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Characteristics of Fault Simulation

 Fault activity with respect to fault-free circuit 
 is often sparse both in time and space.

 For example
 F1 is not activated by the given pattern, while F2 affects 

only the lower part of  this circuit.

0

1

1

F1(s-a-0)

F2(s-a-0)
×

×
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Fault Simulation Techniques

Parallel Fault Simulation
Deductive Fault Simulation
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Parallel Fault Simulation

 Simulate multiple circuits simultaneously
 The inherent parallel operation of computer words to 

simulate faulty circuits in parallel with fault-free circuit
 The number of faulty circuits or faults can be processed 

simultaneously is limited by the word length, e.g., 32 
circuits for a 32-bit computer

 Complication
 An event or a value change of a single faulty or fault-

free circuit leads to the computation of an entire word
 The fault-free logic simulation is repeated for each pass
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Parallel Fault Simulation
 Example

 Consider three faults: 
(J s-a-0, B s-a-1, and F s-a-0)

 Bit-space: (FF denotes fault-free) 

A

B

C

D

E

F

G

H

J

1

0

1

1

0   0   0   0
0   1   0   0

1   1   1   1

1   0   0   1

0   1   0   0 0   1   0   1

1   1   0   11   1   1   1

1   1   0   1

1   0   1   1

J/0 B/1 F/0 FF

F/0

J/0B/1

fault-free

×

×
×

1

0

0
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Deductive Fault Simulation

 Simulate all faulty circuits in one pass
 For each pattern, sweep the circuit from PIs to POs.
 During the process, a list of faults is associated with 

each wire
 The list contains faults that would produce a fault effect

on this wire
 The union fault list at every PO contains the detected 

faults by the simulated input vector

Main operation is fault list propagation
 Depending on gate types and values
 The size of the list may grow dynamically, leading to the 

potential memory explosion problem
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Illustration of Fault List Propagation

Case 1:  A=1, B=1, C=1 at fault-free,
LC = LA  LB  {C/0}

Case 2:  A=1, B=0, C=0 at fault-free,
LC = (LA  LB)  {C/1}

Case 3:  A=0, B=0, C=0 at fault-free,
LC = (LA  LB)  {C/1}

Consider a two-input AND-gate:

LA is the set of all faults not in LA

A

B
C

LA

LB
LC

Non-controlling case:

Controlling cases:
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Rule of Fault List Propagation
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Deductive Fault Simulation
 Example (1/4)

 Consider 3 faults: B/1,  F/0, and J/0 under (A,B,F) = (1,0,1)

Fault list at PIs:
LB = {B/1},  LF = {F/0},  LA = ,  LC=LD = {B/1}

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A
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Deductive Fault Simulation
 Example (2/4)

 Consider 3 faults: B/1,  F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1},  LF = {F/0},  LA = ,  LC = LD = {B/1}
Fault lists at G and E: 
LG = (LA  LC)  G/1 = {B/1, G/1}
LE = (LD)  E/0 = {B/1, E/0}
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Deductive Fault Simulation
 Example (3/4)

 Consider 3 faults: B/1,  F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1},  LF = {F/0},  LA = ,  LC = LD = {B/1}, 
LG = {B/1, G/1} , LE = {B/1, E/0}
Fault list at H: 
LH = (LE  LF)  LH = {B/1, E/0, F/0, H/0}
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Deductive Fault Simulation
 Example (4/4)

 Consider 3 faults: B/1,  F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1},  LF = {F/0},  LA = ,  LC = LD = {B/1}, LG = 
{B/1, G/1} , LE = {B/1, E/0}, LH = {B/1, E/0, F/0, H/0}
Final fault list at PO J: 
LJ = (LH – LG)  LJ = {E/0, F/0, J/0}
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Deductive Fault Simulation
 Example (cont’d)

 Consider 3 faults: B/1,  F/0, and J/0 under (A,B,F) = (0,0,1)

Event driven updates:
LB = {B/1},  LF = {F/0},  LA = ,  LC = LD = LE = {B/1}, 
LG = {G/1}, LH = {B/1, F/0}, LJ = {B/1, F/0, J/0}

A

x

x

x
B

C

D
E

F

G

H

J

01

0

1

1

1

00

1

0
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Outline

 Fault Modeling

 Fault Simulation

 Automatic Test Pattern Generation (ATPG)
 Functional approach

Boolean difference
 Structural approach

D-algorithm
PODEM

 Design for Testability
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Typical ATPG Flow

 1st phase: random test pattern generation
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Typical ATPG Flow (cont’d)

 2nd phase: deterministic test pattern generation
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Test Pattern Generation
 The test set T of a fault  with respect to some PO z can be 

computed by
T(x) = z(x)  z(x)

 A test pattern can be fully specified or partially specified 
depending on whether the values of PIs are all assigned
 Example

abc z z

000
001
010
011
100
101
110
111

0
0
0
0
0
1
1
1

0
0
0
0
0
1
0
0

Input vectors (1,1,0) and (1,1,-) are fully 
and partially specified test patterns of 
fault , respectively.
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Structural Test Generation
D-Algorithm
 Test generation from circuit structure
 Two basic goals

 (1) Fault activation (FA)
 (2) Fault propagation (FP)
 Both of which requires Line Justification (LJ), i.e., finding input combinations that 

force certain signals to their desired values
 Notations:

 1/0 is denoted as D, meaning that good-value is 1 while faulty value is 0
 Similarly, 0/1 is denoted D’
 Both D and D’ are called fault effects (FE)

fault propagation

fault activation

c

a

f
b

1/0

0

1

1

0
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Structural Test Generation
D-Algorithm

 Fault activation
 Setting the faulty signal to either 0 or 1 is a Line Justification 

problem
 Fault propagation

 (1) select a path to a PO  decisions
 (2) Once the path is selected  a set of line justification (LJ) 

problems are to be solved
 Line justification

 Involves decisions or implications
 Incorrect decisions: need backtracking

a
b cTo justify c=1  a=1 and b=1 (implication)

To justify c=0  a=0 or b=0 (decision)
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Structural Test Generation
D-Algorithm: Fault Propagation

 Fault activation
 G1=0  { a=1, b=1, c=1 }  { G3=0 }

 Fault propagation: through G5 or G6
 Decision through G5:

 G2=1  { d=0, a=0 }  inconsistency at a  backtrack !!
 Decision through G6:

  G4=1  e=0  done !! The resulting test is (111x0)

f1

f2

G5

G6

G1

G2

G3
G4

a
b
c

d

e

G5 G6

decision tree

fail success

{ G5, G6 }

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.
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Structural Test Generation
D-Algorithm: Line Justification

 FA  set h to 0
 FP  e=1, f=1 (o=0) ;  FP  q=1, r=1
 To justify q=1  l=1 or k=1
 Decision: l =1  c=1, d=1  m=0, n=0  r=0  inconsistency at r  backtrack !
 Decision: k=1  a=1, b=1
 To justify r=1  m=1 or n=1 (c=0 or d=0)  Done ! (J-frontier is )

a
b
c
d

e
f
h

p

k

l
q

r
m
n
o

s

corresponding decision tree

l=1 k=1

m=1 o=1
n=1

J-frontier: is the set of gates 
whose output value is known
(i.e., 0 or 1), but is not implied 
by its input values. 
Ex: initially, J-frontier is {q=1, r=1}

fail

success

q=1

r=1
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Test Generation
 A branch-and-bound search
 Every decision point is a branching point
 If a set of decisions lead to a conflict, a backtrack is taken 

to explore other decisions
 A test is found when

 (1) fault effect is propagated to a PO, and
 (2) all internal lines are justified 

 No test is found after all possible decisions are tried  Then, 
target fault is undetectable

 Since the search is exhaustive, it will find a test if one 
exists

For a combinational circuit, an undetectable fault is also a redundant fault 
 Can be used to simplify circuit.
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Implication

 Implication
 Compute the values that can be uniquely determined

Local implication: propagation of values from one line to its 
immediate successors or predecessors

Global implication: the propagation involving a larger area 
of the circuit and re-convergent fanout

Maximum implication principle
 Perform as many implications as possible
 It helps to either reduce the number of problems that 

need decisions or to reach an inconsistency sooner
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Forward Implication

0
x

1
1

1
x a

0

x

x

J-frontier={ ...,a }

Before

D'
D a

x D-frontier={ ...,a }

0
x

1
1

1
0 a

0

1

0

J-frontier={ ... }

After

D'
D a

0 D-frontier={ ... }
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Backward Implication

x
x

x
1

x
x J-frontier={ ... }

1

0

x
1

x

a
0

1
1

0
1

x
x a

0

0

1

J-frontier={ ...,a }

1 1

1

Before After
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D-Algorithm (1/4)
 Example

 Five logic values {0, 1, x, D, D’}

h

Try to propagate
fault effect thru G1
 Set d to 1

Try to propagate
fault effect thru G2
 Set j,k,l,m to 1

1

1

1

1

D

n

d

e

f
f'

e'

d'

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2
0

1

D’ ≠

Conflict at k
 Backtrack !
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D-Algorithm (2/4)
 Example

 Five logic values {0, 1, x, D, D’}

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

1

1

D

0

1

0

1

D’ ≠

Conflict at m
 Backtrack !

D’ (next D-frontier chosen)

Try to propagate
fault effect thru G2
 Set j,l,m to 1
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D-Algorithm (3/4)
 Example

 Five logic values {0, 1, x, D, D’}

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

D’

1

1

D

0

1

D’ (next D-frontier chosen)

0

1

Fault propagation
and line justification
are both complete
 A test is found !

This is a case of 
multiple path sensitization !

Try to propagate
fault effect thru G2
 Set j,l to 11
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D-Algorithm (4/4)

Decision Implication Comments

a=0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n
k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

e=1 Propagate via k
k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D
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Decision Tree on D-Frontier

 The decision tree
 Node  D-frontier
 Branch  decision taken
 A Depth-First-Search (DFS) strategy is often used
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PODEM Algorithm
 PODEM: Path-Oriented DEcision Making

 Fault Activation (FA) and Propagation (FP)

 lead to sets of Line Justification (LJ) problems. The LJ problems can be solved via 
value assignments.  

 In D-algorithm

 TG is done through indirect signal assignment for FA, FP, and LJ, that eventually 
maps into assignments at PI’s

 The decision points are at internal lines

 The worst-case number of backtracks is exponential in terms of the number of 
decision points (e.g., at least 2k for k decision nodes)

 In PODEM
 The test generation is done through a sequence of direct assignments at PI’s

 Decision points are at PIs, thus the number of backtracking might be fewer
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PODEM Algorithm
Search Space of PODEM

 Complete search space

 A binary tree with 2n leaf nodes, where n is the number of PIs

 Fast test generation

 Need to find a path leading to a SUCCESS terminal quickly

0 1

c

d

0

d

1

d

0 1

b
0 1

c

d

0

d

1
c

d

0

d

1

0 1

F F F F

b

c

d

a

S S F F
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PODEM Algorithm
Objective and Backtrace

 PODEM
 Also aims at establishing a sensitization path based on fault 

activation and propagation like D-algorithm
 Instead of justifying the signal values required for sensitizing

the selected path, objectives are setup to guide the decision 
process at PIs

 Objective 
 is a signal-value pair (w, vw)

 Backtrace
 Backtrace maps a desired objective into a PI assignment that 

is likely to contribute to the achievement of the objective
 Is a process that traverses the circuit back from the objective 

signal to PIs
 The result is a PI signal-value pair (x, vx)
 No signal value is actually assigned during backtrace (toward 

PI) !
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PODEM Algorithm
Objective

Objective routine involves
 selection of a D-frontier, G
 selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = ( w, v’ );
else {

select a gate (G) from the D-frontier;
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}   

fault activation

fault propagation
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PODEM Algorithm
Backtrace

 Backtrace routine involves
 finding an all-x path from objective site to a PI, i.e., 

every signal in this path has value x 

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w;  /* objective node */  
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
select an input (j) of G with value x;
G = j;           /* new objective node */
v = v⊕inv;  /* new objective value */

}
/* G is a PI */    return (G, v);

}   



91

PODEM Algorithm
PI Assignment

0 1

0 1

0

b

c

d

a

S

failure

PIs: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0  objective fails
Reverse decision: b=1
Decision: c=0  objective fails
Reverse decision: c=1
Decision: d=0

0

failureFailure means fault effect cannot be 
propagated to any PO under current
PI assignments
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PODEM Algorithm
PODEM () /* using depth-first-search */

begin

If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If ( PODEM()==SUCCESS ) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

If ( PODEM()==SUCCESS ) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end
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PODEM Algorithm (1/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

0

1

1

0

1 Select D-frontier G2 and 
set objective to (k,1) 
 e = 0 by backtrace
 break the sensitization

across G2 (j=0)
 Backtrack !
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PODEM Algorithm (2/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1 Select D-frontier G3 and 
set objective to (e,1) 
 No backtrace is needed
 Success at G3

G3

G4

1
0

1
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PODEM Algorithm (3/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

D

0

1

1 Select D-frontier G4 and 
set objective to (f,1) 
 No backtrace is needed
 Succeed at G4 and G2
 D appears at one PO
 A test is found !!

G3

G4

1
0

1

D’
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PODEM Algorithm (4/4)
Objective PI assignment Implications D-frontier Comments

a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions!  backtrack

e=1 e’=0 flip PI assignment

j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

Assignments need to be
reversed during backtracking
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PODEM Algorithm
Decision Tree
 Decision node: 

PI selected through backtrace for value assignment
 Branch: 

value assignment to the selected PI

a

b

c

d

e

0

0

1

1

1

f

1

fail

success
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Termination Conditions

 D-algorithm
 Success: 

(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

 Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

 PODEM
 Success:

Fault effect seen at an output
 Failure:

Every PI assignment leads to failure, in which D-frontier is 
empty while fault has been activated
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PODEM Overview
 PODEM 

 examines all possible input patterns implicitly but exhaustively 
(branch-and-bound) for finding a test

 complete like D-algorithm (i.e., will find a test if exists)

 Other key features
 No J-frontier, since there are no values that require 

justification
 No consistency check, as conflicts can never occur
 No backward implication, because values are propagated only 

forward
 Backtracking is implicitly done by simulation rather than by an 

explicit and time-consuming save/restore process
 Experiments show that PODEM is generally faster than D-

algorithm
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Outline

Fault Modeling

Fault Simulation

Automatic Test Pattern Generation

Design for Testability
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Why DFT ?

Direct testing is way too difficult !
 Large number of FFs
 Embedded memory blocks
 Embedded analog blocks
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Design for Testability

 Definition
 Design for testability (DFT) refers to those design 

techniques that make test generation and testing cost-
effective

 DFT methods
 Ad-hoc methods, full and partial scan, built-in self-test 

(BIST), boundary scan

 Cost of DFT
 Pin count, area, performance, design-time, test-time, 

etc.



103

Important Factors

Controllability
Measure the ease of controlling a line

Observability
Measure the ease of observing a line at PO

DFT deals with ways of improving
Controllability and observability
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Test Point Insertion

 Employ test points to enhance controllability
and observability
 CP: Control Points

Primary inputs used to enhance controllability
 OP: Observability Points

Primary outputs used to enhance observability
0

1

Add 0-CP

Add 1-CP

Add OP

PO
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Control Point Insertion

 Normal operation:
When CP_enable = 0

 Inject 0:
Set CP_enable = 1 and CP = 0

 Inject 1:
Set CP_enable = 1 and CP = 1

C1
C2MUX

0

1

CP

CP_enable

Inserted circuit for controlling line w

w
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Control Point Selection

Goal
Controllability of the fanout-cone of the added 

point is improved

Common selections
Control, address, and data buses
 Enable/hold inputs
 Enable and read/write inputs to memory
Clock and preset/clear signals of flip-flops
Data select inputs to multiplexers and 

demultiplexers
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Observation Point Selection

 Goal
 Observability of the transitive fanins of the added point 

is improved

 Common choice
 Stem lines with more fanouts
 Global feedback paths
 Redundant signal lines
 Output of logic devices having many inputs

MUX, XOR trees

 Output from state devices
 Address, control and data buses
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Problems with Test Point Insertion

 Large number of I/O pins
 Can be resolved by adding MUXs to reduce the number 

of I/O pins, or by adding shift-registers to impose CP 
values

X Z

X’ Z’Shift-register R1

control Observe

Shift-register R2
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What Is Scan ?

Objective
 To provide controllability and observability at internal 

state variables for testing

Method
 Add test mode control signal(s) to circuit
 Connect flip-flops to form shift registers in test mode
 Make inputs/outputs of the flip-flops in the shift register 

controllable and observable

 Types
 Internal scan

Full scan, partial scan, random access
 Boundary scan
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Scan Concept

Combinational
Logic

FF

FF

FF

Mode Switch
(normal or test)

Scan In

Scan Out
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Logic Design before Scan Insertion

Sequential ATPG is extremely difficult: 
due to the lack of controllability and observability at flip-flops.

D Q

input
pins

clock

output
pins

D Q D Q

Combinational Logic
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Logic Design after Scan Insertion

Scan Chain provides an easy access to flip-flops
Pattern generation is much easier !! 

11
D Q

input
pins

clock

output
pins

11
D Q

11
D Q

Combinational Logic

scan-input scan-outputM
U

X

M
U

X

M
U

X

scan-enable

 g stuck-at-0 

q1
q2
q3

q1 q2
q3
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Scan Insertion

 Example
 3-stage counter

11

D
Q

input
pins

clock

output
pins

11

D
Q

11

D
Q

Combinational Logic

q1 q2
q3

 g stuck-at-0 

q1
q2
q3

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1), for detecting 
the target fault g stuck-at-0 fault  (220 cycles for a 20-stage counter !)
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Overhead of Scan Design

Case study
#CMOS gates = 2000
 Fraction of flip-flops = 0.478
 Fraction of normal routing = 0.471

0.9111.9%14.05%Optimized

0.8716.93%14.05%Hierarchical

1.000None

Normalized 
operating 
frequency

Actual area 
overhead

Predicted 
overhead

Scan 
implementation
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Full Scan Problems

 Problems
 Area overhead
 Possible performance degradation
 High test application time
 Power dissipation

 Features of commercial tools
 Scan-rule violation check (e.g., DFT rule check)
 Scan insertion (convert a FF to its scan version)
 ATPG (both combinational and sequential)
 Scan chain reordering after layout
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Scan-Chain Reordering
 Scan-chain order is often decided at gate-level without knowing 

the cell placement
 Scan-chain consumes a lot of routing resources, and could be 

minimized by re-ordering the flip-flops in the chain after layout is 
done

Scan-In

Scan-Out Scan-Out

Scan-In

Layout of a cell-based design A better scan-chain order

Scan cell
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Partial Scan

 Basic idea
 Select a subset of flip-flops for scan
 Lower overhead (area and speed)
 Relaxed design rules

 Cycle-breaking technique
 Cheng & Agrawal, IEEE Trans. On Computers, April 1990
 Select scan flip-flops to simplify sequential ATPG
 Overhead is about 25% off than full scan

 Timing-driven partial scan
 Jou & Cheng, ICCAD, Nov. 1991
 Allow optimization of area, timing, and testability 

simultaneously
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Full Scan vs. Partial Scan

scan design

full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

scan time

hardware overhead

fault coverage

ease-of-use

longer

more

~100%

easier

shorter

less

unpredictable

harder
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Area Overhead vs. Test Effort

test 
effort

area overhead

no scan partial scan full scan

area overhead

test
generation
complexity
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Conclusions
 Testing

 Conducted after manufacturing
 Must be considered during the design process

 Major fault models
 Stuck-at, bridging, stuck-open, delay fault, …

 Major tools needed
 Design-for-Testability 

 By scan chain insertion or built-in self-test
 Fault simulation
 ATPG

 Other Applications in CAD
 ATPG is a way of Boolean reasoning and is applicable to may 

logic-domain CAD problems


