

Introduction to Electronic Design Automation

Spring 2014
National Taiwan University

Problem Set 4

Due on 2014/06/16 (Mon)

Please drop your solution in the instructor's mail box at EE2 building by 18:00

1 [Partition]

[10%] Given an undirected graph $G = (V, E)$, let $V = \{a, b, c, d, e, f\}$ with weighted connections as shown in the following table. Suppose the vertices are initially partitioned into $\{a, b, c\}$ and $\{d, e, f\}$. Apply the Kernighan-Lin algorithm to find a good partition. Show intermediate steps.

	a	b	c	d	e	f
a	0	1	3	1	2	0
b	1	0	1	1	0	4
c	3	1	0	2	2	2
d	1	1	2	0	3	1
e	2	0	2	3	0	1
f	0	4	2	1	1	0

2 [Floorplan]

[20%]

Given the following Polish expression $E = 1234567VHVVHV$.

- Rewrite E to a normalized Polish expression.
- Give a slicing tree corresponding to the expression E .
- Assume modules 1, 2, 3, 4, 5, 6, and 7 have the sizes 1×6 , 2×8 , 3×3 , 1×4 , 2×4 , 2×5 , and 2×2 , respectively. Assuming that all the modules are rigid and rotation is allowed, what is the size of the smallest bounding rectangle corresponding to the floorplan of Polish expression E ? Show all steps leading to your answer.
- Give a B*-tree for the floorplan derived in (b).
- Show all steps for computing the coordinates of the modules (packing) from the B*-tree of (c).

3 [Wirelength Estimation]

[9%] Given a net N with its four pin locations $p1 = (8, 12)$, $p2 = (6, 2)$, $p3 = (1, 7)$, and $p4 = (5, 3)$, estimate its wire length using the following methods:

- (a) semi-perimeter approximation,
- (b) minimum rectilinear Steiner tree, and
- (c) minimum rectilinear spanning tree.

4 [Maze routing]

[10%] Find a shortest routing path from S to T in Fig. 1

- (a) using Lee's algorithm,
- (b) using Hadlock's algorithm.

(Show the corresponding numbers on grids and the final routing solution.)

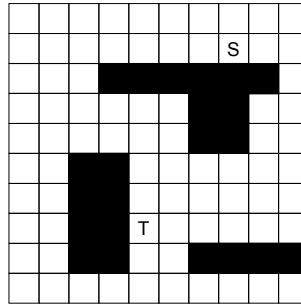


Fig. 1. Maze routing from S to T .

5 [Channel Routing]

[20%] Consider a channel with pins $(1, 0, 2, 3, 1, 4, 5, 6, 0, 4)$ and $(3, 1, 6, 5, 2, 3, 6, 2, 5, 0)$ in order on the upper and lower boundaries, respectively, where “0” denotes no pin assignment.

- (a) Draw the corresponding horizontal constraint graph (HCG) and vertical constraint graph (VCG).
- (b) Determine a tight lower bound on the channel height from the HCG and VCG.
- (c) Is the basic left-edge algorithm applicable to the routing instance (under two metal layers)? Is the constrained left-edge algorithm applicable to the routing instance (under two metal layers)? If yes, what is the routing result? If not, why is so?
- (d) Perform channel routing with two metal layers using the constrained left-edge algorithm with doglegging and show the routing result.

6 [Testing]

Exercise 14.2 (5%).

Exercise 14.4 (10%).

Exercise 14.11 (6%).

Exercise 14.13 (10%).