Reducing Memory Requirement

O Akers's Observations (1967)
B Adjacent labels for k are either k-1 or k+1.
B Want a labeling scheme such that each label has its preceding label
different from its succeeding label.
O Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty,
blocked (3 bits required)
O Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, empty,
blocked (need only 2 bits)
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Reducing Running Time

O Starting point selection: Choose the point farthest from the
center of the grid as the starting point.

O Double fan-out: Propagate waves from both the source and
the target cells.

O Framing: Search inside a rectangle area 10--20% larger
than the bounding box containing the source and target.
B Need to enlarge the rectangle and redo if the search fails.

starting point selection double fan—out framing

.S T
I
| +% 1l
.
- |
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Hadlock's Algorithm

O Hadlock, “A shortest path algorithm for grid graphs,”
Networks, 1977.

O Uses detour number (instead of labeling wavefront in
Lee's router)

B Detour number, d(P): # of grid cells directed away
from its target on path P.

B MD(S, T): the Manhattan distance between S and T.

m Path length of P, I(P): I(P) = MD(S, T) + 2 d(P).

B MD(S, T) fixed! = Minimize d(P) to find the shortest
path.

B For any cell labeled i, label its adjacent unblocked cells
away from T i+1; label i otherwise.

O Time and space complexities: O(MN), but
substantially reduces the # of searched cells.

O Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)

O d(P): # of grid cells directed away from its target on path P.
O MD(S, T): the Manhattan distance between S and T.

O Path length of P, I(P): I(P) = MD(S, T) + 2d(P).

O MD(S, T) fixed! = Minimize d(P) to find the shortest path.

O For any cell labeled i, label its adjacent unblocked cells away
from T i+1; label i otherwise.
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Soukup's Algorithm

O Soukup, “Fast maze router,” DAC-78.
O Combined breadth-first and depth-first search.

B Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

B Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle Is reached.

O Time and space complexities: O(MN), but 10~50 times faster
than Lee's algorithm.

O Find a path between S and T, but may not be the shortest!

| 9| 8| & @4
20 [
e " DFs
CRANE o BFS
ac |1 obstacle
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Mikami-Tabuchi's Algorithm

O Mikami & Tabuchi, “A computer program for optimal routing
of printed circuit connectors,” IFIP, H47, 1968.
O Every grid point is an escape point.
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Hightower's Algorithm

O Hightower, “A solution to line-routing problem on the
continuous plane,” DAC-69.

O A single escape point on each line segment.

O If a line parallels to the blocked cells, the escape point is
placed just past the endpoint of the segment.

o 2

— |
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£ 1 T targetpin
intersection point DM
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Global Routing Graph

COEach cell is represented by a vertex.

COTwo vertices are joined by an edge if the
corresponding cells are adjacent to each
other.

o e e el =
SR EE
oot ol o
Partitioned - Global Routing
L ut Resource Modeling Graph

108




Global-Routing Problem

O Given a netlist N={N,, N,, ..., N, }, a routing
graph G=(V,E), find a Steiner tree T, for each net
N;, 1 <i<n, such that U(g;)) < c(ej), V e € E and
2 L(T;) is minimized, where

B c(e)): capacity of edge g

B x;=1 if g; is in T;; x;=0 otherwise

B U(e) = 2 x;: # of wires that pass through the channel
corresponding to edge g

B L(T)): total wirelength of Steiner tree T,

O For high performance, the maximum wirelength
maxi L(T;) is minimized (or the longest path
between two points in T; is minimized).
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Classification of Global-Routing
Algorithms

0 Sequential approach:

B Select a net order and route nets sequentially in the
order

B Earlier routed nets might block the routing of
subsequent nets

B Routing quality heavily depends on net ordering
B Strategy: Heuristic net ordering + rip-up and rerouting
0 Concurrent approach:

m All nets are considered simultaneously
OE.g., 0-1 integer linear programming (0-1 ILP)
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Net Ordering

O Net ordering greatly affects routing solutions.
O In the example, we should route net b before net a.

b
-

1=

=] p|

rottte ret d before net b

route net b before net u 111

Net Ordering (cont’d)

C0Order the nets in the ascending order of
the # of pins within their bounding boxes.

C1Order the nets in the ascending
(descending) order of their lengths if
routability (timing) is the most critical
metric.

O Order the nets based on their timing
criticality.
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Rip-Up and Re-routing

O Rip-up and re-routing is required if a global or
detailed router fails in routing all nets.

O Approaches: the manual approach? the automatic
procedure?

0 Two steps in rip-up and re-routing

1. ldentify bottleneck regions, rip off some already routed
nets.

2.Route the blocked connections, and re-route the ripped-
up connections.

[0 Repeat the above steps until all connections are
routed or a time limit is exceeded.
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Top-down Hierarchical Global Routing

[0 Recursively divides routing regions into
successively smaller super cells, and nets at
each hierarchical level are routed sequentially or
concurrently.

ol o o
o) = o = o
e o @
lovel 3 level 2
74
ol o
a
I ® I ~ o pin
ol d
level D lewvel 1
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Bottom-up Hierarchical Global Routing

0 At each hierarchical level, routing is restrained
within each super cell individually.

O When the routing at the current level is finished,
every four super cells are merged to form a new
larger super cell at the next higher level.

@) 0 ?
© (e o)
9 Sl oy I-oo =
oc e o0
o cl’--o ?-O.:-l
level D level 1
opin

© merging point
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Hybrid Hierarchical Global Routing

O (1) neighboring propagation, (2) preference
partitioning, and (3) bounded routing

Map to the upper
leveland finda ,*

routing path

:J""" A T Ay
. L-g;.ﬁﬂ:—::-&:-’ v thelower level to

' form prefarred regions
®)

[] preferred regions
H obstacle

O pin

— routing path
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The Routing-Tree Problem

O Problem: Given a set of pins of a net, interconnect the pins by a
“routing tree.”

i D

gare array standard cell butlding black

O Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

O MRST(P) = MST(P U S), where P and S are the sets of original
points and Steiner points, respectively.

Steiner
P points
s
[u—
minimum spanning tree MRST
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Theoretical Results for the MRST
Problem

O Hanan’s Thm: There exists an MRST with all Steiner points (set
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.

B Hanan, “On Steiner's problem with rectilinear distance,” SIAM
J. Applied Math., 1966. Cost(MST(P)) 3
<

O Hwang’s Theorem: For any point set P, Cost(MRST(F)) ~ 2

B Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

O Best existing approximation algorithm: Performance bound 61/48

by Foessmeier et al.
o MRST >—%—0—%—4—}—o—%—4
T

—®* 171

L] 4

1 | | e & e a

+’ _I_ J‘ - _\ _\ MST &—a—0 9@

Lol ¢ | _ - ° - .
Hunan grid Cost{iMST)/Cost{MRST) —> 3/2
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Coping with the MRST Problem

O Ho, Vijayan, Wong, “New algorithms for the rectilinear
Steiner problem,”

1.Construct an MRST from an MST.

2.Each edge is straight or L-shaped.

3. Maximize overlaps by dynamic programming.
O About 8% smaller than Cost(MST).

MST Two L—shaped MRST of the given MST

T TT‘T

Two possible L—shaped layouts per edge
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Iterated 1-Steiner Heuristic for MRST

O Kahng & Robins, “A new class of Steiner tree heuristics with good
performance: the iterated 1-Steiner approach,” ICCAD-90.

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2S5« G
/*H(P U S): set of Hanan points */
/* AMST(A, B) = Cost(MST(A)) - Cost(MST(A U B)) */
3 while (Cand « {x e HPUS)|AMST(PUS, {x})>0}#@)do
4  Find x e C and which maximizes AMST(P U S), {x});
5 SeSu{xh
6 Remove points in S which have degree <2 in MST(P U S);
7 return MST(P U S);
8 end

TR S
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Outline

O Partitioning
O Floorplanning
O Placement

O Routing
B Global rounting
B Detailed routing

O Compaction
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Channel Routing

O In earlier process technologies, channel routing
was pervasively used since most wires were
routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows)

block

Channel routing
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Routing Region Decomposition

CThere are often various ways to
decompose a routing region.

C0The order of routing regions significantly
affects the channel-routing process.

channel 1 chammel 1 chame] 2
[channel 3|

chanmel 2]
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Routing Models

O Grid-based model:
B A grid is super-imposed on the routing region.
B Wires follow paths along the grid lines.
B Pitch: distance between two gridded lines
B Gridless model:
B Any model that does not follow this “gridded” approach.

|
LLL
o pin
] mu! it mvia
H- | — metal 1
§ i == metal2
Cam
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Models for Multi-Layer Routing

O Unreserved layer model: Any net segment is
allowed to be placed in any layer.

[0 Reserved layer model: Certain type of
segments are restricted to particular layer(s).
B Two-layer: HV (Horizontal-Vertical), VH
B Three-layer: HVH, VHV

-=track 2 = track 3
_;\ track 1 track 2
- track 1 track 1

unreserved layer model HVH model VHVY model

3 types aof 3—layer models
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Terminology for Channel Routing

O Local density at
column i, d(i): total T © pin
# of nets that Mm- = o ll B via
crosses column i. l = ' = track
. = metal [
O Cha_nnel density: = meinl?
maximum local Tramk Branch
density —h
B # of horizontal -
tracks required > —- | - e pin
channel density. u — Il — ﬂ o = mehal |
2 2 1 = matal 2
column: f 2 3 4 5 & 7 8§
denmity: 1 2 2 2 2 2 2 I
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Channel Routing Problem

O Assignments of horizontal segments of nets to tracks

O Assignments of vertical segments to connect the following:
B horizontal segments of the same net in different tracks, and
B terminals of the net to horizontal segments of the net.

O Horizontal and vertical constraints must not be violated

B Horizontal constraints between two nets: the horizontal span
of two nets overlaps each other.

B Vertical constraints between two nets: there exists a column
such that the terminal on top of the column belongs to one net
and the terminal on bottom of the column belongs to another
net.

O Objective: Channel height is minimized (i.e., channel area
is minimized).
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Horizontal Constraint Graph (HCG)

O HCG G = (V, E) is undirected graph where
B V={v] v represents a net n;}
® E = {(v;, vyl a horizontal constraint exists between n;
and n;}.

O For graph G: vertices < nets; edge (i, j) < net i overlaps
net j.

1 5 2 0 2 i 1 0 3 4 0 5
- —0—0—90—90—0 00—

————h———b—0—0——0—
3 0 1 2 5 3 4 0 0 2 3 2

A routing problem and its HCG. 3
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Vertical Constraint Graph (VCG)

2-L. Channel Routing: Basic Left-Edge
Algorithm

O VCG G = (V, E) is directed graph where O Hashimoto & Stevens, “Wire routing by optimizing channel
_ ’ assignment within large apertures,” DAC-71.
m V={v| v represents a net n;} O No vertical constraint.
B E= {(v,, v)| a vertical constraint exists between O HV-layer model is used.
n; and n;}. O Doglegs are not allowed.
O For graph G: vertices < nets; edge i »j < net i O Treat each net as an interval.
must be above net j. O Intervals are sorted according to their left-end x-
coordinates.
5 1 O Intervals (nets) are routed one-by-one according to the
15 2 02 110 34 0 order.
————o——90—9—0—0—90—0 O For a net, tracks are scanned from top to bottom, and the
. first track that can accommodate the net is assigned to the
net.
3 01 2 5 3 4 0 0 2 3 2 O Optimality: produces a routing solution with the minimum
# of tracks (if no vertical constraint).
A routing problem and its VCG. 3
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Basic Left-Edge Algorithm Basic Left-Edge Example
Algorithm: Basic_Left-Edge(U, track[j]) ou=d{l, = [1 3] =[2,6],1;=[4,8].1,=1[5,
U: set of unassigned intervals (nets) 11, ..., In; 10], Ig g E? 11T I = [9 2].
1j=[sj, €ej]: interval j with left-end x-coordinate sj and right-end ej; O t=1:

track[j]: track to which net j is assigned.

1 begin

22U« {I2,12, .., In};

3te 0;

4 while (U= @) do

5 tet+1;

6 watermark « O;

7  while (there is an Ij € U s.t. sj > watermark) do

8 Pick the interval 1j € U with sj > watermark,
nearest watermark;

9 track[j] « t;

10 watermark « ej;

11 U« U-{lj};

12 end
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B Route I,: watermark = 3;
B Route I; : watermark = 8
B Route I4: watermark = 12;
Ot=2:
B Route I, : watermark = 6;
B Route I : watermark = 11;
O t=3: Route |,
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Basic Left-Edge Algorithm

O If there is no vertical 0 2 1 0 2
constraint, the basic _‘@_ ‘F‘
[

left-edge algorithm is ]
optimal. 1 00 3 3 1 00 3 3
. i result from basic optimal routing: 2 tracks
O If there is any vertical  ‘ofi;edse algorithm
constraint, the
algorithm no longer L2351 45 g0
guarantees optimal |- I ©
solution. ©
el S
2 5 4 0 3 0 4 0
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Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) 11, ..., In;

1j=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin

22U« {11,12, .., In};

3t«0;

4 while (U # &) do

5 t«t+1;

6 watermark « O;

7 while (there is an unconstrained Ij € U s.t. sj > watermark) do

8  Pick the interval 1j e U that is unconstrained,
with sj > watermark, nearest watermark;

9 track[j] <« t;

10 watermark « ej;

11 U« U-{lj};

12 end
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Constrained Left-Edge Example

o1, =11,3],1,=1[1,5] I;=1[6, 8], I, =[10, 11], Is= [2,
6], I; = [7, 9].

O Track 1: Route I, (cannot route l3); Route lg; Route 1,.

O Track 2: Route l,; 1 1 1 2 2 5 6 3 0 4 0

O Track 3: Route I.. T 17
O Track 4: Route I;.

&

track 2 track 3 track 4
135

Dogleg Channel Router

O Deutch, “A dogleg channel router,” 13rd DAC, 1976.

O Drawback of Left-Edge: cannot handle the cases with
constraint cycles. L2

ey

201 2 0 1

O Drawback of Left-Edge: the entire net is on a single track.
B Doglegs are used to place parts of a net on different tracks to
minimize channel height.
B Might incur penalty for additional vias.
0 1 2 20 3 0 4

save 2 tracks, with via penalty

0 1 2 2 0 3 0 4

12 6 3 3 4 4 0 120 3 3 4 4 0

no dogleg with dogleg 136




Dogleg Channel Router

Dogleg Channel Routing Example

O Each multi-pin net is broken into a set of 2-pin nets. Net Range
O Modified Left-Edge Algorithm is applied to each subnet. 2 (4]
1, [2,5]
colum: | 2 3 4 567 8 colmm] 23 456 738 i 24]
1 41 53 I, 4§11} 5 3 n Bl
L, Ty— 3 16.8]
2 5 73] b} 1, and 3 are assigred (o} £ and 5 are assigned
4 3 to the 1% track to the 2 frack
S {a} Nets ordered by columm: 1 2 3 4 5 6 T 8
74 2 313 24 2 3053 left-end coordinates L4 s 3
A routing Instance Multl-pin net decompositin ]“ 5
m 6 1#track ==== 2 - =
“ 208 rack - =
Q "0 3dtrack =~
vCcG {d) 7, and 2 are assigned D - -
& O "o the 3 wack : > ol
137 f&] The: Mnal rowdeg resul with doglegs 138
Modern Routing Considerations Outline

O Signal/power Integrity
B Capacitive crosstalk
B Inductive crosstalk
B IR drop

O Manufacturability
B Process variation
B Optical proximity correction (OPC)
B Chemical mechanical polishing (CMP)
B Phase-Shift Mask (PSM)
[ Reliability
B Double via insertion
B Process antenna effect
B Electromigration (EM)
B Electrostatic discharge (ESD)
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OPartitioning
OFloorplanning
OPlacement
ORouting

O Compaction
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Layout Compaction

Design Rules

I Course contents O Design rules: restrictions O Patterns and design rules
on the mask patterns to are often expressed in A
M Design rules increase the probability of rules.
. successful fabrication. i
® Symbolic layout ':' m’esé_common design
B Constraint-graph compaction e — ® minimum-width rules
- = o — e (valid for
I I I
I L I a mask pattern of a
I (52 o e e e e specific layer): (a).
—+— - — -+ —(¢)-+——++—— — e .
1] N | J_J__I_P_ B minimum-separation rules
_.'r > _(b)_je T G _1r_|_ (between mask patterns of
L=t o (e) e ’|_:_+_:_ the same layer or different
T Yy B I layers): (b), (c).
1wl || RN L
T A= = T—— rT——rT-r B minimum-overlap rules
e (mask patterns in different
layers): (e).
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CMOS Inverter Layout Example Symbolic Layout
O Geometric (mask) layout: coordinates of the layout
patterns (rectangles) are absolute (or in multiples of X).
Vaa O Symbolic (topological) layout: only relations between layout
O elements (below, left to, etc) are known.
B Symbols are used to represent elements located in several
layers, e.g. transistors, contact cuts.
In Out B The length, width or layer of a wire or other layout element
might be left unspecified.
S B Mask layers not directly related to the functionality of the
) ) circuit do not need to be specified, e.g. n-well, p-well.
p/n diffusion O The symbolic layout can work with a technology file that
## polysilicon contains all design rule information for the target
Vs Il contact cut technology to produce the geometric layout.

E metal

Symbolic layout

Geometric layout
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144




Compaction and Its Applications

O A compaction program or compactor generates
layout at the mask level. It attempts to make the
layout as dense as possible.

O Applications of compaction:

B Area minimization: remove redundant space in
layout at the mask level.

B Layout compilation: generate mask-level layout
from symbolic layout.

B Redesign: automatically remove design-rule
violations.

B Rescaling: convert mask-level layout from one
technology to another.
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Aspects of Compaction

O Dimension:

B 1-dimensional (1D) compaction: layout
elements only are moved or shrunk in one
dimension (x or y direction).

Ols often performed first in the x-dimension and then
in the y-dimension (or vice versa).

m 2-dimensional (2D) compaction: layout
elements are moved and shrunk
simultaneously in two dimensions.

O Complexity:
B 1D compaction can be done in polynomial
time.

B 2D compaction is NP-hard.
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1D Compaction: X Followed By Y

O Each square is 2 A * 2 A, minimum separation is
1.

O Initially, the layout is 11 A * 11 A.

O After compacting along the x direction, then the y
direction, we have the layout size of 8 L * 11 A.

147

1D Compaction: Y Followed By X

0 Each square is 2 A * 2 X, minimum separation is
1.

O Initially, the layout is 11 A * 11 A.

O After compacting along the y direction, then the x
direction, we have the layout size of 11 A * 8 A.




2D Compaction

Inequalities for Distance Constraints

O Each square is 2 A * 2 1, minimum separation is 1 A. OO0 Minimum-distance O For example, if the
O Initially, the layout is 11 A * 11 X. design rules can be minimum width is a
[0 After 2D compaction, the layout size is only 8 1 * 8 1. expressed as and the minimum
inequalities. separation is b, then
Xz3—X,2Db
—» -—
> —
R E)
> -—
- -
O Since 2D compaction is NP-complete, most compactors are - -—
based on repeated 1D compaction.
X5 Xg X3 Xy
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The Constraint Graph Maximum-Distance Constraints
O The inequalities can be used to construct a constraint graph O Sometimes the distance of layout elements is bounded by a

G(V, E):
B There is a vertex v; for each variable x;.
B For each inequality x; — x; > d;; there is an edge (v;, v;) with
weight dj; .
B There is an extra source vertex, v,; it is located at x = 0 ; all
other vertices are at its right.
O If all the inequalities express minimum-distance
constraints, the graph is acyclic (DAG).
O The longest path in a constraint graph determines the
layout dimension.

-B- ” - | - |
= :
constraint graph

maximum, e.g., when the user wants a maximum wire
width, maintains a wire connecting to a via, etc.
B A maximum distance constraint gives an inequality of the
form: x; — x; < ¢;or X, — X2 ¢y
B Consequence for the constraint graph: backward edge
O (v;, v;) with weight d; = -c;; the graph is not acyclic anymore.
O The longest path in a constraint graph determines the
layout dimension.

X)X, C

- (] - min, distance
> h - max. distance
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Longest-Paths in Cyclic Graphs

O Constraint-graph compaction with maximum-distance
constraints requires solving the longest-path problem in
cyclic graphs.

O Two cases are distinguished:

B There are positive cycles: No feasible solution for
longest paths. We shall detect the cycles.

m All cycles are negative: Polynomial-time algorithms
exist.
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Longest and Shortest Paths

O Longest paths become shortest paths and vice
versa when edge weights are multiplied by —1.

[ Situation in DAGs: both the longest and shortest
path problems can be solved in linear time.
O Situation in cyclic directed graphs:

B All weights are positive: shortest-path problem in P
(Dijkstra), no feasible solution for the longest-path
problem.

B All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

B No positive cycles: longest-path problem is in P.
B No negative cycles: shortest-path problem is in P.
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Remarks on Constraint-Graph
Compaction

O Noncritical layout elements: Every element outside the
critical paths has freedom on its best position == may use
this freedom to optimize some cost function.

O Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

O Hierarchy: A method to reduce complexity is hierarchical
compaction, e.g., consider cells only.
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Constraint Generation

O The set of constraints should be irredundant and
generated efficiently.
O An edge (v;, v)) is redundant if edges (v;, v,) and (v, Vv;)
exist and w((v;, v;)) < w((v;, Vi) + w((Vvy, Vv)))
B The minimum-distance constraints for (A, B) and (B, C)
make that for (A, C) redundant.

B C
- <
A
- <
s EN

O Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log

n).
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