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Satisfiability
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Normal Forms
 A literal is a variable or its negation
 A clause (cube) is a disjunction (conjunction) of 

literals
 A conjunctive normal form (CNF) is a 

conjunction of clauses; a disjunctive normal 
form (DNF) is a disjunction of cubes

 E.g.,
CNF: (a+b+c)(a+c)(b+d)(a)
(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a
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Satisfiability
 The satisfiability (SAT) problem asks whether a 

given CNF formula can be true under some 
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work 
‘mysteriously’ well on application CNFs with 
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and 

SMT (Satisfiability Modulo Theories) solver development
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SAT Competition

http://www.satcompetition.org/PoS11/
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SAT Solving 
 Ingredients of modern SAT solvers:

 DPLL-style search 
[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal 
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]
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Pre-Modern SAT Procedure
Algorithm DPLL(Φ)
{

while there is a unit clause {l} in Φ
Φ = BCP(Φ, l); 

while there is a pure literal l in Φ
Φ = assign(Φ, l); 

if all clauses of Φ satisfied   return true; 
if Φ has a conflicting clause   return false; 
l := choose_literal(Φ); 
return DPLL(assign(Φ,l))  DPLL(assign(Φ,l));

} 
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DPLL Procedure

Chorological backtrack

E.g. 
a

b

c
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~a ~b b ~c c d
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{c,d,e}
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
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

~a ~b
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Modern SAT Procedure 
Algorithm CDCL(Φ)
{

while(1)
while there is a unit clause {l} in Φ

Φ = BCP(Φ, l); 
while there is a pure literal l in Φ

Φ = assign(Φ, l); 
if Φ contains no conflicting clause

if all clauses of Φ are satisfied   return true; 
l := choose_literal(Φ); 
assign(Φ,l);

else
if conflict at top decision level   return false; 
analyze_conflict();
undo assignments;
Φ := add_conflict_clause(Φ); 

} 
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Conflict Analysis & Clause Learning
 There can be many learnt 

clauses from a conflict
 Clause learning admits non-

chorological backtrack

 E.g.,
{x10587, x10588, 
x10592}
…
{x10374, x10582, 
x10578, x10373, x10629}
…
{x10646, x9444, x10373, 
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)
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Clause Learning as Resolution
 Resolution of two clauses C1x and C2x:

C1x C2x
C1C2

where x is the pivot variable and C1C2 is the resolvant, 
i.e., C1C2 = x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of 
resolution steps
 Exercise: 

Find a resolution sequence leading to the learnt clause 
{x10374, x10582, x10578, x10373, x10629}
in the previous slides
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Resolution
 Resolution is complete for SAT solving

 A CNF formula is unsatisfiable if and only if there exists 
a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()
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SAT Certification

True CNF
Satisfying assignment (model)

Verifiable in linear time

False CNF
Resolution refutation

Potentially of exponential size 
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Craig Interpolation
 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an 
interpolant I of A such that

1.   AI
2.   IB is UNSAT
3.   I refers only to the common 
variables of A and B

BA

I

I is an abstraction of A
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Interpolant and Resolution Proof
 SAT solver may produce the resolution proof of an UNSAT 

CNF 
 For = AB specified, the corresponding interpolant can 

be obtained in time linear in the resolution proof
A B

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]
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Circuit to CNF Conversion

Circuit to CNF conversion can be done in 
time linear w.r.t. circuit size [Tseitin, 1968]
 Trick: introduce intermediate variables

The resultant formula can blow up if no intermediate 
variables are allowed to exist
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Circuit to CNF Conversion
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?



2011/6/29 TAROT 2011 19

SAT Application
Functional Dependency

f(x) functionally depends on g1(x), 
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)), 
denoted h(G(x))
Under what condition can function f be 

expressed as some function h over a set of 
given functions G={g1,…,gm} ?

 h exists  a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f
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SAT Application
Functional Dependency

Applications of functional dependency
Resynthesis/rewiring
Redundant register removal 
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network
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SAT Application
Functional Dependency

Computing h
hon = {y  Bm : y = G(x) and f(x) = 1, x  Bn} 
hoff = {y  Bm : y = G(x) and f(x) = 0, x  Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = x.(yG)f

hoff = x.(yG)f
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SAT Application
Functional Dependency

h exists 
a,b such that f(a)f(b) and G(a)=G(b),
i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?
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SAT Application
Functional Dependency

 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit 
Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

Constraint 
Part

*y1

Assertion 
Constraints

Equality 
Constraints



2011/6/29 TAROT 2011 24

SAT Application
Functional Dependency
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, y0

*, (yiyi
*) for i =1,…,m

 I is an overapproximation of Img( fon ) and is disjoint from  
Img( foff )

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

*y 1

A B

Img(fon) Img(foff)

[Lee, J, Huang, Mishchenko, 2007]



Quantified Satisfiability
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Quantified Boolean Formula
 A quantified Boolean formula (QBF) is often 

written in prenex form (with quantifiers placed 
on the left) as

Q1 x1, …, Qn xn. 

for Qi  {, } and  a quantifier-free formula 
 If  is further in CNF, the corresponding QBF is in the 

so-called prenex CNF (PCNF), the most popular QBF 
representation

 Any QBF can be converted to PCNF

prefix matrix



2011/6/29 TAROT 2011 27

Quantified Boolean Formula

Quantification order matters in a QBF
A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. ) 

is of level k if there are k quantifier 
alternations (i.e., changing from  to  or 
from  to ) from Q1 to Qi. 
 Example
a b c d e. 
level(a)=0, level(b)=1, level(c)=2, level(d)=2, 
level(e)=3
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Quantified Boolean Formula
Many decision problems can be 

compactly encoded in QBFs

 In theory, QBF solving (QSAT) 
is PSPACE complete
 The more the quantifier 

alternations, the higher the 
complexity in the Polynomial 
Hierarchy

 In practice, solvable QBFs are 
typically of size ~1,000 
variables

P

PSPACE

coNP NP

2 2
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QBF Solver
QBF solver choices

 Data structures for formula representation
Prenex vs. non-prenex
Normal form vs. non-normal form

 CNF, NNF, BDD, AIG, etc.
 Solving mechanisms

Search, Q-resolution, Skolemization, quantifier elimination, 
etc.

 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

Both clause learning (from a conflicting assignment) and
cube learning (from a satisfying assignment) are 
performed
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QBF Solving
 Example

))()()()()()(( ybabxbxaccybxcybxacyba 

 La,  Ra,
))()()()()(( ybbxcybxcybxcyb  ))()()(( bxbxccybx 

 Lx,  Rx,
))()()()(( ybcybcybcyb  ))()()(( ybbcycyb 

 Ub,  Ub,
))()(( cycycy   Pc,

 Ly,  Ry,
))(( cc )(c

}{true}{ false

 Py,
))()()(( bxbxccbx 

 Uc,
))()(( bxbxbx 

 Lx,  Rx,
)(b ))(( bb

}{true

}{true }{ false









cybxa 

)( ycbxa

)( cbxa

)( cbxa
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Q-Resolution
 Q-resolution on PCNF is similar to resolution on CNF, except that 

the pivots are restricted to existentially quantified variables and 
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally () 
quantified variables whose quantification levels are greater than 
any of the existentially () quantified variables in C1C2
 E.g., 

prefix: a b c d e 
-RED(a+b+c+d) = (a+b) 

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause
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Q-Resolution
 Example (cont’d)

 La,  Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc,  Rc,
}{ false

)( xba 

)( bx 

}{ false
 Lb,  Rb,

}{ false

)( cy  )(a

)( xac 

)(a

)(a

)(a

)( bx )( bxac )( cyxba )( cyba 

)(a

)(a

)(

cybxa  ))()()()()()(( ybabxbxaccybxcybxacyba 
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Skolemization
 Skolemization and Skolem normal form

 Existentially quantified variables are 
replaced with function symbols

 QBF prefix contains only two 
quantification levels 
  function symbols,  variables

 Example

a b c d. 
(a+b)(b+c+d)(b+c+d)(a+b+c)

Fb(a) Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 11 1 0 00 0
Skolem functions
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QBF Certification
 QBF certification

 Ensure correctness and, more importantly, provide useful 
information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications 
 False QBF: clause-resolution proof / Herbrand-function (HF) 

countermodel
 HF countermodel is more useful in practical applications 

 Solvers and certificates
 To date, only Skolemization-based solvers (e.g., sKizzo, 

squolem, Ebddres) can provide SFs
 Search-based solvers (e.g., QuBE) are the most popular and 

can be instrumented to provide resolution proofs
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QBF Certification

Solvers and certificates 

Clause resolutionSkolem functionSkolemizationsquolem

Clause resolutionSkolem functionSkolemizationEbddres

-Skolem functionSkolemizationsKizzo

Clause resolutionCube resolutionsearchyQuaffle

Clause resolutionCube resolutionsearchQuBE-cert
False QBFTrue QBF

CertificateAlgorithmSolver
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QBF Certification
Incomplete picture of QBF certification

Recent progress
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]
Syntactic to semantic certificate conversion 

Linear time [Balabanov, J, 2011 (ResQu)]

?Clause-resolution proofFalse QBF
Skolem-function modelCube-resolution proofTrue QBF

Semantic CertificateSyntactic Certificate
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QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula 
negation
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ResQu
 A Skolem-function model (Herbrand-function 

countermodel) for a true (false) QBF can be 
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.
 := clause | cube | clause   | cube  
 E.g., 

(a’+b)  ac  (b’+c’)  bc
= ((a’+b)  (ac  ((b’+c’)  bc)))
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ResQu
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ResQu
 Example

 axbyc

7654321 )()()()()()()( ybabxcbxacybxcybxacyba 

8)( ybxa 

 8)( bxa
 10)( bxa

9)(a

10)( ybxa 

9)( xa
11)( xa

11)(a

)(empty

 7)( ba
)2(

)3(

)1(

)4(

)5(
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QBF Certification

Applications of Skolem/Herbrand functions
 Program synthesis
Winning strategy synthesis in two player 

games
 Plan derivation in AI
 Logic synthesis
 ...
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QBF Application
Relation Determinization
 Relation R(X, Y)

 Allow one-to-many 
mappings
Can describe non-

deterministic 
behavior

 More generic than 
functions

 Function F(X)
 Disallow one-to-many 

mappings 
Can only describe 

deterministic 
behavior

 A special case of 
relation

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00

11
10
01
00

x1x2 y1y2

f1 x1 x2
f2  x1 x2
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QBF Application
Relation Determinization

 Total relation
 Every input element is 

mapped to at least one 
output element

 Partial relation
 Some input element is 

not mapped to any 
output element

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
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QBF Application
Relation Determinization

A partial relation can be totalized
Assume that the input element not mapped to 

any output element is a don’t care

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y)  y.  R(X, y)
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QBF Application
Relation Determinization

 Applications of Boolean relation
 In high-level design, Boolean relations can be used to 

describe (nondeterministic) specifications
 In gate-level design, Boolean relations can be used to 

characterize the flexibility of sub-circuits
Boolean relations are more powerful than traditional don’t-

care representations

11
10
01
00

11
10
01
00

x1x2 y1y2

System 
Spec.

x1

x2

y1

y2
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QBF Application
Relation Determinization

Relation determinization
 For hardware implementation of a system, we 

need functions rather than relations
Hardware systems are intrinsically deterministic

 One input stimulus results in one output response

 To simplify implementation, we can explore 
the flexibilities described by a relation for 
optimization
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QBF Application
Relation Determinization

Example

f1 x1 x2
f2  x1 x2

f1 x2
f2  x1

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00
z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2
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QBF Application
Relation Determinization

Given a nondeterministic Boolean relation 
R(X, Y), how to determinize and extract 
functions from it?

Solve QBF 
x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)
 The Skolem functions of variables y1, …, yn

correspond to the output-functions we want
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QBF Application
Program Synthesis

Program synthesis by sketching 
 [Solar-Lezama et al., 2006]

Example
Spec:
int foo (int x){

return x+x;
}

Sketch:
int bar (int x) implements foo{

return x << ??;
}

Result:
int bar (int x) implements foo{

return x << 1;
}
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QBF Application
Program Synthesis

Sketch synthesis can be solved by 
searching for control values satisfying

c x. Spec(x) = Sk(x,c)

We are interested to derive the Skolem
function (in this case, constant) of c
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Conclusions
Modern SAT/QSAT solvers are powerful tools for 

solving large-scale synthesis, verification, and 
other computer science problems 

 Certificates of SAT/QSAT solving may be utilized 
to extract essential information for applications in 
synthesis and verification

 Understanding how solvers work helps 
practitioners formulate and solve real-world 
problems
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Suggested Further Exploration

SMT solvers and their applications in 
program analysis and verification
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Thank You!

Questions?


