Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2014

Testing

Slides are by Courtesy of Prof. S.-Y. Huang and C.-M. Li

Testing

0 Recap

B Design verification

O1s what | specified really what | wanted?
= Property checking

B Implementation verification

O1s what | implemented really what | specified?
= Equivalence checking

B Manufacture verification
O1s what | manufactured really what | implemented?
= Testing; post manufacture verification
= Quality control
= Distinguish between good and bad chips

Design Flow

IC Fabrication

Idea

Wafer
(hundreds of dies)

Sawing & Packaging

R 1 Block

s | diagram Final chips
Circuit & Layout Design Final Testing P

-1 '.i Layodt \/ \/ customers

Bad chips | | Good chips .

Manufacturing Defects

0 Processing faults
B missing contact windows
M parasitic transistors
B oxide breakdown

1 Material defects
B bulk defects (cracks, crystal imperfections)
B surface impurities

0 Time-dependent failures
M dielectric breakdown
B electro-migration

0 Packaging failures
B contact degradation
B seal leaks

Faults, Errors and Failures

O Faults
B A physical defect within a circuit or a system
B May or may not cause a system failure

O Errors

B Manifestation of a fault that results in incorrect circuit (system)
outputs or states

B Caused by faults

O Failures
B Deviation of a circuit or system from its specified behavior
B Fail to do what is supposed to do

B Caused by errors
[0 Faults cause errors; errors cause failures

Testing and Diagnosis

ClTesting

W Exercise a system and analyze the response to
ensure whether it behaves correctly after
manufacturing

CIDiagnosis
M Locate the causes of misbehavior after the
Incorrectness is detected

Scenario of Manufacturing Test

TEST VECTORS

|

Manufactured
Circuits

CIRCUIT RESPONSE

—1

CORRECT PASS/FAIL
RESPONSES Comparator

—

Test Systems

3 Tester mainframe

[

; Chip.sitting oh load board

ﬁ B & ,ﬁ__/

:! : l‘n’BﬁitorI . -
Test head

Purpose of Testing

0 Verify manufactured circuits
B Improve system reliability

B Reduce repair costs

[0 Repair cost goes up by an order of magnitude each step
away from the fab. line

1000
Cost 100
Per
Fault 10
(dollars) 1

IC Test Board System Warranty
Test Test Repair

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982

10

Testing and Quality

O Quality of shipped part can be expressed as a function of
the yield Y and test (fault) coverage T.

ASIC > : — Shipped Parts
. . Testing .
Fabrication Yield: Quality:
Fraction of _ Defective parts
Good parts Per Million (DPM)
Rejects

11

Fault Coverage

ClFault coverage T

M Measure of the ability of a test set to detect a
given set of faults that may occur on the
Design Under Test (DUT)

detected faults

all possible faults

12

Defect Level

CJA defect level is the fraction of the
shipped parts that are defective

DL=1-Y&D

Y: yield
T: fault coverage

13

Detect Level vs. Fault Coverage

Defect Level

10 [64 Y =0.01
0.8 [Y =0.25
0.6 |
0.4
0.2
0 20 40 60 80 100
(Williams 1BM 1980) Fault Coverage (%)

High fault coverage ——— Low defect level

14

DPM vs. Yield and Coverage

Yield Fault Coverage DPM
50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000
90% 90% 10,000
90% 95% 5,000
90% 99% 1,000
90% 99.9% 100

15

Why Testing Is Ditficult ?

] Test time explodes exponentially in exhaustive
testing of VLSI

B For a combinational circuit with 50 inputs, need 2% =
1.126 x 10%° test patterns.

B Assume one test per 10-’sec, it takes 1.125x108sec =
3.57years.

B Test generation for sequential circuits are even more
difficult due to the lack of controllability and
observability at flip-flops (latches)

] Functional testing
B may NOT be able to detect the physical faults

16

The Infamous Design/Test Wall

30-years of experience proves that
test after design does not work!

.................... Oops!
* What does

L1 ‘ this chip do?!
|

Functionally correct! ¢
We're done!

e =

Design Engineer

Test Engineer
17

Outline
ClFault Modeling
O Fault Simulation

O Automatic Test Pattern Generation

O Design for Testability

18

Functional vs. Structural Testing

C11/0 functional testing is inadequate for
manufacturing

B Need fault models

C0Exhaustive testing is daunting
B Need abstraction and smart algorithms
M Structural testing is more effective

19

Why Fault Model ?

[0 Fault model identifies target faults
B Model faults that are most likely to occur

0 Fault model limits the scope of test generation
B Create tests only for the modeled faults

] Fault model makes testing effective

B Fault coverage can be computed for specific test
patterns to measure its effectiveness

0 Fault model makes analysis possible
B Associate specific defects with specific test patterns

20

Fault Modeling vs. Physical Defects
ClFault modeling o

® Model the effects of physical defects on the
logic function and timing

CIPhysical defects
M Silicon defects
B Photolithographic defects
B Mask contamination
M Process variation
W Defective oxides

21

Fault Modeling vs. Physical Defects
(cont'd)

] Electrical effects
® Shorts (bridging faults)
B Opens
B Transistor stuck-on/open
M Resistive shorts/opens
B Change in threshold voltages

] Logical effects
M Logical stuck-at-0/1
B Slower transition (delay faults)
B AND-bridging, OR-bridging

22

Typical Fault Types

[Stuck-at faults

C1Bridging faults

ClTransistor stuck-on/open faults
CDelay faults

O 1DDQ faults

] State transition faults (for FSM)
COMemory faults

COIPLA faults

Single Stuck-At Fault

0 Assumptions:
B Only one wire is faulty
B Fault can be at an input or output of a gate
B Faulty wire permanently sticks at O or 1

test vector

ideal response

stuck-at-0

Multiple Stuck-At Faults

dSeveral stuck-at faults occur at the same
time
B Common in high density circuits

CdFor a circuit with k lines
M There are 2k single stuck-at faults

B There are 3%-1 multiple stuck-at faults
OA line could be stuck-at-0, stuck-at-1, or fault-free
0One out of 3k resulting circuits is fault-free

25

Why Single Stuck-At Fault Model ?

0 Complexity is greatly reduced

B Many different physical defects may be modeled by the
same logical single stuck-at fault

0 Stuck-at fault is technology independent

® Can be applied to TTL, ECL, CMOS, BiCMOS etc.
] Design style independent

B Gate array, standard cell, custom design
0 Detection capability of un-modeled defects

B Empirically, many un-modeled defects can also be
detected accidentally under the single stuck-at fault
model

0 Cover a large percentage of multiple stuck-at
faults

26

Why Logical Fault Modeling ?

O Fault analysis on logic rather than physical problem
B Complexity is reduced

0 Technology independent
B Same fault model is applicable to many technologies

B Testing and diagnosis methods remain valid despite changes in
technology

0 Wide applications

B The derived tests may be used for physical faults whose effect
on circuit behavior is not completely understood or too
complex to be analyzed

O Popularity
B Stuck-at fault is the most popular logical fault model

27

Definition of Fault Detection

] A test (vector) t detects a fault f iff t detects f
(i.e. z(t) # z«(1))

0 Example
W, 1

Z]_:X]_XZ 22:X2X3

X

2
218 =X Zof =XoX3
\ Z
X _/ 2

Test (x1,x2,x3) = (100) detects f because z,(100)=0 and z,;(100)=1

28

Fault Detection Requirement

[A test t that detects a fault f

B activates f (or generate a fault effect) by creating
different v and v; values at the site of the fault

B propagates the error to a primary output z by making all
the wires along at least one path between the fault site
and z have different v and v, values

] Sensitized wire

B A wire whose value in response to the test changes in
the presence of the fault f is said to be sensitized by the
test in the faulty circuit

] Sensitized path

® A path composed of sensitized wires is called a
sensitized path

29

Fault Sensitization

2(1011) = 0

G3
1011) =1
X3 O D
L
~
-/

L 01
| i

0/1

Input vector 1011 detects the fault f (G, stuck-at-1)
v/v; . v =signal value in the fault free circuit
V¢ = signal value in the faulty circuit

30

Detectability

A fault f is said to be detectable
B if there exists a test t that detects f
M otherwise, f is an undetectable fault

CdFor an undetectable fault f

M no test can simultaneously activate f and
create a sensitized path to some primary

output

31

Undetectable Fault

0 The stuck-at-0
fault at G, output
IS undetectable

B Undetectable faults
do not change the
function of the
circuit

B The related circuit

can be deleted to
simplify the circuit

a

LT

32

Test Set

0 Complete detection test set

B A set of tests that detects any detectable fault in a
designated set of faults

0 Quality of a test set
M is measured by fault coverage

0 Fault coverage
B Fraction of the faults detected by a test set
B can be determined by fault simulation

B >959% is typically required under the single stuck-at
fault model

B >99.9% required in the ICs manufactured by IBM

33

Typical Test Generation Flow

————-I Select next target fault

A 4

Generate a test
for the target fault

(to be discussed)

v

Fault simulation (to be discussed)

\4

Discard detected faults

) 4

yes no
More faults ? @

34

Fault Equivalence

CIDistinguishing test
B A test t distinguishes faults o and p if z (t)
#2,(t) for some PO function z

ClEquivalent faults

® Two faults o and 3 are said to be equivalent in
a circuit iff the function under a is equal to the
function under B for every input assignment
(sequence) of the circuit.

M That is, no test can distinguish o and B, i.e.,
test-set(a) = test-set(p)

35

Fault Equivalence

0 AND gate:
B all s-a-0 faults are equivalent

0 OR gate:
B all s-a-1 faults are equivalent

0 NAND gate:

B all the input s-a-0 faults and the output s-
a-1 faults are equivalent

N\

0 NOR gate: same effect

B all input s-a-1 faults and the output s-a-0
faults are equivalent

O Inverter:

B input s-a-1 and output s-a-0 are equivalent
B input s-a-0 and output s-a-1 are equivalent

36

Equivalence Fault Collapsing

COn+2, instead of 2(n+1), single stuck-at
faults need to be considered for n-input
AND (or OR) gates

s-a-1 s-a-1 s-a-0
s-a-1 s-a-0 s-a-0
s-a-1 s-a-0

b :Dos"’"l
S-a-1 s-a-0 s-a-0

37

Equivalent Fault Group

0 In a combinational circuit
B Many faults may form an equivalence group

B These equivalent faults can be found in a reversed
topological order from POs to Pls

s-a-0

s-a-1
— =

s-a-1

Three faults shown are equivalent !

38

Fault Dominance

0 Dominance relation

B A fault B is said to dominate another fault a in an
irredundant circuit iff every test (sequence) for a is also
a test (sequence) for B, i.e., test-set(a) c test-set(p)

B No need to consider fault g for fault detection

Test(p) = | o iS dominated by B

39

Fault Dominance

OO AND gate
B Output s-a-1 dominates any input s-a-1

easier to test

l

s-a-1

0 NAND gate
B Qutput s-a-0 dominates any input s-a-1

O OR gate
B Output s-a-0 dominates any input s-a-0

0 NOR gate
B Output s-a-1 dominates any input s-a-0

0 Dominance fault collapsing

B Reducing the set of faults to be analyzed based on the
dominance relation

40

Stem vs. Branch Faults

O Detect A s-a-1:
z(t)®z(t) = (CDOCE)®(D@CE)
= D®CD = (C=0,D=1)

0 Detect C s-a-1:
z(t)®z(t) = (CDOCE)®(D®E) D
= (C=0,D=1,E=0) or

By
(C=0,D=0,E=1) R
o =
-

> x

0 Hence, C s-a-1 does not
dominate A s-a-1

X

OO0 In general, there might be no
equivalence or dominance C: stem of a multiple fanout
relations between stem and A, B: branches
branch faults

41

Analysis of a Single Gate

OO0 Fault Equivalence Class A—
B (A s-a-0, B s-a-0, C s-a-0) } C
0 Fault Dominance Relations B—
® (Cs-a-1 > A s-a-1) and
(Cs-a-1 > B s-a-1)

O Faults that can be ignored:
B A s-a-0, B s-a-0, and C s-

AB|{C| A | B|C|A|B|C
sal |sal |sal|sa0 |sa0l|sal

a-1 00| O 1
01|10 |1 1
10 | O 111
11| 1 0|00

42

Fault Collapsing

] Collapse faults by fault equivalence and
dominance

B For an n-input gate, we only need to consider n+1 faults
in test generation

s-a-1 ‘

e 4

43

Dominance Graph

0 Rule

B When fault o dominates fault g, then an arrow is
pointing from o to

1 Application
B Find out the transitive dominance relations among faults

a s-a-0
a_jo_ as-a-1 d s-a-0
b— d d s-a-1
e s-a-0

Cc e e s-a-1

44

Fault Collapsing Flow

Sweeping the netlist from PO to Pl Equivalence

to find the equivalent fault groups analysis
Sweeping the netlist Dominance

to construct the dominance graph analysis

Discard the dominating faults

Select a represe

each remaining equivalence group

ntative fault from

Generate collapsed fault list

45

Prime Fault

Cla is a prime fault if every fault that is
dominated by «a is also equivalent to a

O Representative Set of Prime Fault (RSPF)

M A set that consists of exactly one prime fault
from each equivalence class of prime faults

B True minimal RSPF is difficult to find

46

Why Fault Collapsing ?

0 Save memory and CPU time
] Ease testing generation and fault simulation

] Exercise

{
-1 .
1>

* 30 total faults > 12 prime faults

47

Checkpoint Theorem

0 Checkpoints for test generation

B A test set detects every fault on the primary inputs and
fanout branches is complete

Ol.e., this test set detects all other faults, too

B Therefore, primary inputs and fanout branches form a
sufficient set of checkpoints in test generation

O1In fanout-free combinational circuits (i.e., every gate has
only one fanout), primary inputs are the checkpoints

X :)_
-

48

Why Inputs + Branches Are Enough ?

0 Example
B Checkpoints are marked in blue

B Sweeping the circuit from Pl to PO to examine every
gate, e.g., based on an order of (A->B->C->D->E)

B For each gate, output faults are detected if every input
fault is detected

2,
o LE‘*

49

Fault Collapsing + Checkpoint

0 Example:
B 10 checkpoint faults
B as-a-0 <=>ds-a-0, cs-a-0 <=> e s-a-0
bs-a-0 > ds-a-0 , bs-a-1 > ds-a-1
B 6 faults are enough

a : D_
b :Z)i
c O

50

Outline

O Fault Modeling
CFault Simulation
O Automatic Test Pattern Generation

O Design for Testability

51

Why Fault Simulation ?

C0To evaluate the quality of a test set
M |.e., to compute its fault coverage

COPart of an ATPG program
M A vector usually detects multiple faults

M Fault simulation is used to compute the faults
that are accidentally detected by a particular
vector

C0To construct fault-dictionary
M For post-testing diagnosis

52

Conceptual Fault Simulation

Patterns Response
(Sequences) Comparison
(Vectors) Faulty Circuit #n (D/0)
/ \
’/
Faulty Circuit #2 (B/1) :
I Detected?
Faulty Circuit #1 (A/0) :
I
Fault-free Circuit
Primary | A B
Inputs D
(Pls) C : /
Primary Outputs
(POs)
Logic simulation on both good (fault-free) and faulty circuits
53
Some Basics for Logic Simulation

O In fault simulation, our main concern is functional faults;
gate delays are assumed to be zero unless delay faults are
considered

OO0 Logic values can be either {0, 1} (for two-value simulation)
or {0, 1, X} (for three-value simulation)

0 Two simulation mechanisms:

B Compiled-code valuation:
O A circuit is translated into a program and all gates are executed for
each pattern (may have redundant computation)
B Event-driven valuation:

O Simulating a vector is viewed as a sequence of value-change
events propagating from Pls to POs

O Only those logic gates affected by the events are re-evaluated

54

Event-Driven Simulation

@ ,| Initialize the events at PIs
in the event-queue
v
Pick an event
Evaluate its effect
|
Schedule the newly born events
in the event-queue, if any
es
1 1 A— «—0
«—Q0 B Gl E
0o«—0D
55
° 1—1 . .
Complexity of Fault Simulation

#Gate (G)

#Fault (F)

#Pattern (P)

O Complexity ~ F -P -G — O(G?3)
O The complexity is higher than logic simulation by a factor of
F, while it is usually much lower than ATPG

O The complexity can be greatly reduced using
B fault collapsing and other advanced techniques

56

Characteristics of Fault Simulation

] Fault activity with respect to fault-free circuit
M is often sparse both in time and space.

0 For example

B F1 is not activated by the given pattern, while F2 affects
only the lower part of this circuit.

0 . F1(s-a-0)

1 E—
F2(s-a-0)

D

57

Fault Simulation Techniques

CParallel Fault Simulation
0 Deductive Fault Simulation

58

Parallel Fault Simulation

0 Simulate multiple circuits simultaneously

B The inherent parallel operation of computer words to
simulate faulty circuits in parallel with fault-free circuit

B The number of faulty circuits or faults can be processed
simultaneously is limited by the word length, e.g., 32
circuits for a 32-bit computer

0 Complication

B An event or a value change of a single faulty or fault-
free circuit leads to the computation of an entire word

B The fault-free logic simulation is repeated for each pass

59

Parallel Fault Simulation

O Example
B Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0) Jol B/l Flo
B Bit-space: (FF denotes fault-free)

1[1]1]1
B/l\ A ~ J/(\)
o[o]o0 X o[1]o0]0
clo]1]0]0 E_/G oft]o|1
—" 1]0]1]1 1
° >O—_]
D
y >7H1101
F 1]0]0[1
11]1]1 [1]1]o]1

60

Deductive Fault Simulation

0 Simulate all faulty circuits in one pass
B For each pattern, sweep the circuit from Pls to POs.

B During the process, a list of faults is associated with
each wire

B The list contains faults that would produce a fault effect
on this wire

B The union fault list at every PO contains the detected
faults by the simulated input vector

0 Main operation is fault list propagation
B Depending on gate types and values

B The size of the list may grow dynamically, leading to the
potential memory explosion problem

61

[lustration of Fault List Propagation

Consider a two-input AND-gate:

Non-controlling case: Case 1: A=1, B=1, C=1 at fault-free,
Lc=LAuULBuU{C/0}
Controlling cases: Case 2: A=1, B=0, C=0 at fault-free,

Lc = (LA ~ LB) U {C/1}
Case 3: A=0, B=0, C=0 at fault-free,
Lc=(LA~LB)u{C/1}

LA is the set of all faults not in LA

62

Rule of Fault List Propagation

Output fault list
{L,nL}uz,
{L.-Lp} vz
{L,-L}uz,
{L,uL}uz,
(L,uL}uz
{L,-L}uz,
{L.-Lp} v 7o
{L,.nL}uz,

L,uz,

AND

OR

- O = O - O - O T

NOT

= O =, =a OO =, =20 OL
O A la A a Ol o o0 o|lN

L,uz,

63

Deductive Fault Simulation

O Example (1/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

"

H

Fault list at PlIs:
LB ={B/1}, LF={F/0}, LA=g, Lc=LD ={B/1}

64

Deductive Fault Simulation

O Example (2/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

A
1 F
C
0 ¢
. E1| X 1

H
1 X

LB ={B/1}, LF={F/0}, LA=C, Lc=LD ={B/1}
Fault lists at G and E:

LG =(LA~LC)uU G/1={B/1, G/1}

LE = (LD) U E/0 = {B/1, E/0}

65

Deductive Fault Simulation

O Example (3/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)
A

1

LB ={B/1}, LF={F/0}, LA=J, Lc=LbD ={B/1},

LG ={B/1, G/1}, LE = {B/1, E/0}

Fault list at H:

LH = (LE U LF) U LH={B/1, E/O, F/0, H/0} 66

Deductive Fault Simulation

O Example (4/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

A
1 'ﬁ
C
0 |—x
. E1| 1

H

LB ={B/1}, LF={F/0}, LA=C, Lc=LD={B/1}, LG =
{B/1, G/1} , LE = {B/1, E/0}, LH = {B/1, E/O, F/0, H/0}
Final fault list at PO J:

LJ=(LH-LG) u LJ={E/O0, F/0, J/0} 67

Deductive Fault Simulation

O Example (cont'd)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (0,0,1)

A

G

0 *
E 1
D

1 *

Event driven updates:
LB ={B/1}, LF={F/0}, LA=C, LCc=LD=LE={B/1},
LG = {G/1}, LH ={B/1, F/0}, Ly = {B/1, F/0, J/O}

68

Outline

O Fault Modeling
O Fault Simulation

0 Automatic Test Pattern Generation (ATPG)
B Functional approach
O Boolean difference
B Structural approach
O D-algorithm
COPODEM

O Design for Testability

69

Typical ATPG Flow

] 1st phase: random test pattern generation

[start

¥

Fault list generation

L 4

Fault collapsing

¥

— Random test pattern gen.

Fault Simulation
& fault dropping

e
—

~___FC Improve? —

———

yes

-

| no

-

[Next page

70

Typical ATPG Flow (cont'd)

0 2nd phase: deterministic test pattern generation

|

Deterministic test
pattern gen.

!

Fault Simulation
& fault dropping

|

—=-::'_'_'_'_"fl_:-_*_:3 gooa_‘?_%"_'j_'::::
no — T
T ves

Test Compaction

!

{ done |

71

Test Pattern Generation

O The test set T of a fault a with respect to some PO z can be
computed by

T() = z(X) @ z,(x)
0 A test pattern can be fully specified or partially specified
depending on whether the values of Pls are all assigned

B Example

abc

000
001
010
011
100
101

N

Q

Input vectors (1,1,0) and (1,1,-) are fully
and partially specified test patterns of
fault o, respectively.

R OOOOO|IN
RPOOOOO

72

Structural Test Generation

D-Algorithm

O Test generation from circuit structure
O Two basic goals
B (1) Fault activation (FA)
B (2) Fault propagation (FP)
B Both of which requires Line Justification (LJ), i.e., finding input combinations that
force certain signals to their desired values

O Notations:
B 1/0 is denoted as D, meaning that good-value is 1 while faulty value is O
B Similarly, 0/1 is denoted D’
B Both D and D’ are called fault effects (FE)

a m 1/0 +— fault activation
b —

-

0 C ____. o fault propagation

73

Structural Test Generation

D-Algorithm

0 Fault activation

B Setting the faulty signal to either O or 1 is a Line Justification
problem

OO0 Fault propagation
1. select a path to a PO - decisions

2. once the path is selected - a set of line justification (LJ)
problems are to be solved

0 Line justification
B Involves decisions or implications
B Incorrect decisions: need backtracking

To justify c=1 - a=1 and b=1 (implication) a
To justify c=0 - a=0 or b=0 (decision) b c

74

Structural Test Generation

D-Algorithm: Fault Propagation

| %EQ— f1
A= G4 <CT>
- o [Go— 12 G5 G6

G3
e >% | G4 fail success

decision tree

OO0 Fault activation
B G1=0-> {a=1,b=1,c=13}> {G3=0}
[0 Fault propagation: through G5 or G6
OO0 Decision through G5:
B G2=1 > {d=0, } = inconsistency at a - backtrack !!
OO0 Decision through G6:
B > G4=1 > e=0 > done !l The resulting test is (111x0)

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D'. For example, initially, the D-frontier is { G5, G6 }.

75

Structural Test Generation
D-Algorithm: Line Justification

corresponding decision tree

>c m @
n
0 |
sSuccess

P
€ o N P
|/

H

J-frontier: is the set of gates
whose output value is known
(i.e., 0 or 1), but is not implied

EA > sethto0O by its input values.

FP > e=1, f=1 (>0=0) ; FP > g=1, Ex: initially, J-frontier is {g=1, r=1}

To justify q=1 > I=1 or k=1

Decision: | =1 - c¢=1, d=1 - m=0, n=0 > - inconsistency at r &> backtrack !
Decision: k=1 2> a=1, b=1

To justify r=1 - m=1 or n=1 (=>¢=0 or d=0) > Done !

Ooooooao

76

Test Generation

OO0 A branch-and-bound search

0 Every decision point is a branching point

0 If a set of decisions lead to a conflict, a backtrack is taken
to explore other decisions

O A test is found when
1. fault effect is propagated to a PO, and
2. all internal lines are justified

0 No test is found after all possible decisions are tried »>

Then, target fault is undetectable

0 Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a redundant fault
- Can be used to simplify circuit.

7

Implication

O Implication

B Compute the values that can be uniquely determined

OLocal implication: propagation of values from one line to its
immediate successors or predecessors

O Global implication: the propagation involving a larger area
of the circuit and re-convergent fanout

0 Maximum implication principle
B Perform as many implications as possible

B It helps to either reduce the number of problems that
need decisions or to reach an inconsistency sooner

78

Forward Implication

Before After
0> 0
P e
> L
I e
1> 0 e .y > 0 o
‘Kj—a J-frontier={a} < Q| —a J-frontier={ ... }
D E r
DiD—); D—frontier={...,a}§ B_)%) D-frontier={ ... }

79

Backward Implication

Before After
D= D!
D= e
< f -
j? 0 J-frontier={ ...} | j? 0 J-frontier={a }

X 1>

< p<

e
o po AR

< [

80

D-Algorithm (1/4)

0 Example
B Five logic values {0, 1, x, D, D'}

@lay
RRO

A
>

T

Try to propagate
fault effect thru G1
- Setdto 1l

Try to propagate
fault effect thru G2
- Setj,klImtol

G2

Conflict at k
- Backtrack !

81

D-Algorithm (2/4)

O Example
B Five logic values {0, 1, x, D, D'}

d{t -1}

e* ;
EEDQ " D"?k(
f{_%f

Try to propagate
fault effect thru G2
- Setjlmtol

G2

24

D-frontier chosen)

Conflict at m
- Backtrack !

82

D-Algorithm (3/4)

0 Example Try to propagate
B Five logic values {0, 1, x, D, D'} fault effect thru G2

.)o h 1 > Setjlto 1
d{ [1 Fault propagation
[and line justification

are both complete
- Atestis found !

e* l D)Jil G2 N

: b | This is a case of
1 multiple path sensitization !

D’ (next D-frontier chosen) 83

D-Algorithm (4/4)

Decision | Implication | Comments
_ e=1 Propagate via k
a=0 Active the fault k=D’
h=1 _ _ e'=0
b=1 Unique D-drive i=1
c=1 =1 Propagate via n
9=D —— [m=1
d=1 - Propagate via i n=D
=D F=0
d'=0 f=1
=1 Propagate vian m=D’ Contradiction
k=1 f=1 Propagate via m
l‘} m=D’
m=1) £=0
€'=0 n=D
e=1
k=D’ Contradiction 84

Decision Tree on D-Frontier

0 The decision tree

B Node - D-frontier

B Branch - decision taken

B A Depth-First-Search (DFS) strategy is often used

ecision point
Choice 4
Choice 2 Choice 3
Justifi on Fail
85

PODEM Algorithm

O PODEM: Path-Oriented DEcision Making
O Fault Activation (FA) and Propagation (FP)

B |ead to sets of Line Justification (LJ) problems. The LJ problems can be solved via
value assignments.

O In D-algorithm

B Test generation is done through indirect signal assignment for FA, FP, and LJ,
that eventually maps into assignments at Pl’s

B The decision points are at internal lines

B The worst-case number of backtracks is exponential in terms of the number of
decision points (e.g., at least 2k for k decision nodes)

O In PODEM
B Test generation is done through a sequence of direct assignments at PI's

B Decision points are at Pls, thus the number of backtracking might be fewer

86

PODEM Algorithm
Search Space of PODEM

OO0 Complete search space

B A binary tree with 2" leaf nodes, where n is the number of Pls

0 Fast test generation

B Need to find a path leading to a SUCCESS terminal quickly

87

PODEM Algorithm
Objective and Backtrace

O PODEM

B Also aims at establishing a sensitization path based on fault
activation and propagation like D-algorithm

B Instead of justifying the signal values required for sensitizing
the selected path, objectives are setup to guide the decision
process at Pls

0 Objective
® is a signal-value pair (w, v,,)
0 Backtrace

B Backtrace maps a desired objective into a Pl assignment that
Is likely to contribute to the achievement of the objective

B Is a process that traverses the circuit back from the objective
signal to Pls

B The result is a Pl signal-value pair (X, v,)

B No signal value is actually assigned during backtrace (toward
PI) !

88

PODEM Algorithm
Objective

] Objective routine involves
M selection of a D-frontier, G
B selection of an unspecified input gate of G

Objective() {
[* The target fault is w s-a-v */
[* Let variable obj be a signal-value pair */
if (the value of wis x) obj = (w, v');
else {
select a gate (G) from the D-frontier;
select an input (j) of G with value x;
¢ = controlling value of G;
obj = (j, ¢);
}

return (obj);

fault activation

fault propagation

89

PODEM Algorithm
Backtrace

] Backtrace routine involves

® finding an all-x path from objective site to a PI, i.e.,

every signal in this path has value x

Backtrace(w, v,,) {

[* Maps objective into a Pl assignment */

G =w; /* objective node */

v =, /* objective value */

while (G is a gate output) { /* not reached Pl yet */
inv = inversion of G;
select an input (j) of G with value x;
G=j /* new objective node */
v =vdinv; /* new objective value */

}

[*GisaPl* return (G, v);

90

PODEM Algorithm
PI Assignment

Pls:{a, b,c,d}

Current Assignments: { a=0 }
Decision: b=0 - objective fails
Reverse decision: b=1
Decision: c=0 - objective fails
Reverse decision: c=1
Decision: d=0

failure

Failure means fault effect cannot be
propagated to any PO under current

Pl assignments

/

failure

91

PODEM Algorithm

PODEM ()
begin
If(error at PO) return(SUCCESS);
If(test not possible) return(FAILURE);

(k, v,) = Objective();
@, v;) = Backtrace(k, v,);

Imply @, v));

If (==SUCCESS)
Imply (. v);

If (==SUCCESS)
Imply (4. X);

Return (FAILURE);

end

return (SUCCESS);

return(SUCCESS);

92

PODEM Algorithm (1/4)

CDExample

Select D-frontier G2 and

set objective to (k,1)

- e = 0 by backtrace

- break the sensitization
across G2 (j=0)

- Backtrack !

n

G2

93

PODEM Algorithm (2/4)

Select D-frontier G3 and
set objective to (e,1)

- No backtrace is needed
- Success at G3

G2

CDExample
h 1
i)
d 1 .
[1 D
Gl
e Y
A
a ll o\ g b - K
bdT]1 &
— 1
S
f G4 m

94

PODEM Algorithm (3/4)

CDExample

1O

-

Select D-frontier G4 and
set objective to (f,1)

- No backtrace is needed
- Succeed at G4 and G2
- D appears at one PO
- Atestis found !!

G2

95

PODEM Algorithm (4/4)

Objective| Pl assignment| Implications | D-frontier | Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D I,k,m
d=1 d=1 d'=0
i=D’ k,m,
k=1 e=0 e | Assignments need to be
szol | reversed during backtracking
n=1 m no solutions! - backtrack
e=1 e'=0 flip Pl assignment
=1 =
k=D’ m,n d*ﬁgi
I=1 f=1 £=0 *ﬁgﬂ%}‘
=1 @.EDQ - il
m=D’ - .
n=D f%; 96

PODEM Algorithm
Decision Tree

O Decision node:
Pl selected through backtrace for value assignment
O Branch:
value assignment to the selected PI
success 97
Termination Conditions

0 D-algorithm
B Success:
(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty
B Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

0 PODEM

B Success:
O Fault effect seen at an output

B Failure:

OEvery Pl assignment leads to failure, in which D-frontier is
empty while fault has been activated

98

PODEM Overview

O PODEM

B examines all possible input patterns implicitly but exhaustively
(branch-and-bound) for finding a test

B complete like D-algorithm (i.e., will find a test if exists)

O Other key features

B No J-frontier, since there are no values that require
justification

B No consistency check, as conflicts can never occur

B No backward implication, because values are propagated only
forward

B Backtracking is implicitly done by simulation rather than by an
explicit and time-consuming save/restore process

B Experiments show that PODEM is generally faster than D-
algorithm

99

Outli

1NC

O Fault Modeling

O Fault Simulation

O Automatic Test Pattern Generation

CIDesign for Testability

100

Why DET ?

CIDirect testing is way too difficult !
M Large number of FFs
B Embedded memory blocks
® Embedded analog blocks

101

Design for Testability

1 Definition

B Design for testability (DFT) refers to those design
techniques that make test generation and testing cost-
effective

0 DFT methods

B Ad-hoc methods, full and partial scan, built-in self-test
(BIST), boundary scan

] Cost of DFT

B Pin count, area, performance, design-time, test-time,
etc.

102

Important Factors

O Controllability

M Measure the ease of controlling a line

0 Observability

B Measure the ease of observing a line at PO

CODFT deals with ways of improving
® Controllability and observability

103

Test Point Insertion

0 Employ test points to enhance controllability
and observability

B CP: Control Points

OPrimary inputs used to enhance controllability
B OP: Observability Points

COPrimary outputs used to enhance observability

) Add 0-CP
ST_) Add 1-CP

[

Add OP __|

D-—3

Y O

104

Control Point Insertion

Cl c2

l... =

CP

CP_enable
Inserted circuit for controlling line w

0 Normal operation:
When CP_enable = 0
O Inject O:
Set CP_enable =1and CP =0
O Inject 1:
Set CP_enable =1and CP =1
105

Control Point Selection

Goal

M Controllability of the fanout-cone of the added
point is improved

CO0Common selections
B Control, address, and data buses
B Enable/hold inputs
M Enable and read/write inputs to memory
M Clock and preset/clear signals of flip-flops

W Data select inputs to multiplexers and
demultiplexers

106

Observation Point Selection

O Goal
B Observability of the transitive fanins of the added point
is improved

0 Common choice
B Stem lines with more fanouts
B Global feedback paths
B Redundant signal lines

B Output of logic devices having many inputs
OMUX, XOR trees

B Qutput from state devices
B Address, control and data buses

107

Problems with Test Point Insertion

0 Large number of 1/0 pins

B Can be resolved by adding MUXs to reduce the number
of 1/0 pins, or by adding shift-registers to impose CP

values
X — . Z
Shift-register R1 X’ 7’ Shift-register R2

9

control Observe

108

What Is Scan ?

] Objective

M To provide controllability and observability at internal
state variables for testing

0 Method
B Add test mode control signal(s) to circuit
B Connect flip-flops to form shift registers in test mode

B Make inputs/outputs of the flip-flops in the shift register
controllable and observable

O Types
B Internal scan
O Full scan, partial scan, random access
B Boundary scan

109

Scan Concept

Combinational
Logic

2!

FF

= I

Mode Switch
(normal or test)

1 1]

110

Logic Design before Scan Insertion

— Combinational Logic —
input — _)j j: —output
pins —] — pins
\-D Q D QJ \‘ J
D D D

clock I_

Sequential ATPG is extremely difficult:

due to the lack of controllability and observability at flip-flops.

111
Logic Design after Scan Insertion
1 Combinational Logic [

input — % — output
pins — — pins

scan-input _@'

scan-enable

D

d
1 qzl
D

Q Q

1

XN

IF—>

clock

a3

scan-output

Scan Chain provides an easy access to flip-flops
— Pattern generation is much easier !!

112

Scan Insertion

0 Example
B 3-stage counter
— Combinational Logic —
input — q; | —— output
D »| D D
Q >
1 1Q 1Q
D D> D
clock
It takes 8 clock cycles to set the flip-flops to be (1, 1, 1), for detecting
the target fault g stuck-at-0 fault (220 cycles for a 20-stage counter !) 113
Overhead of Scan Design

0 Case study
m #CMOS gates = 2000
M Fraction of flip-flops = 0.478
M Fraction of normal routing = 0.471

Scan Predicted | Actual area Normalized
implementation | overhead | overhead operating
frequency
None 0 0] 1.0
Hierarchical 14.05% 16.93% 0.87
Optimized 14.05% 11.9% 0.91

114

Full Scan Problems

] Problems
M Area overhead
M Possible performance degradation
B High test application time
B Power dissipation

[0 Features of commercial tools
B Scan-rule violation check (e.g., DFT rule check)
B Scan insertion (convert a FF to its scan version)
B ATPG (both combinational and sequential)
B Scan chain reordering after layout

115

Scan-Chain Reordering

[0 Scan-chain order is often decided at gate-level without knowing
the cell placement

O Scan-chain consumes a lot of routing resources, and could be
minimized by re-ordering the flip-flops in the chain after layout is
done

i Scan cell
B []

Layout of a cell-based design A better scan-chain order

116

Partial Scan

] Basic idea
B Select a for scan
B Lower overhead (area and speed)
B Relaxed design rules

0 Cycle-breaking technique

i , IEEE Trans. On Computers, April 1990
B Select scan flip-flops to
M Overhead is about than full scan

0 Timing-driven partial scan

= , ICCAD, Nov. 1991

m Allow optimization of area, timing, and testability
simultaneously

117

Full Scan vs. Partial Scan

scan design
| full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF
scan time longer shorter
hardware overhead more less
fault coverage ~100% unpredictable
ease-of-use easier harder

118

Area Overhead vs. Test Effort

test |
effort test.

generation area overhead

complexity

no scan partial scan full scan
area overhead
119

Conclusions
O Testing

B Conducted after manufacturing
B Must be considered during the design process

O Major fault models
B Stuck-at, bridging, stuck-open, delay fault, ...

OO0 Major tools needed
B Design-for-Testability
O By scan chain insertion or built-in self-test
B Fault simulation
B ATPG

OO0 Other Applications in CAD

B ATPG is a way of Boolean reasoning and is applicable to may
logic-domain CAD problems

120

