Journals
2025
1. T. H. Liu, Y. Y. Tu, Y. H. Lu, S. P. Yang, and C. H. Wu, “Monolithic Dual-Wavelength High-Power DFB Laser with sub-100 kHz linewidth for THz Application,” Optics Letters, vol. 50, no. 4, pp. 1232-1235, Jan. 2025, doi: 10.1364/OL.553264.
2. N. Prechatavanich, M. J. Wu, C. K. Yee, T. Sutheebanjerd, Y. T. Tseng, Y. C. Yang, C. A. Lee, K. H. Lin, and C. H. Wu, “Sidewall defect suppression of 620 nm AlGaInP-based red µLED devices using HfO2 ALD passivation,” Optics Letters, Vol. 50, No. 2, pp. 313-316, Jan. 2025, doi: 10.1364/OL.543122.
3. M. Kumar, S. W. Chang, and C. H. Wu, “Investigation of Thermal Sensitivity and Linearity of Quantum Well-Based Heterojunction Bipolar Transistor,” IEEE Transactions on Electron Devices, Vol. 72, No. 1, Jan. 2025, doi: 10.1109/TED.2024.3492153.
4. K. Dąbrowski, W. Gawron, Ł. Kubiszyn, B. Seredyński, K. Michalczewski, C. H. Wu, ... & P. Martyniuk, “Response time of the type-II superlattice InAs/InAsSb mid-infrared interband cascade photodetector for HOT conditions,” Optics & Laser Technology, Vol. 182, No. 112172, Dec. 2024, DOI: 10.1016/j.optlastec.2024.112172.
5. J. Y. Wu, C. E. Chen, C. H. Wu, and G. R. Lin, “CMOS Design of Ge-on-Si Single-Photon Avalanche Diode with Ultralow Noise and Jitter,” IEEE Journal of Selected Topics in Quantum Electronics, (accepted) 2025, doi: 10.1109/JSTQE.2025.3531878.
2024
1. K. Dąbrowski, W. Gawron, Ł. Kubiszyn, B. Seredyński, K. Michalczewski, C. H. Wu, ... & P. Martyniuk, “The response time of the high operating temperature and very long wavelength type-II superlattice InAs/InAsSb interband cascade photodetectors,” IEEE Electron Device Letters, vol. 45, no. 11, pp. 2158-2161, Nov. 2024, doi: 10.1109/LED.2024.3462152.
2. M. Kumar, K. Y. Hsueh, S. J. Hsu, and C. H. Wu, “Design and fabrication of novel Darlington transistor using light-emitting transistors for smart thermal sensor technology,” IEEE Electron Device Letters, vol. 45, no. 7, pp. 1365-1368, Jul. 2024, doi: 10.1109/LED.2024.3401084.
3. Y. C. Yang, Z. Wan, C. C. Chiu, I. C. Liu, G. Xia, and C. H. Wu, “80 Gbps PAM-4 Data Transmission with 940 nm VCSELs Grown on a 330 μm Ge Substrate,” IEEE Electron Device Letters, vol. 45, no. 11, pp. 2070-2073, Nov. 2024, doi: 10.1109/LED.2024.3462949.
4. Y. H. Huang, C. Hanmandlu, A. Kumar, C. H. Wu, C. W. Chu, and S. Y. Lin, “Bifacial Perovskite Solar Cells with Gold Transparent Electrodes Grown on Molybdenum Disulfide Surfaces,” ACS Applied Energy Materials, Vol. 7, No. 14, pp. 5698-5705, Jun. 2024.
5. H. T. Cheng, Y. T. Liang, Y. T. Huang, S. J. Hsu, W. H. Lin, M. Feng, and C. H. Wu,“Electro-optical logics by three-terminal quantum-well-light-emitting transistors integration,” Photonics Research, Vol. 12, No. 8, pp. A51-A62, Jul. 2024.
6. C. E. Chen, S. M. Huang, T. J. Wang, M. C. Hsu, K. C. Huang, J. Y. Wu, and C. H. Wu, “High temperature tolerant Ge-on-Si single photon avalanche diode at the communication wavelength,” IEEE Electron Device Letters, Vol. 45, No. 8, Aug. 2024, doi: 10.1109/LED.2024.3416186.
7. C. E. Chen, N. Prechatavanich, T. H. Liu, and C. H. Wu, “Edge Breakdown Suppression in Avalanche Photodiodes Using an Attached Step Guard Ring,” IEEE Transactions on Electron Devices, vol. 71, no. 5, pp. 3062-3068, May 2024, doi: 10.1109/TED.2024.3378222.
8. Y. C. Yang, W. H. Chen, C. C. Chiu, and C. H. Wu, “26.5625 Gbaud PAM-4 short-reach transmission at 75° C using 850 nm VCSELs with strategic oxide guiding layer positioning,” Optics Letters, vol. 49, no. 8, pp. 2077-2080, Apr. 2024.
9. Z. Wan, Y. C. Yang, W. H. Chen, C. C. Chiu, Y. Zhao, M. Feifel, L. Chrostowski, D. Lackner, C. H. Wu, and G. Xia, “Monolithically integrated 940 nm VCSELs on bulk Ge substrates,” Optics Express, Vol. 32, Issue 4, pp. 6609-6618, Feb. 2024.
10. Y. C. Yang, Z. Wan, G. T. Hsu, C. C. Chiu, W. H. Chen, M. Feifel, D. Lackner, G. Xia, and C. H. Wu, “25 Gb/s NRZ Transmission at 85 C Using a High-Speed 940 nm AlGaAs Oxide-confined VCSEL Grown on Ge Substrate,” Optical Letter, vol. 49, no. 3, 2024, doi:10.1364/OL.509988.
11. T. H. Liu, S. P. Yang, Y. C. Yang, and C. H. Wu, “High-Power and Low RIN Performance of a 1.55 μm DFB Laser for 10 Gb/s Satellite Optical Links,” IEEE Electron Device Letters, vol. 45, no. 3, pp. 428-431, Jan. 2024, doi:10.1109/LED.2023.3347755.
2023
1. M. Kumar, S. Y. Ho, S. J. Hsu, P. C. Li, S. W. Chang, and C. H. Wu, “Current Gain Enhancement at High-Temperature Operation of Triple-Quantum-Well Heterojunction Bipolar Light-Emitting Transistor for Smart Thermal Sensor Application,” IEEE Transactions on Electron Devices, vol. 71, no.1, pp.896-903, 2023, doi: 10.1109/TED.2023.3339084.
2. Y. C. Chen, Y. T. Chao, E. Chen, C. H. Wu, and Y. R. Wu, “Studies of two-dimensional material resistive random-access memory by kinetic Monte Carlo simulations,” Phys. Rev. Materials, vol. 7, no. 9, 094001, 2023, doi: 10.1103/PhysRevMaterials.7.094001.
3. M. Kumar, S. J. Hsu, S. Y. Ho, S. W. Chang, and C. H. Wu, “Current Gain Enhancement of Heterojunction Bipolar Light-Emitting Transistors using Staircase InGaAs Quantum-Well,” IEEE Transactions on Electron Devices, vol. 70, no.10, pp.5177-5183, 2023, doi: 10.1109/TED.2023.3305355.
4. Y. C. Yang, H. T. Cheng, and C. H. Wu, “Single-channel 106.25 Gb/s PAM-4 and 64 Gb/s NRZ transmission with a 33.4-GHz 850-nm VCSEL with low-RIN characteristics,” Journal of Lightwave Technology, vol. 42, no. 1, 2023, doi: 10.1109/JLT.2023.3306077.
5. S. P. Yang, C. H. Wu, and L. A. Wang, “Design of a high-efficiency tapered silicon-cored-fiber coupler for fiber-to-chip coplanar edge coupling,” Optics Continuum, Vol. 2, no. 8, pp. 1825-1832, 2023, doi:10.1364/OPTCON.493316.
6. M. Kumar, L. C. Hsueh, S. W. Cheng, S. W. Chang, and C. H. Wu, “Analytical Modeling of Current Gain in Multiple-Quantum-Well Heterojunction Bipolar Light-Emitting Transistors,” IEEE Transactions on Electron Devices, vol. 71, no. 1, pp. 343-349, 2023, doi: 10.1109/TED.2023.3289930.
7. H. T. Cheng, J. S. Pan, W. H. Lin, Y. C. Yang, and C. H. Wu, “Zone-addressable 20× 20 940 nm VCSEL array with a 5-bit binary number pattern,” Optics Letters, vol. 48 no. 15, pp. 3937-3940, 2023, doi:10.1364/OL.494760.
8. H. T. Cheng, S. Y. Min, Y. C. Yang, H. Y. Lin, J. S. Pan, and C. H. Wu, “Single-mode-VCSEL with a ring-shaped self-aligned recessed metal mode filter,” IEEE Electron Device Letters, vol. 44, no. 8, pp. 1316-1319, 2023, doi: 10.1109/LED.2023.3288935.
9. L. Yang, S. W. Chang, and C. H. Wu, “Steady-State Characterization for Capture and Escape Lifetimes of 2-D Electron Gas in Light-Emitting Transistors,” IEEE Transactions on Electron Devices, vol. 70, no. 7, pp. 3675-3683, 2023, doi: 10.1109/TED.2023.3279055.
10. T. H. Liu, H. T. Cheng, J. Y. Wu, and C. H. Wu, “Achieving ns-level pulsed operation of up to 6.27 W with a 1.55 µm BH-DFB laser for LiDAR applications,” Optics Letters, vol. 48, no.11, pp.3071-3074, 2023, doi: 10.1364/OL.494220.
11. C. K. Yee, J. M. Lin, M. J. Wu, H. T. Cheng, C. W. Huang, C. A. Lee, K. H. Lin, C. C. Wu, and C. H. Wu, “High uniformity red µ-LED array with a current efficiency of 2.6 cd/A and ns-level response time,” Optics Letters, vol. 48, no. 11, pp. 2933-2936, 2023, doi: 10.1364/OL.490016.
12. H. T. Cheng, Y. C. Yang, and C. H. Wu, “Temperature-Insensitive 850-nm Dual-Mode-VCSEL With 25.1-GHz Bandwidth at 85 °C,” Journal of Lightwave Technology, vol. 41, no. 17, pp. 5675-5687, 2023, doi: 10.1109/JLT.2023.3263040.
13. J. Guo, Y. Zhao, M. Feifel, H. T. Cheng, Y. C. Yang, L. Chrostowski, D. Lackner, C. H. Wu, and G. Xia, “Study of monolithically integrated 940 nm AlGaAs distributed Bragg reflectors on graded GaAsP/bulk Si substrates,” Optical Materials Express, vol. 13, no. 4, pp. 1077-1091, 2023, doi: 10.1364/OME.484840.
14. H. T. Cheng, C. H. Wu, M. Feng, and C. H. Wu, “40.1-GHz sub-freezing 850-nm VCSEL: microwave extraction of cavity lifetimes and small-signal equivalent circuit modeling,” Optics Express, vol. 31, no. 7, pp. 11408-11422, 2023, doi: 10.1364/OE.486480.
2022
1. H. T. Cheng, J. Qiu, C. Y. Peng, H. C. Kuo, M. Feng, and C. H. Wu, “29 GHz single-mode vertical-cavity surface-emitting lasers passivated by atomic layer deposition,” Optics Express, vol. 30, no. 26, pp.47553-47566, 2022, doi: 10.1364/OE.474930.
2. C. Y. Peng, H. T. Cheng, Y. H. Hong, W. C. Hsu, F. H. Hsiao, T. C. Lu, S. W. Chang, S. C. Chen, C. H. Wu, and H. C. Kuo, “Performance Analyses of Photonic-Crystal Surface-Emitting Laser: Toward High-Speed Optical Communication,” Nanoscale Research Letters vol. 17, no. 90, 2022, doi: 10.1186/s11671-022-03728-x.
3. S.Y. Lee, C.H. Cheng, K.Y. Huang, X. Chen, K. Li, C.H. Wang, M.J. Li, C. H. Wu, and G.R. Lin, “Coupling angle tolerance of the 850-nm single-mode VCSEL output collimated by lensed OM4-MMF or GI-SMF for a NRZ-OOK link,” Optics Express, Vol. 30, No. 10, pp. 17130-17139, 2022, doi: 10.1364/OE.455379.
4. J.Y. Su, K. F. Chung, S. C. Kao, C. H. Cheng, C. T. Tsai, T. H. Liu, H. T. Cheng, C. H. Wu, T. T. Shih, D. W. Huang, and G.R. Lin, “Ge p-i-n Photodiode as 60-Gbit/s Optical NRZ-OOK Data Receiver,” Journal of Lightwave Technology, vol. 40, no. 13, pp. 4326-4336, 2022, doi: 10.1109/JLT.2022.3161011.
5. Y. Zhao, J. Guo, M. Feifel, H. T. Cheng, Y. C. Yang, L. Wang, L. Chrostowski, D. Lackner, C. H. Wu, and G. Xia, “Monolithic integration of 940 nm AlGaAs distributed Bragg reflectors on bulk Ge substrates,” Optical Materials Express, Vol. 12, Issue 3, pp. 1131-1139, 2022, doi: 10.1364/OME.452161.
6. H. T. Cheng, Y. C. Yang, T. H. Liu, and C. H. Wu, “Recent advances in 850 nm VCSELs for high-speed interconnects,” MDPI Photonics, Vol. 9, No. 2, pp. 107, 2022, doi: 10.3390/photonics9020107.
2021
1. T. C. Hsu, Y. W. Yeh, K. H. Chu, A. S. Sadhu, D. Yang, H. Y. Tseng, C. W. Sun, P. T. Lee, C. H. Wu, G. R. Lin, and H. C. Kuo, “50 Gb/s Zn-Diffusion Few-Mode VCSELs for Over 100-m GI-SMF Transmission at 850 nm Wavelength,” IEEE Transactions on Nanotechnology, vol. 20, pp. 889-894, 2021.
2. C. T. Tung, H. Y. Lin, S. W. Chang, and C. H. Wu, “Analytical modeling of tunnel-junction transistor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, Issue 1, pp. 1-8, 2021.
3. P. C. Tsai, H. C. Huang, C. T. Chiang, C. H. Wu, and S. Y. Lin, “Top-gate transistors fabricated on epitaxially grown molybdenum disulfide and graphene hetero-structures,” Applied Physics Express, vol. 14, no. 12, pp. 125502, 2021.
4. W. C. Lu, C. H. Wu, C. Y. Yeh, C. H. Wu, C. L. Wang, and L. A. Wang, “D-Shaped Silicon-Cored Fibers as Platform to Build In-Line Schottky Photodetectors,” IEEE Photonics Technology Letters, vol. 33, no. 6, pp. 317-320, 2021.
5. W. C. Lo, W. L. Wu, C. H. Cheng, H. Y. Wang, C. T. Tsai, C. H. Wu, and G. R. Lin, “Effect of Chirped Dispersion and Modal Partition Noise on Multimode VCSEL Encoded with NRZ-OOK and PAM-4 formats,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1, p. 1500409, 2021.
6. Y. S. Jiang, Y. E. Jeng, Y. T. Yin, K. W. Huang, T. J. Chang, C. I. Wang, Y. T. Chao, C. H. Wu, and M. J. Chen, “Operation bandwidth of negative capacitance characterized by the frequency response of capacitance magnification in ferroelectric/dielectric stacks,” Journal of Materials Chemistry C, vol. 9, no. 4, pp. 1401-1409, 2021.
7. C. H. Cheng, W. C. Lo, B. Su, C. H. Wu, and G. R. Lin, “Review of VCSELs for complex data-format transmission beyond 100-Gbit/s,” IEEE Photonics Journal, vol. 13, no. 5, pp. 1-13, 2021.
8. Y. C. Chang, Y. L. Ho, T. Y. Huang, D. W. Huang, and C. H. Wu, “Investigation of Normally-Off p-GaN/AlGaN/GaN HEMTs Using a Self-Terminating Etching Technique with Multi-Finger Architecture Modulation for High Power Application,” Micromachines, vol. 12, no. 4, p. 432, 2021.
2020
1. Y. W. Zhang, B. Y. Wu, K. C. Chen, C. H. Wu, and S. Y. Lin, “Highly conductive nanometer-thick gold films grown on molybdenum disulfide surfaces for interconnect applications,” Scientific Reports, vol. 10, no. 1, pp. 1-6, 2020.
2. Y. W. Zhang, J. Y. Li, C. H. Wu, C. Y. Chang, S. W. Chang, M. H. Shih, and S. Y. Lin, “Tungsten diselenide top-gate transistors with multilayer antimonene electrodes: Gate stacks and epitaxially grown 2D material heterostructures,” Scientific Reports, vol. 10, no. 1, pp. 1-7, 2020.
3. L. Yang, S. W. Chang, and C. H. Wu, “A Four-Port Model of Light-Emitting Transistors for Circuit Simulation and Application,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5572-5580, 2020.
4. C. T. Tung, S. W. Chang, and C. H. Wu, “Chirp-free optical-signal generation using dual-and-direct current-voltage modulation of transistor lasers,” Optics Letters, vol. 45, no. 9, pp. 2474-2477, 2020.
5. T. Y. Tsai, K. Michalczewski, P. Martyniuk, C. H. Wu, and Y. R. Wu, “Application of localization landscape theory and the k· p model for direct modeling of carrier transport in a type II superlattice InAs/InAsSb photoconductor system,” Journal of Applied Physics, vol. 127, no. 3, p. 033104, 2020.
6. C. Y. Peng, K. Tsao, H. T. Cheng, M. Feng, and C. H. Wu, “Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser,” Optics Express, vol. 28, no. 21, pp. 30748-30759, 2020, doi: 10.1364/OE.397878.
7. C. Y. Peng, J. Qiu, T. Y. Huang, C. H. Wu, M. Feng, and C. H. Wu, “850-nm Single-Mode Vertical-Cavity Surface-Emitting Lasers for 40 Gb/s Error-Free Transmission up to 500 m in OM4 Fiber,” IEEE Electron Device Letters, vol. 41, no. 1, pp. 84-86, 2020, doi: 10.1109/LED.2019.2953508.
8. C. Y. Peng, H. T. Cheng, H. C. Kuo, and C. H. Wu, “Design and optimization of VCSELs for up to 40-Gb/s error-free transmission through impurity-induced disordering,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1041-1046, 2020.
9. P. Martyniuk, K. Michalczewski, T. Y. Tsai, C. H. Wu, and Y. R. Wu, “Theoretical modeling of XBn T2SLs InAs/InAsSb/B-AlSb longwave infrared detector operating under thermoelectrical cooling,” Optical and Quantum Electronics, vol. 52, no. 2, p. 57, 2020.
10. P. Martyniuk, K. Michalczewski, T. Y. Tsai, C. H. Wu, and Y. R. Wu, “A Thermoelectrically Cooled nBn Type‐II Superlattices InAs/InAsSb/B‐AlAsSb Mid‐Wave Infrared Detector,” Physica Status Solidi (a), vol. 217, no. 6, p. 1900522, 2020.
11. M. J. Li, K. Li, X. Chen, S. K. Mishra, A. A. Juarez, J. E. Hurley, J. S. Stone, C. H. Wang, H. T. Cheng, and C. H. Wu, “Single-mode VCSEL transmission for short reach communications,” Journal of Lightwave Technology, vol. 39, no. 4, pp. 868-880, 2020.
12. H. Y. Lan, I. C. Tseng, Y. H. Lin, G. R. Lin, D. W. Huang, and C. H. Wu, “High-speed integrated micro-LED array for visible light communication,” Optics Letters, vol. 45, no. 8, pp. 2203-2206, 2020.
13. C. Y. Huang, H. Y. Wang, C. H. Wu, W. C. Lo, C. T. Tsai, C. H. Wu, M. Feng, and G. R. Lin, “Comparison on OM5-MMF and OM4-MMF data links with 32-GBaud PAM-4 modulated few-mode VCSEL at 850 nm,” Journal of Lightwave Technology, vol. 38, no. 3, pp. 573-582, 2020.
14. C. Y. Huang, H. Y. Wang, C. Y. Peng, C. T. Tsai, C. H. Wu, and G. R. Lin, “Multimode VCSEL enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF data link,” IEEE Access, vol. 8, pp. 36963-36973, 2020.
15. C. Y. Huang, C. T. Tsai, J. H. Weng, C. H. Cheng, H. Y. Wang, C. H. Wu, M. Feng, and G. R. Lin, “Temperature and Noise Dependence of Tri-Mode VCSEL Carried 120-Gbit/s QAM-OFDM Data in Back-to-Back and OM5-MMF Links,” Journal of Lightwave Technology, vol. 38, no. 24, pp. 6746-6758, 2020.
16. L. C. Chang, K. C. Hsu, Y. T. Ho, W. C. Tzeng, Y. L. Ho, and C. H. Wu, “High fmax× LG Product of AlGaN/GaN HEMTs on Silicon With Thick Rectangular Gate,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 481-484, 2020.
2019
1. Cheng-Han Wu and Chao-Hsin Wu, "12 GHz spontaneous optical bandwidth tunnel junction light-emitting transistor," Applied Physics Letters, vol. 115, no. 18, p. 181102, 2019.
2. Chien-Ting Tung, Shu-Wei Chang, and Chao-Hsin Wu, "Theoretical analysis on optical frequency response of tunnel-junction transistor lasers operated in different configurations," Journal of Applied Physics, vol. 125, no. 2, p. 023105, 2019.
3. Chien-Ting Tung, Chi-Hsiang Chang, Shu-Wei Chang, and Chao-Hsin Wu, "Pulse compression irrespective of fiber dispersion using chirp of transistor lasers," Opt. Lett., vol. 44, no. 8, pp. 2109-2112, 2019.
4. Chih-Chiang Shen, Tsung-Chi Hsu, Yen-Wei Yeh, Chieh-Yu Kang, Yun-Ting Lu, Hon-Way Lin, Hsien-Yao Tseng, Yu-Tzu Chen, Cheng-Yuan Chen, Chien-Chung Lin, Chao-Hsin Wu, Po-Tsung Lee, Sheng Yang, Ching-Hsueh Chiu, and Hao-Chung Kuo, "Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s," Nanoscale Research Letters, vol. 14, no. 1, pp. 1-6, 2019.
5. Chun-Yen Peng, Junyi Qiu, Ting-Yu Huang, Cheng-Han Wu, Milton Feng, and Chao-Hsin Wu, "850-nm single-mode vertical-cavity surface-emitting lasers for 40 Gb/s error-free transmission up to 500 m in OM4 fiber," IEEE Electron Device Letters, vol. 41, no. 1, pp. 84-86, 2019.
6. Krystian Michalczewski, Tsung-Yin Tsai, Piotr Martyniuk, and C. H. Wu, "Demonstration of HOT photoresponse of MWIR T2SLs InAs/InAsSb photoresistors," Bulletin of The Polish Academy of Sciences-Technical Sciences, vol. 67, 2019.
7. Krystian Michalczewski, Piotr Martyniuk, Łukasz Kubiszyn, Chao-Hsin Wu, Yuh-Renn Wu, Jarek Jureńczyk, Antoni Rogalski, and Józef Piotrowski, "Demonstration of the very long wavelength infrared type-II superlattice InAs/InAsSb GaAs immersed photodetector operating at thermoelectric cooling," IEEE Electron Device Letters, vol. 40, no. 9, pp. 1396-1398, 2019.
8. Hao-Yu Lan, I-Chen Tseng, Yung-Hsiang Lin, Shu-Wei Chang, and Chao-Hsin Wu, "Characteristics of Blue GaN/InGaN Quantum-Well Light-Emitting Transistor," IEEE Electron Device Letters, vol. 41, no. 1, pp. 91-94, 2019.
9. Hsuan-Yun Kao, Cheng-Ting Tsai, Yu-Chieh Chi, Chun-Yen Peng, Shan-Fong Leong, Huai-Yung Wang, Chih-Hsien Cheng, Wei-Li Wu, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin, "Long-term thermal stability of single-mode VCSEL under 96-Gbit/s OFDM transmission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, pp. 1-9, 2019.
10. Cheng-Yi Huang, Huai-Yung Wang, Cheng-Han Wu, Chih-Hsien Cheng, Cheng-Ting Tsai, Chao-Hsin Wu, Milton Feng, and Gong-Ru Lin, "Comparison of high-speed PAM4 and QAM-OFDM data transmission using single-mode VCSEL in OM5 and OM4 MMF links," IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 4, pp. 1-10, 2019.
11. Yun-Hsuan Chang, Yung-Lin Chou, Shu-Wei Chang, and Chao-Hsin Wu, "Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor," Journal of Applied Physics, vol. 126, no. 1, p. 014503, 2019.
12. Li-Cheng Chang, Shin-Yi Yin, and Chao-Hsin Wu, "Effect of border traps on the threshold voltage instability of fluoride-doped AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors," Journal of Physics D: Applied Physics, vol. 52, no. 19, p. 195102, 2019.
13. Li-Cheng Chang, Jhih-Hao Lin, Cheng-Jia Dai, Ming Yang, Yi-Hong Jiang, Yuh-Renn Wu, and Chao-Hsin Wu, "Systematic investigation of the threshold voltage modulation of AlGaN/GaN Schottky-gate Fin-HEMTs," Journal of Applied Physics, vol. 125, no. 9, p. 094502, 2019.
14. Li-Cheng Chang, Cheng-Jia Dai, and Chao-Hsin Wu, "Threshold voltage modulation of enhancement-mode InGaAs Schottky-gate fin-HEMTs," IEEE Electron Device Letters, vol. 40, no. 4, pp. 534-537, 2019.
2018
1. Chun-Yen Peng, Cheng-Ting Tsai, Huai-Yung Wang, Yun-Chen Wu, Tien-Tsorng Shih, Jian Jang Huang, Hao-Chung Kuo, Wood-Hi Cheng, Gong-Ru Lin, and Chao-Hsin Wayne Wu, "High-temperature insensitivity of 50-Gb/s 16-QAM-DMT transmission by using the temperature-compensated vertical-cavity surface-emitting lasers," Journal of Lightwave Technology, vol. 36, no. 16, pp. 3332-3343, 2018.
2. Krystian Michalczewski, Łukasz Kubiszyn, Piotr Martyniuk, Chao-Hsin Wu, Jarosław Jureńczyk, Kacper Grodecki, Djalal Benyahia, Antoni Rogalski, and Jozef Piotrowski, "Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate," Infrared Physics & Technology, vol. 95, 10/01 2018, doi: 10.1016/j.infrared.2018.10.024.
3. Hao-Yu Lan, I-Chen Tseng, Hsuan-Yun Kao, Yung-Hsiang Lin, Gong-Ru Lin, and Chao-Hsin Wu, "752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes," IEEE Journal of Quantum Electronics, vol. 54, no. 5, pp. 1-6, 2018.
4. Hsuan-Yun Kao, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Yu-Chieh Chi, Huai-Yung Wang, Hao-Chung Kuo, Chao-Hsin Wu, Wood-Hi Cheng, and Gong-Ru Lin, "Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100–300 m in OM4 MMF," Photon. Res., vol. 6, no. 7, pp. 666-673, 2018.
5. Chi-Yo Huang, Pei-Han Chung, Joseph Z Shyu, Yao-Hua Ho, Chao-Hsin Wu, Ming-Che Lee, and Ming-Jenn Wu, "Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods," Sustainability, vol. 10, no. 10, p. 3451, 2018.
6. Milton Feng, Chao-Hsin Wu, and Nick Holonyak, "Oxide-confined VCSELs for high-speed optical interconnects," IEEE Journal of Quantum Electronics, vol. 54, no. 3, pp. 1-15, 2018.
7. Chih-Hsien Cheng, Chih-Chiang Shen, Hsuan-Yun Kao, Dan-Hua Hsieh, Huai-Yung Wang, Yen-Wei Yeh, Yun-Ting Lu, Sung-Wen Huang Chen, Cheng-Ting Tsai, Yu-Chieh Chi, Tsung Sheng Kao, Chao-Hsin Wu, Hao-Chung Kuo, Po-Tsung Lee, and Gona-Ru Lin, "850/940-nm VCSEL for optical communication and 3D sensing," Opto-Electronic Advances, vol. 1, no. 3, pp. 180005-1-180005-11, 2018.
8. Hsun-Ming Chang, Kai-Lin Fan, Adam Charnas, D Ye Peide, Yu-Ming Lin, Chih-I Wu, and Chao-Hsin Wu, "Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors," Journal of Physics D: Applied Physics, vol. 51, no. 13, p. 135306, 2018.
2017
1. Chong-Rong Wu, Xiang-Rui Chang, Chao-Hsin Wu, and Shih-Yen Lin, "The growth mechanism of transition metal dichalcogenides by using sulfurization of pre-deposited transition metals and the 2D crystal hetero-structure establishment," Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
2. Cheng-Ting Tsai, Chun-Yen Peng, Chun-Yen Wu, Shan-Fong Leong, Hsuan-Yun Kao, Huai-Yung Wang, You-Wei Chen, Zu-Kai Weng, Yu-Chieh Chi, Hao-Chung Kuo, Jian Jang Huang, Tai-Cheng Lee, Tien-Tsorng Shih, Jau-Ji Jou, Wood-Hi Cheng, Chao-Hsin Wu, and Gona-Ru Lin, "Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber," IEEE Journal of Quantum Electronics, vol. 53, no. 4, pp. 1-8, 2017.
3. Tien-Tsorng Shih, Yu-Chieh Chi, Ruei-Nian Wang, Chao-Hsin Wu, Jian-Jang Huang, Jau-Ji Jou, Tai-Cheng Lee, Hao-Chung Kuo, Gong-Ru Lin, and Wood-Hi Cheng, "Efficient heat dissipation of uncooled 400-Gbps (16× 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays," Scientific reports, vol. 7, no. 1, pp. 1-10, 2017.
4. Chun Nien, Li-Cheng Chang, Jia-Hao Ye, Vin-Cent Su, Chao-Hsin Wu, and Chieh-Hsiung Kuan, "Proximity effect correction in electron-beam lithography based on computation of critical-development time with swarm intelligence," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 35, no. 5, p. 051603, 2017.
5. Hsuan-Yun Kao, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Yu-Chieh Chi, Jian Jang Huang, Hao-Chung Kuo, Tien-Tsorng Shih, Jau-Ji Jou, Wood-Hi Cheng, Chao-Hsin Wu, and Gona-Ru Lin, "Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission," Opt. Express, vol. 25, no. 14, pp. 16347-16363, 2017.
6. Hsuan-Yun Kao, Zhe-Xian Su, Hsiang-Shun Shih, Yu-Chieh Chi, Cheng-Ting Tsai, Hao-Chung Kuo, Chao-Hsin Wu, Jau-Ji Jou, Tien-Tsorng Shih, and Gong-Ru Lin, "CWDM DFBLD transmitter module for 10-km interdata center with single-channel 50-Gbit/s PAM-4 and 62-Gbit/s QAM-OFDM," Journal of Lightwave Technology, vol. 36, no. 3, pp. 703-711, 2017.
7. Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gona-Ru Lin, "Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber," Photon. Res., vol. 5, no. 5, pp. 507-515, 2017.
8. Hsuan-Yun Kao, Yu-Chieh Chi, Chun-Yen Peng, Shan-Fong Leong, Chun-Kai Chang, Yun-Chen Wu, Tien-Tsorng Shih, Jian Jang Huang, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gona-Ru Lin, "Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF," IEEE Journal of Quantum Electronics, vol. 53, no. 5, pp. 1-8, 2017.
9. Milton Feng, Cheng-Han Wu, MK Wu, Chao-Hsin Wu, and N Holonyak Jr, "Resonance-free optical response of a vertical cavity transistor laser," Applied Physics Letters, vol. 111, no. 12, p. 121106, 2017.
10. Li-Cheng Chang, Chun Nien, Jia-Hao Ye, Cheng-Huan Chung, Vin-Cent Su, Chao-Hsin Wu, and Chieh-Hsiung Kuan, "A comprehensive model for sub-10 nm electron-beam patterning through the short-time and cold development," Nanotechnology, vol. 28, no. 42, p. 425301, 2017.
11. Hsun-Ming Chang, Adam Charnas, Yu-Ming Lin, D Ye Peide, Chih-I Wu, and Chao-Hsin Wu, "Germanium-doped metallic ohmic contacts in black phosphorus field-effect transistors with ultra-low contact resistance," Scientific reports, vol. 7, no. 1, pp. 1-9, 2017.
12. Chih-Shiang Chang Chien, Hsun-Ming Chang, Wei-Ta Lee, Ming-Ru Tang, Chao-Hsin Wu, and Si-Chen Lee, "High performance MoS2 TFT using graphene contact first process," AIP Advances, vol. 7, no. 8, p. 085018, 2017.
2016
1. Yu-Feng Yin, Wen-Yi Lan, Yen-Hsiang Hsu, Yuan-Fu Hsu, Chao-Hsin Wu, and Jian-Jang Huang, "High-speed modulation from the fast mode extraction of a photonic crystal light-emitting diode," Journal of Applied Physics, vol. 119, no. 1, p. 013103, 2016.
2. Chong-Rong Wu, Kun-Cheng Liao, Chao-Hsin Wu, and Shih-Yen Lin, "Luminescence enhancement and enlarged dirac point shift of MoS2/graphene hetero-structure photodetectors with postgrowth annealing treatment," IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 1, pp. 101-105, 2016.
3. Chong-Rong Wu, Kun Peng Dou, Cheng-Hung Wang, Chung-En Chang, Chao-Cheng Kaun, Chao-Hsin Wu, and Shih-Yen Lin, "Dual-cut graphene transistors with constant-current regions fabricated by the atomic force microscope anode oxidation," Japanese Journal of Applied Physics, vol. 56, no. 1, p. 010307, 2016.
4. Chong-Rong Wu, Xiang-Rui Chang, Tung-Wei Chu, Hsuan-An Chen, Chao-Hsin Wu, and Shih-Yen Lin, "Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth," Nano letters, vol. 16, no. 11, pp. 7093-7097, 2016.
5. Shuo Hwai, Chao-Hsin Wu, Chong-Rong Wu, Kun-Cheng Liao, and Lin Shih-Yen, "Transferring-free top-gated graphene transistors fabricated on graphene films directly grown on sapphire substrates," International Journal of Electrical Engineering, vol. 23, no. 5, pp. 181-186, 2016.
6. Chi-Hsiang Chang, Shu-Wei Chang, and Chao-Hsin Wu, "Theory for voltage modulation of transistor lasers using Franz-Keldysh absorption in the presence of optoelectronic feedback," Opt. Express, vol. 24, no. 22, pp. 25515-25527, 2016.
2015
1. Po-Chun Yeh, Yun-Wei Lin, Yue-Lin Huang, Jui-Hung Hung, Bo-Ren Lin, Lucas Yang, Cheng-Han Wu, Tzu-Kuan Wu, Chao-Hsin Wu, and Lung-Han Peng, "Threshold voltage controlled by gate area and gate recess in inverted trapezoidal trigate AlGaN/GaN MOS high-electron-mobility transistors with photoenhanced chemical and plasma-enhanced atomic layer deposition oxides," Applied Physics Express, vol. 8, no. 8, p. 084101, 2015.
2. Hao-Hsiang Yang, Hsiao-Lun Wang, and Chao-Hsin Wu, "Investigation of Junction Thermal Characteristics of Light-Emitting Transistors," IEEE Transactions on Electron Devices, vol. 62, no. 3, pp. 808-812, 2015.
3. Chong-Rong Wu, Xiang-Rui Chang, Shu-Wei Chang, Chung-En Chang, Chao-Hsin Wu, and Shih-Yen Lin, "Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio," Journal of Physics D: Applied Physics, vol. 48, no. 43, p. 435101, 2015.
4. Cheng-Han Wu, Hsuan-An Chen, Shih-Yen Lin, and Chao-Hsin Wu, "1.1-μm InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy," Opt. Lett., vol. 40, no. 16, pp. 3747-3749, 2015.
5. Hsiao-Lun Wang, Yu-Hao Huang, Gong-Sheng Cheng, Shu-Wei Chang, and Chao-Hsin Wu, "Analysis of tunable internal loss caused by Franz–Keldysh absorption in transistor lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 270-276, 2015.
6. Yu-Wen Chern, Chi-Hsiang Chang, and Chao-Hsin Wayne Wu, "The effect of voltage-dependent charge-removing mechanism on the optical modulation bandwidths of light-emitting transistors," IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4076-4081, 2015.
2014
1. Hao-Hsiang Yang, Wen-Chung Tu, Hsiao-Lun Wang, and Chao-Hsin Wu, "Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures," Applied Physics Letters, vol. 105, no. 18, p. 181119, 2014.
2. Cheng-Han Wu and Chao-Hsin Wu, "Analysis of different tunneling mechanisms of InxGa1-xAs/AlGaAs tunnel junction light-emitting transistors," Applied Physics Letters, vol. 105, no. 17, p. 171104, 2014.
3. Hsiao-Lun Wang, Hao-Hsiang Yang, and Chao-Hsin Wayne Wu, "Quantum Well Saturation Effect on the Reduction of Base Transit Time in Light-Emitting Transistors," IEEE Transactions on Electron Devices, vol. 61, no. 10, pp. 3472-3476, 2014.
2013
1. Hsiao-Lun Wang, Yin-Jie Huang, and Chao-Hsin Wu, "Optical frequency response analysis of light-emitting transistors under different microwave configurations," Applied Physics Letters, vol. 103, no. 5, p. 051110, 2013.
2. Hsiao-Lun Wang, Peng-Hao Chou, and Chao-Hsin Wu, "Microwave determination of quantum-well capture and escape time in light-emitting transistors," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1088-1091, 2013.
Prior to 2013
1. C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak, "The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity," Journal of Applied Physics, vol. 109, no. 5, p. 053112, 2011, doi: 10.1063/1.3553876.
2. F. Tan, C. H. Wu, M. Feng, and N. Holonyak Jr., "Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission," Applied Physics Letters, vol. 98, no. 19, p. 191107, 2011, doi: 10.1063/1.3589363.
3. C. H. Wu, H. W. Then, M. Feng, and N. Holonyak Jr., "Microwave determination of electron-hole recombination dynamics from spontaneous to stimulated emission in a quantum-well microcavity laser," Applied Physics Letters, vol. 96, no. 13, p. 131108, 2010, doi: 10.1063/1.3377918.
4. C. H. Wu, F Tan, M Feng, and N Holonyak Jr, "The effect of mode spacing on the speed of quantum-well microcavity lasers," Applied Physics Letters, vol. 97, no. 9, p. 091103, 2010.
5. H. W. Then, C. H. Wu, M. Feng, N. Holonyak Jr., and G. Walter, "Stochastic base doping and quantum-well enhancement of recombination in an n-p-n light-emitting transistor or transistor laser," Applied Physics Letters, vol. 96, no. 26, p. 263505, 2010, doi: 10.1063/1.3458708.
6. H. W. Then, C. H. Wu, M. Feng, and N. Holonyak Jr., "Microwave characterization of Purcell enhancement in a microcavity laser," Applied Physics Letters, vol. 96, no. 13, p. 131107, 2010, doi: 10.1063/1.3377913.
7. C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak Jr., "Scaling of light emitting transistor for multigigahertz optical bandwidth," Applied Physics Letters, vol. 94, no. 17, p. 171101, 2009, doi: 10.1063/1.3126642.
8. Chao-Hsin Wu, Gabriel Walter, Han Wui Then, Milton Feng, and Nick Holonyak, "4-GHz Modulation Bandwidth of Integrated 2 × 2 LED Array," IEEE Photonics Technology Letters, vol. 21, no. 24, pp. 1834-1836, 2009.
9. G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak Jr., "Tilted-charge high speed (7 GHz) light emitting diode," Applied Physics Letters, vol. 94, no. 23, p. 231125, 2009, doi: 10.1063/1.3154565.
10. G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak Jr., "4.3 GHz optical bandwidth light emitting transistor," Applied Physics Letters, vol. 94, no. 24, p. 241101, 2009, doi: 10.1063/1.3153146.
11. H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak Jr., "Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel junction transistor laser," Applied Physics Letters, vol. 94, no. 10, p. 101114, 2009, doi: 10.1063/1.3100294.
12. M. Feng, N. Holonyak Jr., H. W. Then, C. H. Wu, and G. Walter, "Tunnel junction transistor laser," Applied Physics Letters, vol. 94, no. 4, p. 041118, 2009, doi: 10.1063/1.3077020.
13. H. W. Then, M. Feng, N. Holonyak Jr., and C. H. Wu, "Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping," Applied Physics Letters, vol. 91, no. 3, p. 033505, 2007, doi: 10.1063/1.2759263.
14. B. F. Chu-Kung, C. H. Wu, G. Walter, M. Feng, N. Holonyak Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, "Modulation of high current gain (β>49) light-emitting InGaN/GaN heterojunction bipolar transistors," Applied Physics Letters, vol. 91, no. 23, p. 232114, 2007, doi: 10.1063/1.2821380.
15. Wei-Che Chang, Yi-Shin Su, Chao-Hsin Wu, and Ching-Fuh Lin, "Broad-gain measurement of semiconductor optical amplifier with nonidentical multiple quantum wells," Japanese Journal of Applied Physics, vol. 45, no. 3L, p. L259, 2006.
16. Ching-Fuh Lin, Yi-Shin Su, Chao-Hsin Wu, and Gagik S. Shmavonyan, "Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells," IEEE Photonics Technology Letters, vol. 16, no. 6, pp. 1441-1443, 2004.
17. Ching-Fuh Lin, Yi-Shin Su, Chao-Hsin Wu, and Yu-Chia Chang, "Influence of separate confinement heterostructure layer on carrier distribution in InGaAsP laser diodes with nonidentical multiple quantum wells," Japanese Journal of Applied Physics, vol. 43, no. 10R, p. 7032, 2004.
18. Ching-Fuh Lin, Yi-Shin Su, Di-Ku Yu, Chao-Hsin Wu, and Bing-Ruey Wu, "Improved temperature characteristics of laser diodes with nonidentical multiple quantum wells due to temperature-induced carrier redistribution," Applied Physics Letters, vol. 82, no. 20, pp. 3403-3405, 2003.
Total: 127