be
expressed as
inequalities.

xj – xi  dij.

 For example, if the
minimum width is a
and the minimum
separation is b, then

x2 – x1  a
x3 – x2  b
x3 – x6  b

151

The Constraint Graph
 The inequalities can be used to construct a constraint graph

G(V, E):
 There is a vertex vi for each variable xi.
 For each inequality xj – xi  dij there is an edge (vi, vj) with

weight dij .
 There is an extra source vertex, v0; it is located at x = 0 ; all

other vertices are at its right.
 If all the inequalities express minimum-distance

constraints, the graph is acyclic (DAG).
 The longest path in a constraint graph determines the

layout dimension.

constraint graph

152

Maximum-Distance Constraints
 Sometimes the distance of layout elements is bounded by a

maximum, e.g., when the user wants a maximum wire
width, maintains a wire connecting to a via, etc.
 A maximum distance constraint gives an inequality of the

form: xj – xi  cij or xi – xj  -cij
 Consequence for the constraint graph: backward edge

 (vj, vi) with weight dji = -cij; the graph is not acyclic anymore.
 The longest path in a constraint graph determines the

layout dimension.

d

153

Longest-Paths in Cyclic Graphs
 Constraint-graph compaction with maximum-distance

constraints requires solving the longest-path problem in
cyclic graphs.

 Two cases are distinguished:
 There are positive cycles: No feasible solution for

longest paths. We shall detect the cycles.
 All cycles are negative: Polynomial-time algorithms

exist.

154

Longest and Shortest Paths

 Longest paths become shortest paths and vice
versa when edge weights are multiplied by –1.

 Situation in DAGs: both the longest and shortest
path problems can be solved in linear time.

 Situation in cyclic directed graphs:
 All weights are positive: shortest-path problem in P

(Dijkstra), no feasible solution for the longest-path
problem.

 All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

 No positive cycles: longest-path problem is in P.
 No negative cycles: shortest-path problem is in P.

155

Remarks on Constraint-Graph
Compaction

 Noncritical layout elements: Every element outside the
critical paths has freedom on its best position => may use
this freedom to optimize some cost function.

 Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

 Hierarchy: A method to reduce complexity is hierarchical
compaction, e.g., consider cells only.

156

Constraint Generation
 The set of constraints should be irredundant and

generated efficiently.
 An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj)

exist and w((vi, vj))  w((vi, vk)) + w((vk, vj)).
 The minimum-distance constraints for (A, B) and (B, C)

make that for (A, C) redundant.

 Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log
n).

