Introduction to Electronic
Design Automation I

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2014

Logic Synthesis I

High-level synthesis

Logic synthesis

Physical design

Part of the slides are by courtesy of Prof. Andreas Kuehlmann

2

Logic Synthesis

0 Course contents
B Overview
M Boolean function representation
M Logic optimization
B Technology mapping
CJReading
M Chapter 6

. I : |
original logic optimized technology optimized
| optimization function mapping | Eil-cuit

L logic synthesis |

High-Level to Logic Synthesis

O Hardware is normally partitioned into two parts:

B Data path: a network of functional units, registers,
multiplexers and buses.

B Control: the circuit that takes care of having the data present
at the right place at a specific time (i.e. FSM), or of presenting
the right instructions to a programmable unit (i.e. microcode).

OO0 High-level synthesis often focuses on data-path
optimization
B The control part is then realized as an FSM

O Logic synthesis often focuses on control-logic optimization
B Logic synthesis is widely used in application-specific IC (ASIC)
design, where standard cell design style is most common

Standard-Cell Based Design

=Da
\

-
|
|
.

L

.
n

e
i E A mm W

- carn D

Cell Cell D Feedihrongh Cell

Transtformation of Logic Synthesis

— A,

—o0

Given: Functional description of finite-state
machine F(Q,X,Y,3,A) where:

Q: Set of internal states

X: Input alphabet

Y: Output alphabet

0: XxQ — Q (next state function)
A XxXQ —>Y (output function)

: |

Target: Circuit C(G, W) where:
G: set of circuit components g € {gates, FFs, etc.}
W: set of wires connecting G

Boolean Function Representation

ClLogic synthesis translates Boolean
functions into circuits

COWe need representations of Boolean
functions for two reasons:

M to represent and manipulate the actual circuit
that we are implementing

M to facilitate Boolean reasoning

Boolean Space

OB=4{0,1}
O B® = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:
BO |:| ®
B[]]
B2 ?

aT>
B3

B4

Boolean Function

O A Boolean function f over input variables: x,, X,, ..., X, iS a
mapping f: B™ - Y, where B = {0,1} and Y = {0,1,d}
® E.g.

B The output value of f(X;, X,, X3), say, partitions B™ into three sets:
O on-set (f=1)
= E.g. {010, 011, 110, 111} (characteristic function f* = x,)
O off-set (f= 0)
= E.g. {100, 101} (characteristic function f© = x; =X,)
O don’t-care set (f=d)
= E.g. {000, 001} (characteristic function f4 = —x; =X,)

O fis an if the don’t-care set is
nonempty. Otherwise, fis a

B Unless otherwise said, a Boolean function is meant to be completely
specified

Boolean Function

0 A Boolean function f: B" — B over variables
X1,---,X, Maps each Boolean valuation (truth
assignment) in B"toOor 1

Example

f(x,,X,) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) =0

NS
ol || x
X

10

Boolean Function

OO0 Onset of f, denoted as f1, is f'={v € B" | f(v)=1}

m If f1 = B", fis a tautology
O Offset of f, denoted as f°, is = {v € B" | f(v)=0}

m If fO = B, fis unsatisfiable. Otherwise, f is satisfiable.
O

O Boolean functions f and g are equivalent if vve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

O A literal is a Boolean variable x or its negation x’ (or X, —X)
in a Boolean formula

f(Xy, X0 X3) = %4 f(X1, X5, X3) =%,

/%, /e

11

Boolean Function

0 There are 2" vertices in B"
n . . .
0 There are 22 distinct Boolean functions

B Each subset f1 < B" of vertices in B" forms a
distinct Boolean function f with onset ft

X XoXg f
000 1
001
010 1
X 011
100 =1
A'z 101
X, 110 1

111

12

Boolean Operations

Given two Boolean functions:
f: B> B
g:B">B

O h =f A g from AND operation is defined as
ht=flng!; ho=B"\ ht

O h =fv gfrom OR operation is defined as
ht=flu gt ho=B"\ ht

O h = —f from COMPLEMENT operation is defined as
ht =f0; ho =f1

13

Sets vs. Boolean Functions

[0 Represent sets with characteristic functions, and
achieve set operations with Boolean operations!

0 Example

(RNG)U(R'MB)U(GNB) = (RNG)U(R'NB)

I

FoFg+Fg FatFoFy = FoFg+Fe'Fg

Cofactor and Quantification

Given a Boolean function:

f : B" —» B, with the input variable (X;,X5,...,X;,...,X;)
O Positive cofactor

h =1, is defined as h = f(x;,X,,...,1,...,X;,)
O Negative cofactor

h =f_ is defined as h = f(xy,X,,...,0,...,X,,)
O Existential quantification

h = 3x;. f is defined as h = f(Xy,X,,...,0,...,X,) v f(X{,X5,...,1,...,X;)
O Universal quantification

h = Vx;. f is defined as h = f(x;,X,,...,0,...,X,) A f(X{,X5,...,1,...,Xp)
O Boolean difference

h = of/ox; is defined as h = f(x;,X5,...,0,...,X,) @ f(X{,X5,...,1,...,X,)

15

Boolean Function Representation

0 Some common representations:
B Truth table
B Boolean formula
O SOP (sum-of-products, or called disjunctive normal form, DNF)
O POS (product-of-sums, or called conjunctive normal form, CNF)
B BDD (binary decision diagram)
B Boolean network (consists of nodes and wires)

[0 Generic Boolean network

= Network of nodes with generic functional representations or even
subcircuits

O Specialized Boolean network
= Network of nodes with SOPs (PLAS)
= And-Inv Graph (AIG)

O Why different representations?

B Different representations have their own strengths and
weaknesses (no single data structure is best for all
applications)

16

Boolean Function Representation

Truth Table

|
O Truth table (function table for multi-valued
functions):
The truth table of a function f : B" - B is a
tabulation of its value at each of the 2"
vertices of B". abcd f abcd f
0 0000 O 8 1000 O
In other words the truth table lists all mintems 1 0001 1 9 1001 1
Example: f = a’b’c’d + a'b’cd + a’bc'd + 2 0010 O 10 1010 O
ab’c’'d + ab’cd + abc'd + 3 0011 1 11 1011 1
abced’ + abed 4 0100 O 12 1100 O
5 0101 1 13 1101 1
The truth table representation is 6 0110 0 14 1110 1
7 0111 O 15 1111 1
If two functions are the equal, then their
canonical representations are isomorphic.
17
Boolean Function Representation
Boolean Formula
|

OO0 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula *y’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

F= Xy Xp) + (Xg) + =(=(X4 - (=X1)))
typically “-” is omitted and ‘(', *)’ are omitted when the operator priority is
clear, e.g., f = X, X, + X3 + X, =X,

18

Boolean Function Representation
Boolean Formula in SOP

0 Any function can be represented as a
, also called (a cube
iIs a product term), or

Example
@ = ab + a'c + bc

19

Boolean Function Representation
Boolean Formula in POS

0 Any function can be represented as a
, also called

B Dual of the SOP representation

Example
¢ = (a+b'+c) (a'+b+c) (a+b'+c") (a+b+c)

] Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

20

Boolean Function Representation
Binary Decision Diagram

[0 BDD — a graph f=ab+a'c+a’bd
representation of Boolean
functions root

B A leaf node represents node
constant O or 1 \

B A non-leaf node c+bd . ' ; b
represents a decision node 3 i
(multiplexer) controlled by c 7 \ :
some variable < ctd

B Can make a BDD

representation canonical !

by imposing the variable

ordering and reduction ...
criteria (ROBDD) 0

21

Boolean Function Representation
Binary Decision Diagram

0 Any Boolean function f can be written in term of
Shannon expansion
f=vf,+-vf,
B Positive cofactor: fi = f(Xq,....%=1,..., X))
B Negative cofactor: f i = f(Xy,...,%=0,..., X))

0 BDD is a compressed Shannon cofactor tree:

® The two children of a node with function f controlled by
variable v represent two sub-functions f, and f_,,

22

Boolean Function Representation
Binary Decision Diagram

O Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

O cofactor variables are in the same order along all paths
Xip < X, < Xiy < . < X

O any node with two identical children is removed
O two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

f
&, ordered /a\ not Aa f
© ¢ (a<c<b) b ¢ ordered $ > b
v / AN b reduce \
e & b O\ i .
\\\1 \44 - ::’:“i \ 0 1
0 1 0 1

23

Boolean Function Representation
Binary Decision Diagram

O For a Boolean function,
B ROBDD is unique with respect to a given variable ordering
B Different orderings may result in different ROBDD structures

— = ab+a'c+bC'd ——p

a

24

Boolean Function Representation
Boolean Network

0 A Boolean network is a directed graph C(G,N)
where G are the gates and N c (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
1 =G
OcG

1IN0 =Y

Each gate g is assigned a Boolean function f
which computes the output of the gate in terms
of its inputs.

25

Boolean Function Representation
Boolean Network

OO0 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (@',9) € N} (N: the set of nets)

O The fanout FO(g) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9) € N}

0 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

0 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N |

26

Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4} O
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}
Every node may have its own function

27

Boolean Function Representation

And-Inverter Graph

O AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

O Hash table to identify and reuse structurally isomorphic
circuits

: -

Boolean Function Representation

0 A canonical form of a Boolean function is a
unigue representation of the function

M It can be used for verification purposes

O Example
B Truth table is canonical
01t grows exponentially with the number of input variables
B ROBDD is canonical

O 1t is of practical interests because it may represent many
Boolean functions compactly

B SOP, POS, Boolean networks are NOT canonical

29

Boolean Function Representation

O Truth table

B Canonical

B Useful in representing small functions
0 SOP

® Useful in two-level logic optimization, and in representing local node
functions in a Boolean network

O POS
B Useful in SAT solving and Boolean reasoning

B Rarely used in circuit synthesis (due to the asymmetric characteristics
of NMOS and PMOS)

0 ROBDD
B Canonical
B Useful in Boolean reasoning
O Boolean network
B Useful in multi-level logic optimization
O AlIG
B Useful in multi-level logic optimization and Boolean reasoning

30

Logic Optimization

Boolean functions

/

two-level optimization

he]

multi-level optimization

/

technology mapping

l

circuits

31

Two-Level Logic Minimization

0 Any Boolean function can be realized using PLA in
two levels: AND-OR (sum of products), NAND-
NAND, etc.

B Direct implementation of two-level logic using PLAs
(programmable logic arrays) is not as popular as in the
NMOS days

] Classic problem solved by the Quine-McCluskey
algorithm

B Popular cost function: #cubes and #literals in an SOP
expression

O #cubes — #rows in a PLA
O #tliterals — #transistors in a PLA
B The goal is to find a minimal irredundant prime cover

32

Two-Level Logic Minimization

ClExact algorithm
B Quine-McCluskey’s procedure

CIHeuristic algorithm
M Espresso

33

Two-Level Logic Minimization
Minterms and Cubes

0 A minterm is a product of every input variable or
its negation

B A minterm corresponds to a single point in B"
0 A cube is a product of literals

B The fewer the number of literals is in the product,
the bigger the space is covered by the cube

BRAnfing

X1X2X3 X1X3

Two-Level Logic Minimization
Implicant and Cover

0 An implicant is a cube whose points are either in
the on-set or the dc-set.

0 A prime implicant is an implicant that is not
included in any other implicant.

0 A set of prime implicants that together cover all
points in the on-set (and some or all points of the
dc-set) is called a prime cover.

B A prime cover is irredundant when none of its prime
implicants can be removed from the cover.

B An irredundant prime cover is minimal when the cover
has the minimal number of prime implicants.

(c.f. minimum vs. minimal)

35

Two-Level Logic Minimization
Cover

O Example
B =X, =Xz + =X, X3 + X Xy
B =X, =X, + X, =Xz + X; X3

The on-set

LV
. .

36

Two-Level Logic Minimization
Cover

CDExample

local minimal global minimal

37

Two-Level Logic Minimization
Quine-McCluskey Procedure

O Given G and D (covers for 3 = (f,d,r) and d, respectively),
find a minimum cover G* of primes where:

fc G* cf+d (G* is a prime cover of 3J)
B f is the onset, d don't-care set, and r offset

0 Q-M Procedure:

1.Generate all primes of 3, {P;} (i.e. primes of (f+d) =
G+D)

2.Generate all minterms {m;} of f = GA-D
3. Build Boolean matrix B where
B; = 1 if me P,
= 0 otherwise

4.Solve the minimum column covering problem for B
(unate covering problem)

38

Two-Level Logic Minimization

Quine-McCluskey Procedure

Generating Primes

F=Xy +wxy+xyzZ+wyz

Tabular method wxyz V|wxy v
(based on consensus operation): wxz v
) _ _ Xy z vV
O Start with all minterm canonical
form of F WXy z v Xyz VvV
O Group pairs of adjacent minterms o Xyz v
into cubes W Xxyz v
O Repeat merging cubes until no wxy z v [wxy v
more merging possible; mark (V) wxz v
+ remove all covered cubes.
O Result: set of primes of f. wx'y z vV
wx'yz v
Example
F=XYy +wxy+xyzZ+wyz WXyz ‘/
WXY z 4
WXYZ v
Courtesy: Maciej Ciesielski, UMASS
39
Two-Level Logic Minimization
Quine-McCluskey Procedure
o Example Karnaugh map
X z _ _
R Xy Xy ﬂ /\/ y w X Z
Z o _
11 d I 0 xyzwl 0 1
ZW[Q_U d 1J/\\/W xyzw0 1 1
W@l 1 d [xyzwl 1 0
. i 0 0 d_ xyzw0O 1 O

F = XYZW+ XYZW + XY ZW + XyZW

(cover of J)

D = yzZ+ XyW+ XyZW+ XYW+ Xyzw (cover of d)

Primes: y+w + X z
Covering Table

Solution: {1,2} = y + w is a minimum prime cover

40

Two-Level Logic Minimization
Quine-McCluskey Procedure

Column covering of Boolean matrix

Primes of f+d

y W Xz
xyzw 1 0 1
Minterms of f Xy zw O 1 1
xyzw 1 1 O
— Row singleton
xyzw 0 1 0 :

(essential minterm)

!

Essential prime

O Definition. An essential prime is a prime that covers an onset
minterm of f not covered by any other primes.

41

Two-Level Logic Minimization
Quine-McCluskey Procedure

O

B In practice, many rows in a covering table are identical.
That is, there exist minterms that are contained in the
same set of primes.

B Example
m, 0101101
m, 0101101

42

Two-Level Logic Minimization
Quine-McCluskey Procedure

-
H A row i, whose set of primes is contained in the set of
primes of row i, is said to Iy
B Example
i, 011010
I, 011110

Oi, dominates i,

O Can remove row i, because have to choose a prime to
cover i,, and any such prime also covers i,. So i, is
automatically covered.

43

Two-Level Logic Minimization
Quine-McCluskey Procedure

-
B A column j; whose rows are a superset of another
column j, is said to I

B Example Ja J>
1 0
0 0
1 1
0 0
1 1

Oj, dominates j,
O We can remove column j, since j, covers all those rows and

more. We would never choose j, in a minimum cover since
it can always be replaced by j,.

44

Two-Level Logic Minimization
Quine-McCluskey Procedure

Reducing Boolean matrix

1.

2.
3.

4.

5.

Remove all rows covered by essential primes (columns in
row singletons). Put these primes in the cover G.

Group identical rows together and remove dominated rows.

Remove dominated columns. For equal columns, keep one
prime to represent them.

Newly formed row singletons define induced essential
primes.

Go to 1 if covering table decreased.

OO0 The resulting reduced covering table is called the

. This has to be solved (unate covering problem). A
minimum solution is added to G. The resulting G is a
minimum cover.

45

Two-Level Logic Minimization
Quine-McCluskey Procedure

Example (reducing Boolean matrix) 34567
1000000 L 10000
essential prime P1
1100001 (remove rows 1 and 2) LLHOY induced essential prime P3
0110000 column?ir;(:ninance 01011 | (remove rows 1 and 2)
0011100 . and
ooh1011 (col. 2 dominated by 3) 0p110 column dominance
G=P1 , 01101 (col. 7 dominated by 4)
0000110 01110 G=P1+P3
0001101 |
0001110 456
456 row dominance 101
01 B
011 110
110 111 46

Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core

OO0 Best known method (for unate covering) is branch and
bound with some clever bounding heuristics
O

B Find a maximum set | of ! mdependent rows. Two rows B;, ,B,
are independent if not 3j such that B,j=Bi,;= 1. (They have’
no column in common.)

Example
A covering matrix B rearranged with independent sets first

Independent set .9 of rows

47

Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core

0 Heuristic algorithm:
B Let 9={l,, I,, ..., I, } be the
independent set of rows

choose j € I, such that column j covers
the most rows of A. Put Pj in G

eliminate all rows covered by column j
I« {1}

gotolif|y]>0

If B is empty, then done

=

ahLDN

@

If B is not empty, choose an
independent set of Band goto 1

48

Two-Level Logic Minimization
Quine-McCluskey Procedure

O Summary

M Calculate all prime implicants (of the union of
the onset and don’t care set)

® Find the minimal cover of all minterms in the
onset by prime implicants
C0Construct the covering matrix

OSimplify the covering matrix by detecting essential
columns, row and column dominance

OWhat is left is the cyclic core of the covering matrix.

= The covering problem can then be solved by a
branch-and-bound algorithm.

49

Two-Level Logic Minimization
Exact vs. Heuristic Algorithms

0 Quine-McCluskey Method:
1.Generate cover of all primes G =p; + p, +-+pgn,

2.Make G irredundant (in optimum way)
B Q-M is exact, i.e., it gives an exact minimum

] Heuristic Methods:

1. Generate (somehow) a cover of 3 using some of
the primes G = i, + P, + D

2.Make G irredundant (maybe not optimally)

3.Keep best result - try again (i.e. go to 1)

50

Two-Level Logic Minimization

ESPRESSO

0 Heuristic two-level logic minimization
ESPRESSO(3)

{
(F,D,R) « DECODE(3) IILASTGASP
F « EXPAND(F,R) G < REDUCE_GASP(F,D)
F « IRREDUNDANT(F,D) G < EXPAND(G,R)
E < ESSENTIAL_PRIMES(F,D) F < IRREDUNDANT(F +G,D)
F«<FE D«D+E IILASTGASP
do{ Ywhile fewer terms in F
do{ F«—F+E; D«D-E
F <~ REDUCE(F,D) LOWER_OUTPUT(F,D)
F < EXPAND(F,R) RAISE_INPUTS(F,R)

F <« IRREDUNDANT(F,D)

error «— (F,, « F)or (Fz F,, + D)
while fewer terms in F

return (F,error)

Two-Level Logic Minimization

ESPRESSO
O O
REDUCE ﬁ

) ar

Local minimum EXPAND
® O
S
O/
P A IRREDANDANT

Local minimum

52

Logic Minimization

Boolean functions
two-level optimization
multi-level optimization
technology mapping
circuits
53
Factor Form

OO0 Factor forms — beyond SOP
B Example:
(ad+b’c)(c+d'(e+ac’))+(d+e)fg

0 Advantages

B good representation reflecting logic complexity (SOP may not be
representative)

O E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP f=
a’b’c’+d’e’; effectively has simple factor form f=(a+b+c)(d+e)

B in many design styles (e.g. complex gate CMOS design) the
implementation of a function corresponds directly to its factored form

B good estimator of logic implementation complexity
B doesn’t blow up easily

[0 Disadvantages
B not as many algorithms available for manipulation

54

Factor From

0 Factored forms are useful
in estimating area and
delay in multi-level logic

B Note: literal count =~
transistor count ~ area

O however, area also
depends on wiring, gate
size, etc.

O therefore very crude
measure

X=(a+b)c +d

55

Factor From

C0There are functions whose sizes are
exponential in the SOP representation, but
polynomial in the factored form

B Example

Achilles’ heel function

i=n/2

H (X2i—1 T X2i)

There are n literals in the factored form and
(n/2)x2"2 literals in the SOP form.

56

Factor Form

0 Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or %, and each
leaf has a label of either a variable or its complement

B Example: factoring tree of ((a'+b)cd+e)(a+b’)+e’

((a’+b)cd+e)(a+b’)+e’

57

Multi-Level Logic Minimization

C0Basic techniques in Boolean network
manipulation:
M structural manipulation (change network
topology)

® node simplification (change node functions)
COnode minimization using don’t cares

58

Multi-Level Logic Minimization
Structural Manipulation

I
Restructuring Problem: Given initial network, find best network.
Example:
f, = abcd+abce+ab’cd’+ab’c’d’+a’c+cdf+abc’'d’e’+ab’c’df’
f, = bdg+b’dfg+b’d’g+bd’eg
f, = bcd+bce+b’'d’+a’'c+cdf+abc’d’e’+ab’c’'df’
f, = bdg+dfg+b’d'g+d’eg
f, = c(b(d+e)+b'(d'+f)+a’)+ac’(bd’e’+b’df")
f; = g(d(b+f)+d'(b'+e))
f, = c(b(d+e)+b’'(d’+f)+a’)+ac’x’
f, = gx
x = d(b+f)+d'(b’+e)
Two problems:
O find good common subfunctions
O effect the division
59
Multi-Level Logic Minimization
Structural Manipulation
I

Basic operations:

f = abc+abd+a’c’d'+b'c'd’
U

f=xy+xy’" x=ab vy =c+d

f = (az+bz’)cd+e g = (az+bz)e’ h = cde
U

f=xy+te g=xe h=ye x=az+bz y=cd
f = ac+ad+bc+bd+e

U
f = (a+b)(c+d)+e

60

Multi-Level Logic Minimization
Structural Manipulation
Basic operations (cont’'d):
f=a+bc g=a+b
U
f=g9g(a+c) g=a+b
f=9ga+gb g=c+d
U

f = ac+ad+bc'd g = c+d

Note: “division” plays a key role in all these operations

61

Multi-Level Logic Minimization
Node Simplification

0 Goal: For any node of a given Boolean network,
find a SOP expression among the set of
permissible functions for the node

B Don’t care computation + two-level logic minimization

combinational Boolean network

SRR

62

Combinational L.ogic Minimization

O Two-level: minimize #product terms and #literals
B E.g., F = X'X,/X3'+ XX, X3+ XX,/ X5+ XX, Xg+ X X, X5 = F =
X, + X X3’

O Multi-level: minimize the # literals (area minimization)
B E.g., equations are optimized using a smaller number of

literals

= > optimization ;5 _ 2 | 5"
B=ab+d, — . :
r4:?1r2+fg; B=a2+c
(5=td h+22 13: M=t 13+fgh
F=1t5;

subject graph for the optimized equations

Timing Analysis and Optimization
0 Delay model at logic level T .
B Gate delay model (our focus)

O Constant gate delay, or pin-to-pin gate delay

[0 Not accurate /?\

B Fanout delay model
O Gate delay considering fanout load (#fanouts)
O Slightly more accurate

B Library delay model

O Tabular delay data given in the cell library

Determine delay from input slew and output
load

= Table look-up + interpolation/extrapolation
O Accurate

64

Timing Analysis and Optimization

Gate Delay

I
The delay of a gate depends on:
If l T = RetCioad
1. Output Load J
O Capacitive loading « charge ﬁ_‘
neleded to swing the output E‘ Ciond %Reﬁ Cioag
voltage = = = =
O Due to interconnect and An inverter e.g. output 1—0
logic fanout
Tslew
2. Input Slew —
O Slew = transition time
O Slower transistor switching Vv,
= longer delay and longer
output slew
65
Timing Analysis and Optimization
Timing Library
I
— . . 01
O Timing library contains all A
relevant information about each = e, 7
standard cell * L
B E.g., pin direction, clock, pin B — 10
capacitance, etc.
Path(
O Delay (fastest, slowest, and often gzggﬁigg:iggi
typical) and output slew are inputTransitior’](m),
encoded for each input-to-output outputTransition(10),
path and each pair of transition “delay_table_1~, —
directions “output_slew_table 1~
):
O Values typically represented as 2 “delay_table_1” «—
dimensional look-up tables (of Output load (nF)
output load and input slew) 2 10 2.0 4.0 0.0
B Interpolation is used ; b1l21 26 |3.4l6.1
2| o5 (2.4 [2.9 [3.97.2
*g‘_ 1.0 [2.6 [3.4 4.0 8.1
S| kol2s 3.7 |4.9]|103

66

Static Timing Analysis

O Arrival time: the time signal arrives
B Calculated from input to output in the topological order

OO0 Required time: the time signal must ready (e.g., due to the clock
cycle constraint)

B Calculated from output to input in the reverse topological order
O Slack = required time — arrival time
B Timing flexibility margin (positive: good; negative: bad)

AQ T RG) A(j): arrival time of signal j
R(K): required time or for signal k
S(k): slack of signal k
o r,k) D(j,k): delay of node j from input k
noade
J A(K) R(K) A()) = maxy g) [A(K) + D(,k)]
r(.k) = RQ) - D(.k)
R(K) = min;cgogq [rG.K)]
S(k) = R(k) - A(k)

67

Static Timing Analysis

O Arrival times known at register outputs I, |,, and I
O Required times known at register inputs I, 1,, and Ig

0 Delay analysis gives arrival and required times
for combinational blocks C,, C,, C;, C,

T
&3 |5

14

12 13

68

Static Timing Analysis
0 Arrival time can be computed in the topological
order from inputs to outputs

B When a node is visited, its output arrival time is:
the max of its fanin arrival times + its own gate delay

[0 Required time can be computed in the reverse
topological order from outputs to inputs
B When a node is visited, its input required time is:
the min of its fanout required times — its own gate delay

69

Static Timing Analysis

A =6 R. =5
O Example AIS RS
R :5 R :5 S - _1 R - 3
Tt | S=0 Ry=1
6t 5110 slack S;;=-1 Rg=-1
102 1 2 arrival time S;1=-1
7' b“ S / 84’2 = 0
u,O’ _l““ / 1 nOde |D 85 ; — 1
4.1 ~ | 4 3 2=
3 o "‘ v O / 86’3 = O
3 & o 4 i 5 S73 = -1
= Yoo, “ 87’4 — _1
o :.j_ -1 ‘ 1 87,5f 1
1 “2 1 10 88’6 : O
N Sg7=-1
1 6 2 7 A10:2
‘ 0 A --------- critical path edges
i-1
9 -
8 N .
A Ag=0 Sy = S + max{A } - Ay, Kk € fanin(k)

Ag=0 S.= min{Sk,kj}, kj e fanout(k) 70

Timing Optimization

Il ldentify timing critical regions

CIPerform timing optimization on the
selected regions

M E.g., gate sizing, buffer insertion, fanout
optimization, tree height reduction, etc.

71

Timing Optimization

I Buffer insertion

M Divide the fanouts of a gate into critical and

non-critical parts, and drive the non-critical
fanouts with a buffer

more
critical

o>

e —>

I

less
critical

72

Timing Optimization

ClFanout optimization

M Split the fanouts of a gate into several parts.
Each part is driven by a copy of the original
gate.

] —

l

—
—

73

Timing Optimization
CTree height reduction

o n,

\ /4\3

/\

000 0 0 00 20
a bcd ef g a b cd ef

P

N

o

74

Timing Optimization

CITree height reduction
|

Collapsed 5
Crltlcal region

Combinational Optimization

COFrom Boolean functions to circuits

Boolean functions

/

two-level optimization

he]

multi-level optimization

/

technology mapping

l

circuits

76

Technology Independent vs. Dependent
Optimization

0 Technology independent optimization produces a
two-level or multi-level netlist where literal
and/or cube counts are minimized

0 Given the optimized netlist, its logic gates are to
be implemented with library cells

0 The process of associating logic gates with library
cells is technology mapping

B Translation of a technology independent representation
(e.g. Boolean networks) of a circuit into a circuit for a
given technology (e.g. standard cells) with optimal cost

7

Technology Mapping

| techmolgy echnology |
| independent dependent

original logic optimized technology L
|

[logic synthesis

O Standard-cell technology mapping: standard cell design
B Map a function to a limited set of pre-designed library cells
O FPGA technology mapping
B Lookup table (LUT) architecture:
O E.g., Lucent, Xilinx FPGAs
O Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)
B Multiplexer-based technology mapping:
O E.g., Actel FPGA
O Logic modules are constructed with multiplexers

78

Standard-Cell Based Design

Do
\ :

- carn D

Cell Cell D Feedihrongh Cell

79

Technology Mapping

0 Formulation:
B Choose base functions
OEx: 2-input NAND and Inverter

B Represent the (optimized) Boolean network with base
functions

OSubject graph
B Represent library cells with base functions

COPattern graph

O Each pattern is associated with a cost depending on the
optimization criteria, e.g., area, timing, power, etc.

0 Goal:

B Find a minimal cost covering of a subject graph using
pattern graphs

80

Technology Mapping

0 Technology Mapping: The optimization problem
of finding a minimum cost covering of the subject
graph by choosing from a collection of pattern
graphs of gates in the library.

0 A cover is a collection of pattern graphs such that
every node of the subject graph is contained in
one (or more) of the pattern graphs.

0 The cover is further constrained so that each
input required by a pattern graph is actually an
output of some other pattern graph.

81

Technology Mapping

CDExample
M Subject graph

f
tl=d+e 3
t2=b+h o
t3=at2+c h
t4=t1t3+fgh b
F=t4’

a

(o

82

Technology Mapping

0 Example
B Pattern graphs (1/3)
nand2 (2) hor2 (2)
&&w
cell name (cost)
A\ 1/
v () and2 (3) or2 (3)
Do D
nand3 (3) nor3 (3)
Technology Mapping
0 Example
B Pattern graphs (2/3) nor4 (4)
nand4 (4)

e shie
oai2l (3)
aoi21 (3) M
&D&M

0ai22 (4)

aoi22 (4)

Do

84

Technology Mapping

0 Example
B Pattern graphs (3/3)

nand4 (4) nor4 (4)
xor (5) xnor ()

e

85

Technology Mapping

0 Example

B A trivial covering

O Mapped into NAND2’s and INV’s
= 8 NAND2's and 7 INV’s at cost of 23

f

g

|
tl=d+ e; ’ ;
12=b+h e

t3=a 12 +c; e
4=t 3+fgh; b

86

Technology Mapping

0 Example
B A better covering
AND2
f
g AOQOI22
d
e F
h
b
a cost =18
C
INV
For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! 87
Technology Mapping
0 Example
B An even better covering
NAND3
f = i |
g e AND2
d o
o Do F
h = \/\
b OAI21
a OAI21
= cost = 15
C o
NAND2
INV

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! 88

Technology Mapping

C0Complexity of covering on directed acyclic
graphs (DAGS)

B NP-complete

® If the subject graph and pattern graphs are
trees, then an efficient algorithm exists (based
on dynamic programming)

89

Technology Mapping
DAGON Approach

0 Partition a subject graph into trees

B Cut the graph at all multiple fanout points
0 Optimally cover each tree using dynamic programming approach
[0 Piece the tree-covers into a cover for the subject graph

\NZ
/\

90

Technology Mapping
DAGON Approach

O Principle of optimality: optimal cover for the tree consists of
a match at the root plus the optimal cover for the sub-tree
starting at each input of the match

Match: cost =m

'

root

C(root) =m + C(1I,) + C(l,) + C(13) + C(1,)
cost of a leaf (i.e. primary input) =0

91

Technology Mapping
DAGON Approach

OExample v 2 o @ —>o—
M Library
NAND2 3) (ab)’ S
NAND3 4) (abo)’ %
NAND4 5 =)o

(2oed) %—Dﬁ
=D

poizt 4 Ly @O g o

AOI22 5 % (ab+cd)’ E

library element base-function representation
92

Technology Mapping
DAGON Approach

0 Example

NAND2(3)

: NAND2(8)
}ﬁ

EOQJ AP Do

AOI21(22)
NAND2(8) INV/(18)
NAND3(4)

D

NAND2(21
INV(15) NAND2(16) NAND3§17;

AND2(13) AOI21(9) NAND3(18) NAND4(19)

NAND2(3) INV(5)

93

Technology Mapping
DAGON Approach

CIComplexity of DAGON for tree mapping is
controlled by finding sub-trees of the
subject graph isomorphic to pattern trees

O complexity in both the size of
subject tree and the size of the collection
of pattern trees

M Consider library size as constant

94

Technology Mapping
DAGON Approach

O Pros: 0 Cons:
B Strong algorithmic B With only a local (to the
foundation tree) notion of timing
B Linear time complexity OTaking load values into
[Efficient approximation account can improve
to graph-covering the results
problem B Can destroy structures of
matches in terms of both [ONot desirable for well-
area and delay cost structured circuits
functions ® Inability to handle non-
B Easily “portable” to new tree library elements
technologies (XOR/XNOR)

B Poor inverter allocation

95

Technology Mapping
DAGON Approach

CODAGON can be improved by
W Adding a pair of inverters for each wire in the
subject graph
B Adding a pattern of a wire that matches two
inverters with zero cost

Eolos
!

2 INV
1 AIO021 2 NOR2

96

Available Logic Synthesis Tools

0 Academic CAD tools:
B Espresso (heuristic two-level minimization, 1980s)
B MIS (multi-level logic minimization, 1980s)
B SIS (sequential logic minimization, 1990s)

B ABC (sequential synthesis and verification system,
2005-)

O http://www.eecs.berkeley.edu/—alanmi/abc/

97

