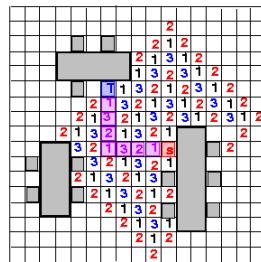
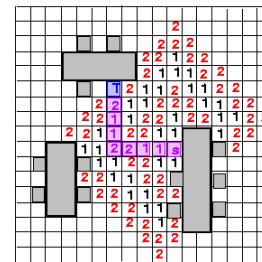


Reducing Memory Requirement

- ❑ Akers's Observations (1967)
 - Adjacent labels for k are either $k-1$ or $k+1$.
 - Want a labeling scheme such that each label has its preceding label different from its succeeding label.
- ❑ Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, *empty*, *blocked* (3 bits required)
- ❑ Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, *empty*, *blocked* (need only 2 bits)



Sequence: 1, 2, 3, 1, 2, 3, ...

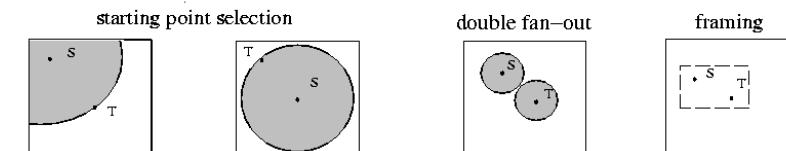


Sequence: 1, 1, 2, 2, 1, 1, 2, 2, ...

101

Reducing Running Time

- ❑ Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- ❑ Double fan-out: Propagate waves from both the source and the target cells.
- ❑ Framing: Search inside a rectangle area 10--20% larger than the bounding box containing the source and target.
 - Need to enlarge the rectangle and redo if the search fails.



102

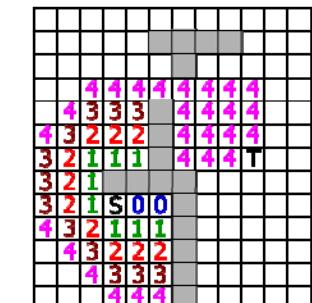
Hadlock's Algorithm

- ❑ Hadlock, "A shortest path algorithm for grid graphs," *Networks*, 1977.
- ❑ Uses detour number (instead of labeling wavefront in Lee's router)
 - Detour number, $d(P)$: # of grid cells directed **away from** its target on path P .
 - $MD(S, T)$: the Manhattan distance between S and T .
 - Path length of P , $I(P)$: $I(P) = MD(S, T) + 2d(P)$.
 - $MD(S, T)$ fixed! \Rightarrow Minimize $d(P)$ to find the shortest path.
 - For any cell labeled i , label its adjacent unblocked cells **away from** T ; label i otherwise.
- ❑ Time and space complexities: $O(MN)$, but substantially reduces the # of searched cells.
- ❑ Finds the shortest path between S and T .

103

Hadlock's Algorithm (cont'd)

- ❑ $d(P)$: # of grid cells directed **away from** its target on path P .
- ❑ $MD(S, T)$: the Manhattan distance between S and T .
- ❑ Path length of P , $I(P)$: $I(P) = MD(S, T) + 2d(P)$.
- ❑ $MD(S, T)$ fixed! \Rightarrow Minimize $d(P)$ to find the shortest path.
- ❑ For any cell labeled i , label its adjacent unblocked cells **away from** T ; label i otherwise.

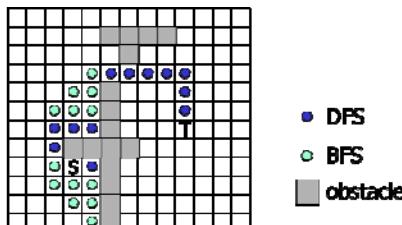


obstacle

104

Soukup's Algorithm

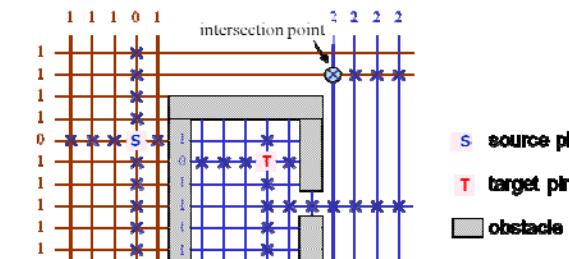
- Soukup, "Fast maze router," DAC-78.
- Combined breadth-first and depth-first search.
 - Depth-first (line) search is first directed toward target T until an obstacle or T is reached.
 - Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: $O(MN)$, but 10~50 times faster than Lee's algorithm.
- Find a path between S and T , but may not be the shortest!



105

Mikami-Tabuchi's Algorithm

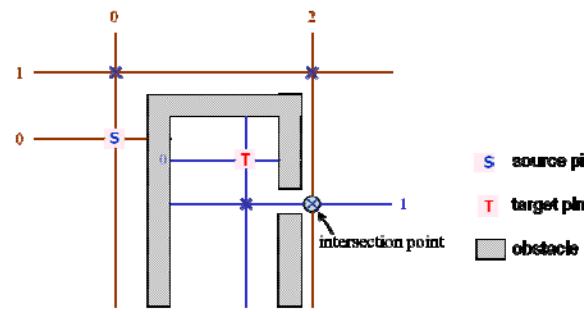
- Mikami & Tabuchi, "A computer program for optimal routing of printed circuit connectors," IFIP, H47, 1968.
- Every grid point is an escape point.



106

Hightower's Algorithm

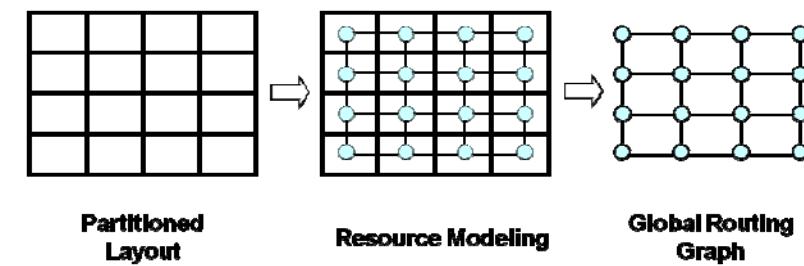
- Hightower, "A solution to line-routing problem on the continuous plane," DAC-69.
- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.



107

Global Routing Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.



108

Global-Routing Problem

- Given a netlist $N = \{N_1, N_2, \dots, N_n\}$, a routing graph $G = (V, E)$, find a Steiner tree T_i for each net N_i , $1 \leq i \leq n$, such that $U(e_j) \leq c(e_j)$, $\forall e_j \in E$ and $\sum_i L(T_i)$ is minimized, where
 - $c(e_j)$: capacity of edge e_j
 - $x_{ij}=1$ if e_j is in T_i ; $x_{ij}=0$ otherwise
 - $U(e_j) = \sum_i x_{ij}$: # of wires that pass through the channel corresponding to edge e_j
 - $L(T_i)$: total wirelength of Steiner tree T_i
- For high performance, the maximum wirelength $\max_i L(T_i)$ is minimized (or the longest path between two points in T_i is minimized).

109

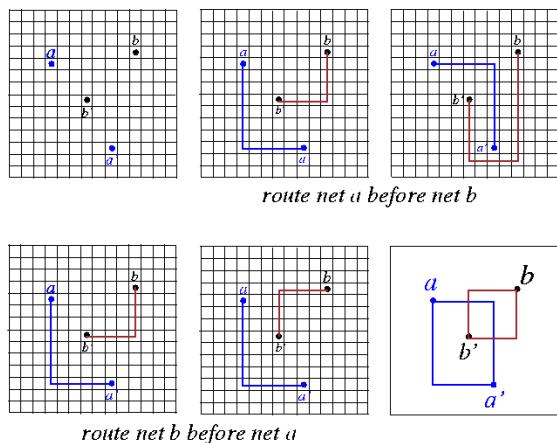
Classification of Global-Routing Algorithms

- Sequential approach:
 - Select a net order and route nets sequentially in the order
 - Earlier routed nets might block the routing of subsequent nets
 - Routing quality heavily depends on net ordering
 - Strategy: Heuristic net ordering + rip-up and rerouting
- Concurrent approach:
 - All nets are considered simultaneously
 - E.g., 0-1 integer linear programming (0-1 ILP)

110

Net Ordering

- Net ordering greatly affects routing solutions.
- In the example, we should route net b before net a .



111

Net Ordering (cont'd)

- Order the nets in the ascending order of the # of pins within their bounding boxes.
- Order the nets in the ascending (descending) order of their lengths if routability (timing) is the most critical metric.
- Order the nets based on their timing criticality.

112

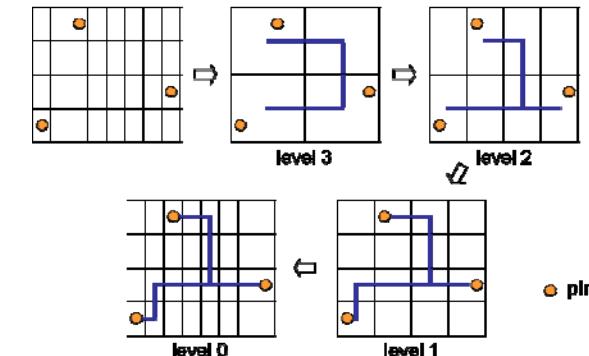
Rip-Up and Re-routing

- ❑ Rip-up and re-routing is required if a global or detailed router fails in routing all nets.
- ❑ Approaches: the manual approach? the automatic procedure?
- ❑ Two steps in rip-up and re-routing
 1. Identify bottleneck regions, rip off some already routed nets.
 2. Route the blocked connections, and re-route the ripped-up connections.
- ❑ Repeat the above steps until all connections are routed or a time limit is exceeded.

113

Top-down Hierarchical Global Routing

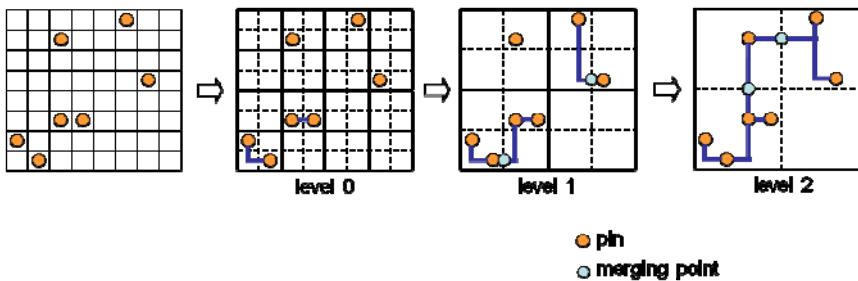
- ❑ Recursively divides routing regions into successively smaller **super cells**, and nets at each hierarchical level are routed sequentially or concurrently.



114

Bottom-up Hierarchical Global Routing

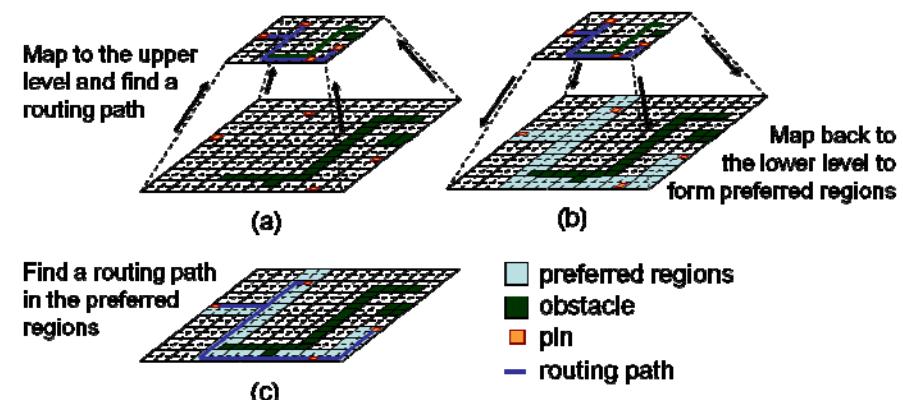
- ❑ At each hierarchical level, routing is restrained within each super cell individually.
- ❑ When the routing at the current level is finished, every four super cells are merged to form a new larger super cell at the next higher level.



115

Hybrid Hierarchical Global Routing

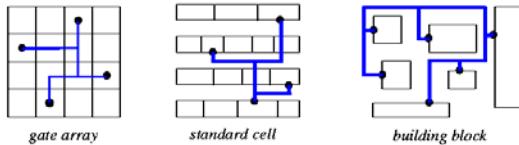
- ❑ (1) neighboring propagation, (2) preference partitioning, and (3) bounded routing



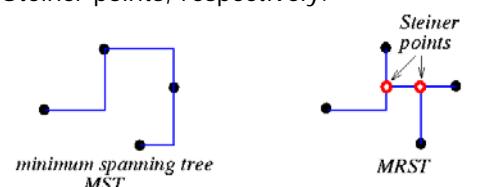
116

The Routing-Tree Problem

- **Problem:** Given a set of pins of a net, interconnect the pins by a "routing tree."



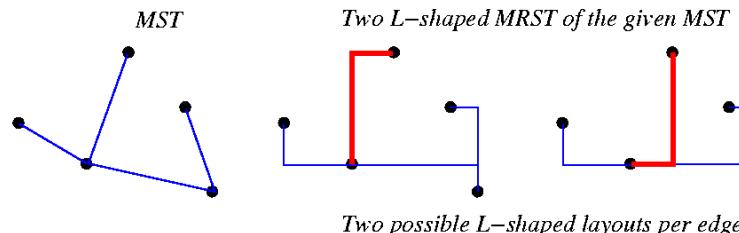
- **Minimum Rectilinear Steiner Tree (MRST) Problem:** Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $MRST(P) = MST(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.



117

Coping with the MRST Problem

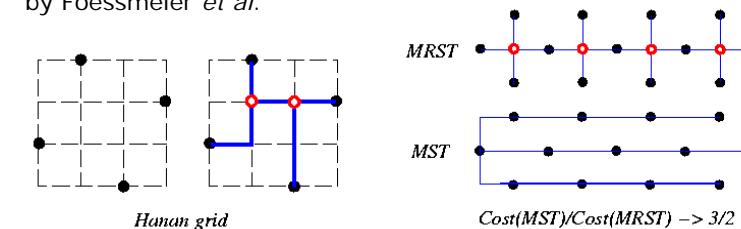
- Ho, Vijayan, Wong, "New algorithms for the rectilinear Steiner problem."
 1. Construct an MRST from an MST.
 2. Each edge is straight or L-shaped.
 3. Maximize overlaps by dynamic programming.
- About 8% smaller than $Cost(MST)$.



119

Theoretical Results for the MRST Problem

- **Hanan's Thm:** There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P .
 - Hanan, "On Steiner's problem with rectilinear distance," *SIAM J. Applied Math.*, 1966.
- **Hwang's Theorem:** For any point set P , $\frac{Cost(MST(P))}{Cost(MRST(P))} \leq \frac{3}{2}$.
 - Hwang, "On Steiner minimal tree with rectilinear distance," *SIAM J. Applied Math.*, 1976.
- Best existing approximation algorithm: Performance bound 61/48 by Foessmeier *et al.*



118

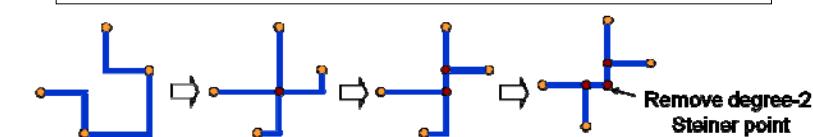
Iterated 1-Steiner Heuristic for MRST

- Kahng & Robins, "A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach," *ICCAD-90*.

```

Algorithm: Iterated_1-Steiner( $P$ )
 $P$ : set of  $n$  points.
1 begin
2  $S \leftarrow \emptyset$ ;
   /*  $H(P \cup S)$ : set of Hanan points */
   /*  $\Delta MST(A, B) = Cost(MST(A)) - Cost(MST(A \cup B))$  */
3 while ( $Cand \leftarrow \{x \in H(P \cup S) | \Delta MST(P \cup S, \{x\}) > 0\} \neq \emptyset$ ) do
4   Find  $x \in Cand$  which maximizes  $\Delta MST(P \cup S, \{x\})$ ;
5    $S \leftarrow S \cup \{x\}$ ;
6   Remove points in  $S$  which have degree  $\leq 2$  in  $MST(P \cup S)$ ;
7 return  $MST(P \cup S)$ ;
8 end

```



120

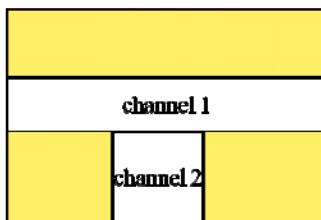
Outline

- ❑ Partitioning
- ❑ Floorplanning
- ❑ Placement
- ❑ Routing
 - Global routing
 - Detailed routing
- ❑ Compaction

121

Routing Region Decomposition

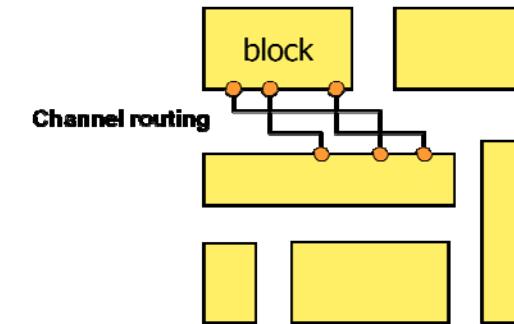
- ❑ There are often various ways to decompose a routing region.
- ❑ The order of routing regions significantly affects the channel-routing process.



123

Channel Routing

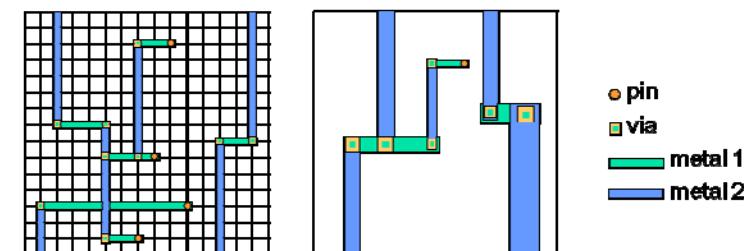
- ❑ In earlier process technologies, channel routing was pervasively used since most wires were routed in the free space (*i.e.*, routing channel) between a pair of logic blocks (cell rows)



122

Routing Models

- ❑ **Grid-based model:**
 - A grid is super-imposed on the routing region.
 - Wires follow paths along the grid lines.
 - **Pitch:** distance between two gridded lines
- ❑ **Gridless model:**
 - Any model that does not follow this "gridded" approach.



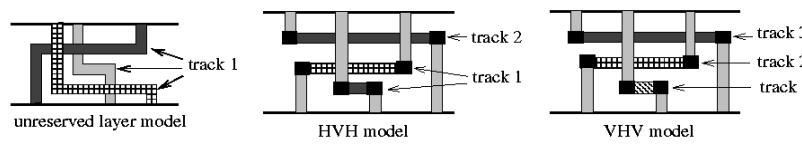
124

Models for Multi-Layer Routing

- **Unreserved layer model:** Any net segment is allowed to be placed in any layer.

- **Reserved layer model:** Certain type of segments are restricted to particular layer(s).

- Two-layer: HV (Horizontal-Vertical), VH
- Three-layer: HVH, VHV



3 types of 3-layer models

125

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks
- Assignments of vertical segments to connect the following:
 - horizontal segments of the same net in different tracks, and
 - terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated
 - Horizontal constraints between two nets: the horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: there exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to another net.
- Objective: Channel height is minimized (i.e., channel area is minimized).

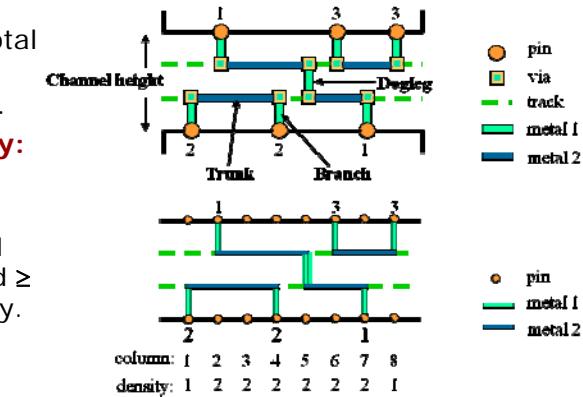
127

Terminology for Channel Routing

- Local density at column i , $d(i)$: total # of nets that crosses column i .

- **Channel density:** maximum local density

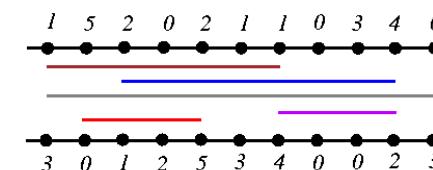
- # of horizontal tracks required \geq channel density.



126

Horizontal Constraint Graph (HCG)

- HCG $G = (V, E)$ is **undirected** graph where
 - $V = \{v_i \mid v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) \mid \text{a horizontal constraint exists between } n_i \text{ and } n_j\}$
- For graph G : vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j .

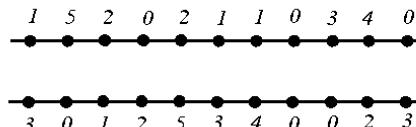


A routing problem and its HCG.

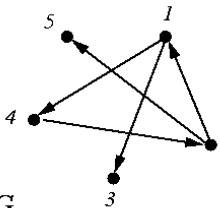
128

Vertical Constraint Graph (VCG)

- VCG $G = (V, E)$ is **directed** graph where
 - $V = \{v_i \mid v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) \mid \text{a vertical constraint exists between } n_i \text{ and } n_j\}$.
- For graph G : vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j .



A routing problem and its VCG.



129

Basic Left-Edge Algorithm

Algorithm: **Basic_Left-Edge**(U , $track[j]$)
 U : set of unassigned intervals (nets) I_1, \dots, I_n ;
 $I_j = [s_j, e_j]$: interval j with left-end x -coordinate s_j and right-end e_j ;
 $track[j]$: track to which net j is assigned.

```

1 begin
2    $U \leftarrow \{I_1, I_2, \dots, I_n\}$ ;
3    $t \leftarrow 0$ ;
4   while ( $U \neq \emptyset$ ) do
5      $t \leftarrow t + 1$ ;
6     watermark  $\leftarrow 0$ ;
7     while (there is an  $I_j \in U$  s.t.  $s_j > watermark$ ) do
8       Pick the interval  $I_j \in U$  with  $s_j > watermark$ ,
         nearest watermark;
9      $track[j] \leftarrow t$ ;
10    watermark  $\leftarrow e_j$ ;
11     $U \leftarrow U - \{I_j\}$ ;
12 end

```

131

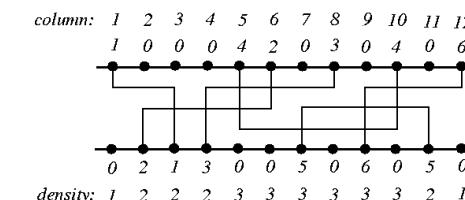
2-L Channel Routing: Basic Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- **No vertical constraint.**
- HV-layer model is used.
- **Doglegs are not allowed.**
- Treat each net as an interval.
- Intervals are sorted according to their left-end x -coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- **Optimality:** produces a routing solution with the minimum # of tracks (if no vertical constraint).

130

Basic Left-Edge Example

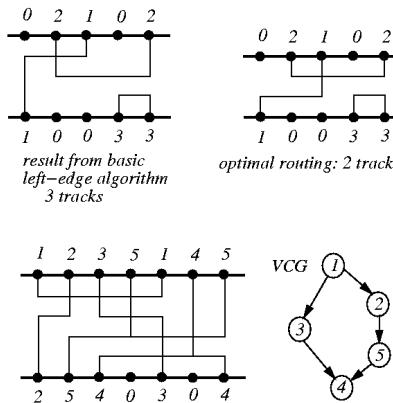
- $U = \{I_1, I_2, \dots, I_6\}; I_1 = [1, 3], I_2 = [2, 6], I_3 = [4, 8], I_4 = [5, 10], I_5 = [7, 11], I_6 = [9, 12]$.
- $t = 1$:
 - Route I_1 : watermark = 3;
 - Route I_3 : watermark = 8;
 - Route I_6 : watermark = 12;
- $t = 2$:
 - Route I_2 : watermark = 6;
 - Route I_5 : watermark = 11;
- $t = 3$: Route I_4



132

Basic Left-Edge Algorithm

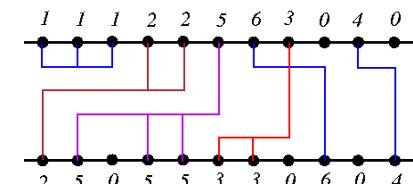
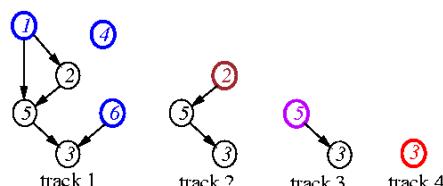
- If there is no vertical constraint, the basic left-edge algorithm is optimal.
- If there is any vertical constraint, the algorithm no longer guarantees optimal solution.



133

Constrained Left-Edge Example

- $I_1 = [1, 3]$, $I_2 = [1, 5]$, $I_3 = [6, 8]$, $I_4 = [10, 11]$, $I_5 = [2, 6]$, $I_6 = [7, 9]$.
- Track 1: Route I_1 (cannot route I_3); Route I_6 ; Route I_4 .
- Track 2: Route I_2 .
- Track 3: Route I_5 .
- Track 4: Route I_3 .



135

Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U , $track[j]$)

U : set of unassigned intervals (nets) I_1, \dots, I_n ;
 $I_j = [s_j, e_j]$: interval j with left-end x -coordinate s_j and right-end e_j ;
 $track[j]$: track to which net j is assigned.

```

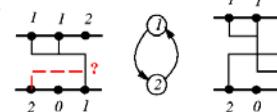
1 begin
2    $U \leftarrow \{ I_1, I_2, \dots, I_n \}$ ;
3    $t \leftarrow 0$ ;
4   while ( $U \neq \emptyset$ ) do
5      $t \leftarrow t + 1$ ;
6     watermark  $\leftarrow 0$ ;
7     while (there is an unconstrained  $I_j \in U$  s.t.  $s_j > watermark$ ) do
8       Pick the interval  $I_j \in U$  that is unconstrained,
         with  $s_j > watermark$ , nearest watermark;
9        $track[j] \leftarrow t$ ;
10      watermark  $\leftarrow e_j$ ;
11       $U \leftarrow U - \{ I_j \}$ ;
12  end

```

134

Dogleg Channel Router

- Deutch, "A dogleg channel router," 13rd DAC, 1976.
- **Drawback of Left-Edge: cannot handle the cases with constraint cycles.**



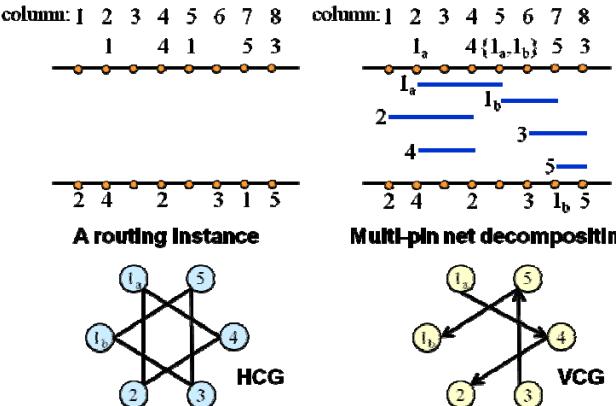
- **Drawback of Left-Edge: the entire net is on a single track.**
 - **Doglegs** are used to place parts of a net on different tracks to minimize channel height.
 - Might incur penalty for additional vias.



136

Dogleg Channel Router

- Each multi-pin net is broken into a set of 2-pin nets.
- Modified Left-Edge Algorithm is applied to each subnet.

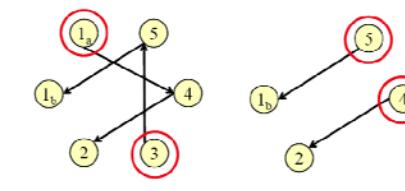


137

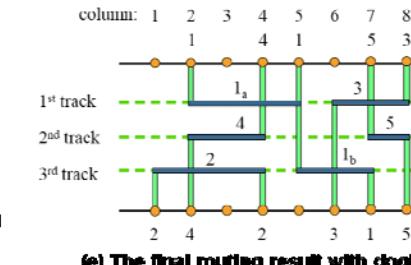
Dogleg Channel Routing Example

Net	Range
2	[1,4]
1 _a	[2,5]
4	[2,4]
1 _b	[5,7]
3	[6,8]
5	[7,8]

(a) Nets ordered by left-end coordinates



(b) 1_a and 3 are assigned to the 1st track (c) 4 and 5 are assigned to the 2nd track



(d) 1_b and 2 are assigned to the 3rd track (e) The final routing result with doglegs

138

Modern Routing Considerations

- Signal/power Integrity
 - Capacitive crosstalk
 - Inductive crosstalk
 - IR drop
- Manufacturability
 - Process variation
 - Optical proximity correction (OPC)
 - Chemical mechanical polishing (CMP)
 - Phase-Shift Mask (PSM)
- Reliability
 - Double via insertion
 - Process antenna effect
 - Electromigration (EM)
 - Electrostatic discharge (ESD)

139

Outline

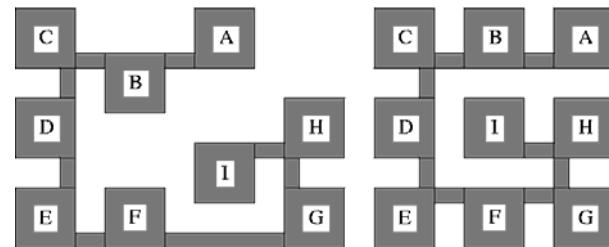
- Partitioning
- Floorplanning
- Placement
- Routing
- Compaction

140

Layout Compaction

Course contents

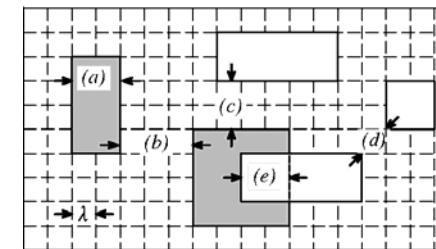
- Design rules
- Symbolic layout
- Constraint-graph compaction



141

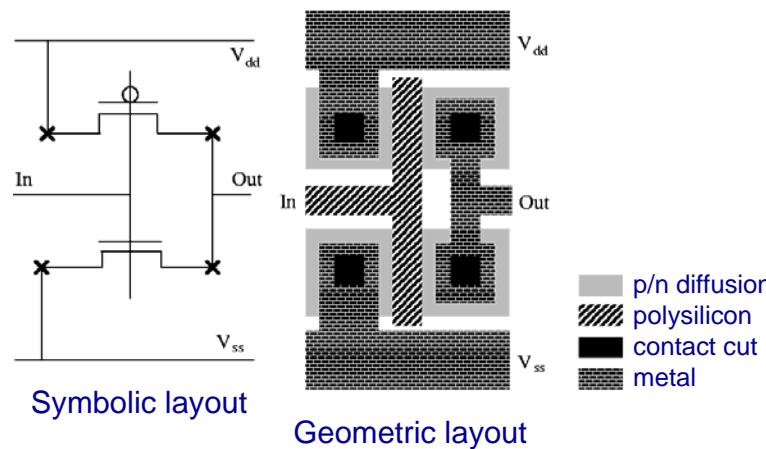
Design Rules

- **Design rules:** restrictions on the mask patterns to increase the probability of successful fabrication.



142

CMOS Inverter Layout Example



143

Symbolic Layout

- **Geometric (mask) layout:** coordinates of the layout patterns (rectangles) are absolute (or in multiples of λ).
- **Symbolic (topological) layout:** only relations between layout elements (below, left to, etc) are known.
 - Symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
 - The *length*, *width* or *layer* of a wire or other layout element might be left unspecified.
 - Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.
- The symbolic layout can work with a technology file that contains all design rule information for the target technology to produce the geometric layout.

144

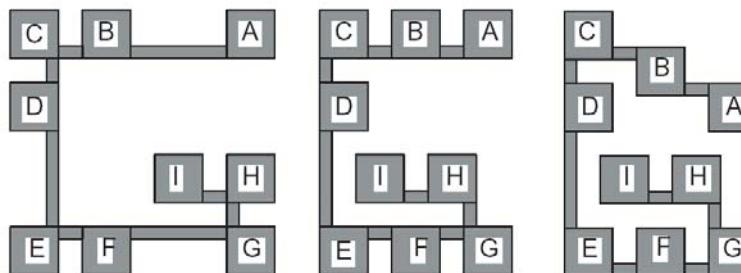
Compaction and Its Applications

- A **compaction program** or **compactor** generates layout at the mask level. It attempts to make the layout as dense as possible.
- Applications of compaction:
 - **Area minimization**: remove redundant space in layout at the mask level.
 - **Layout compilation**: generate mask-level layout from symbolic layout.
 - **Redesign**: automatically remove design-rule violations.
 - **Rescaling**: convert mask-level layout from one technology to another.

145

1D Compaction: X Followed By Y

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ .
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the **x** direction, then the **y** direction, we have the layout size of $8\lambda \times 11\lambda$.



147

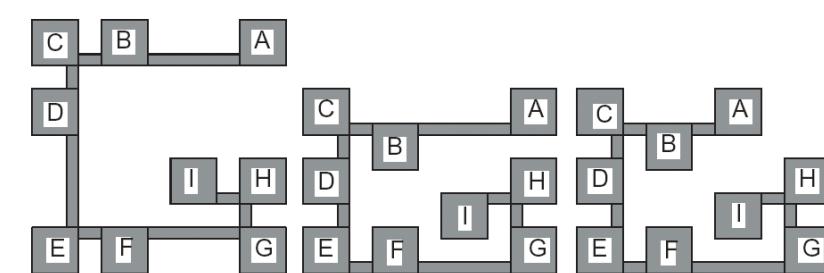
Aspects of Compaction

- Dimension:
 - 1-dimensional (1D) compaction: layout elements only are moved or shrunk in one dimension (**x** or **y** direction).
 - Is often performed first in the **x**-dimension and then in the **y**-dimension (or vice versa).
 - 2-dimensional (2D) compaction: layout elements are moved and shrunk simultaneously in two dimensions.
- Complexity:
 - 1D compaction can be done in polynomial time.
 - 2D compaction is NP-hard.

146

1D Compaction: Y Followed By X

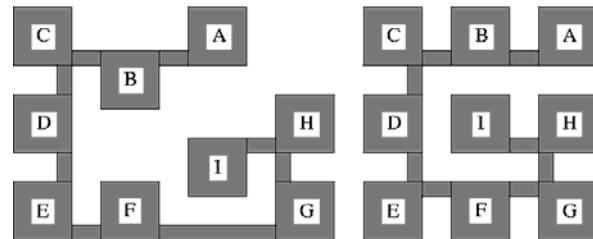
- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ .
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the **y** direction, then the **x** direction, we have the layout size of $11\lambda \times 8\lambda$.



148

2D Compaction

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ .
- Initially, the layout is $11\lambda \times 11\lambda$.
- After 2D compaction, the layout size is only $8\lambda \times 8\lambda$.



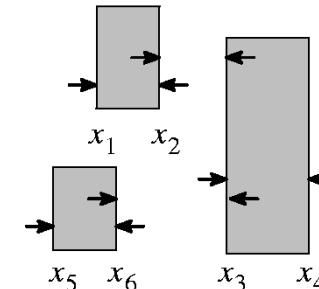
- Since 2D compaction is NP-complete, most compactors are based on repeated 1D compaction.

149

Inequalities for Distance Constraints

- Minimum-distance design rules can be expressed as inequalities.

$$x_j - x_i \geq d_{ij}.$$

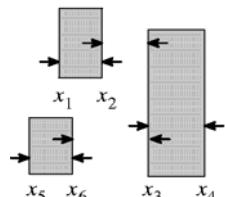
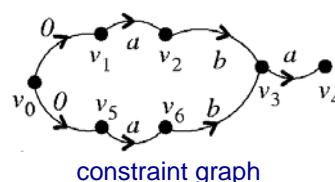


$$\begin{aligned}x_2 - x_1 &\geq a \\x_3 - x_2 &\geq b \\x_3 - x_4 &\geq b\end{aligned}$$

150

The Constraint Graph

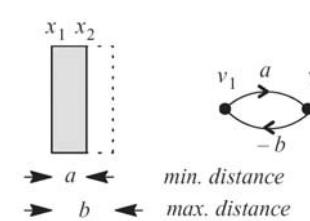
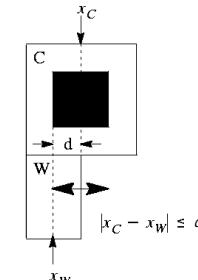
- The inequalities can be used to construct a constraint graph $G(V, E)$:
 - There is a vertex v_i for each variable x_i .
 - For each inequality $x_j - x_i \geq d_{ij}$ there is an edge (v_i, v_j) with weight d_{ij} .
 - There is an extra source vertex, v_0 ; it is located at $x = 0$; all other vertices are at its right.
- If all the inequalities express minimum-distance constraints, the graph is **acyclic** (DAG).
- The longest path in a constraint graph determines the layout dimension.



151

Maximum-Distance Constraints

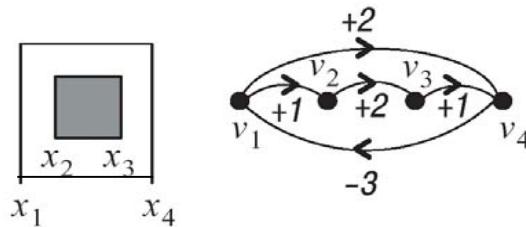
- Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user wants a maximum wire width, maintains a wire connecting to a via, etc.
 - A maximum distance constraint gives an inequality of the form: $x_j - x_i \leq c_{ij}$ or $x_i - x_j \geq -c_{ij}$
 - Consequence for the constraint graph: **backward edge** (v_j, v_i) with weight $d_{ji} = -c_{ij}$, the graph is not acyclic anymore.
- The longest path in a constraint graph determines the layout dimension.



152

Longest-Paths in Cyclic Graphs

- Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.
- Two cases are distinguished:
 - There are positive cycles:** No feasible solution for longest paths. We shall detect the cycles.
 - All cycles are negative:** Polynomial-time algorithms exist.



153

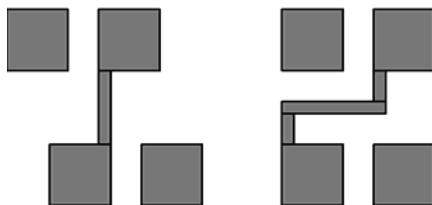
Longest and Shortest Paths

- Longest paths become shortest paths and vice versa when edge weights are multiplied by -1 .
- Situation in DAGs: both the longest and shortest path problems can be solved in **linear** time.
- Situation in cyclic directed graphs:
 - All weights are positive:** shortest-path problem in P (Dijkstra), no feasible solution for the longest-path problem.
 - All weights are negative:** longest-path problem in P (Dijkstra), no feasible solution for the shortest-path problem.
 - No positive cycles:** longest-path problem is in P.
 - No negative cycles:** shortest-path problem is in P.

154

Remarks on Constraint-Graph Compaction

- Noncritical layout elements:** Every element outside the **critical paths** has freedom on its best position \Rightarrow may use this freedom to optimize some cost function.
- Automatic jog insertion:** The quality of the layout can further be improved by automatic **jog insertion**.

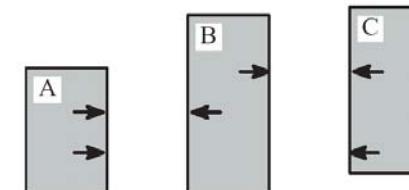


- Hierarchy:** A method to reduce complexity is hierarchical compaction, e.g., consider cells only.

155

Constraint Generation

- The set of constraints should be irredundant and generated efficiently.
- An edge (v_i, v_j) is **redundant** if edges (v_i, v_k) and (v_k, v_j) exist and $w((v_i, v_j)) \leq w((v_i, v_k)) + w((v_k, v_j))$.
 - The minimum-distance constraints for (A, B) and (B, C) make that for (A, C) redundant.



- Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity $O(n \log n)$.

156